JPH08318168A - Method for regenerating catalyst - Google Patents

Method for regenerating catalyst

Info

Publication number
JPH08318168A
JPH08318168A JP7149792A JP14979295A JPH08318168A JP H08318168 A JPH08318168 A JP H08318168A JP 7149792 A JP7149792 A JP 7149792A JP 14979295 A JP14979295 A JP 14979295A JP H08318168 A JPH08318168 A JP H08318168A
Authority
JP
Japan
Prior art keywords
catalyst
treatment
particles
maleic anhydride
catalyst particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7149792A
Other languages
Japanese (ja)
Inventor
Tatsumi Ichiki
達美 市来
Nagasumi Hamashima
長登 浜島
Teiji Nakamura
悌二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polynt SpA
Tonen Chemical Corp
Original Assignee
Polynt SpA
Tonen Sekiyu Kagaku KK
Tonen Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polynt SpA, Tonen Sekiyu Kagaku KK, Tonen Chemical Corp filed Critical Polynt SpA
Priority to JP7149792A priority Critical patent/JPH08318168A/en
Priority to AU55705/96A priority patent/AU5570596A/en
Priority to PCT/US1996/005688 priority patent/WO1996033804A1/en
Publication of JPH08318168A publication Critical patent/JPH08318168A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Furan Compounds (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE: To efficiently regenerate a catalyst (V-P-O catalyst) made of multiple oxide of V and P. CONSTITUTION: When a catalyst made of multiple oxide of V and P and used in the production of maleic anhydride by oxidizing 4C hydrocarbons is regenerated, catalyst granules are drawn out of a reactor and allowed to intrude into a flow of gas jetted from a nozzle under high pressure in a jet mill. Collision between the catalyst granules or that between the granules and a collision plate is caused to remove inert layers on the surfaces of the catalyst granules and the catalyst is regenerated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭素数4の炭化水素を
反応器、特に流動床反応器にて酸化して無水マレイン酸
を製造する方法において使用する触媒を、使用により活
性低下した際に再生する方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a catalyst used in a method for producing maleic anhydride by oxidizing a hydrocarbon having 4 carbon atoms in a reactor, particularly a fluidized bed reactor, when the activity of the catalyst is lowered by the use. On how to play.

【0002】[0002]

【従来の技術】従来、バナジウム‐リン複合酸化物触媒
(いわゆるV−P−O系触媒)を用い、流動床反応器に
て炭素数4の炭化水素を酸化して無水マレイン酸を製造
する方法は公知である。この方法では、触媒を使用する
につれて、触媒活性が低下してしまい、反応温度を上げ
ると無水マレイン酸の収率の低下を生じるという問題が
あった。そこで、種々の触媒再生方法が試みられてき
た。例えば三酸化硫黄を用いてバナジウムの原子価を3.
9 〜4.6 に上げ、それにより部分的に触媒を再生する方
法(米国特許第4,123,442 号明細書);ハロゲンまたは
有機ハロゲン化物の作用により、触媒から不活性バナジ
ウムを除去する方法(米国特許第4,020,174号明細
書);還元気体例えば水素、一酸化炭素などによる触媒
の処理方法(英国特許第1,439,489 号);触媒を水性ア
ンモニアまたはアミンと接触させる方法(英国特許第1,
512,305 号);リン化合物を添加する方法(米国特許第
3,296,282号明細書、米国特許第3,474,041 号明細書、
英国特許第1,291,354 号)等が知られている。しかしな
がら、これらの方法はいずれも、満足のいくものではな
かった。たとえば、リン化合物を添加すると、選択率は
向上するが活性が低下するので、反応温度を上げなけれ
ばならなくなる。
2. Description of the Related Art Conventionally, a vanadium-phosphorus complex oxide catalyst (so-called VPO catalyst) is used to oxidize a hydrocarbon having 4 carbon atoms in a fluidized bed reactor to produce maleic anhydride. Is known. This method has a problem that the catalytic activity decreases as the catalyst is used, and the yield of maleic anhydride decreases when the reaction temperature is raised. Therefore, various catalyst regeneration methods have been tried. For example, use sulfur trioxide to change the valence of vanadium to 3.
Method of partially regenerating the catalyst by raising it to 9-4.6 (US Pat. No. 4,123,442); Method of removing inert vanadium from the catalyst by the action of halogen or organic halide (US Pat. No. 4,020,174) Specification); Method of treating catalyst with reducing gas such as hydrogen, carbon monoxide, etc. (GB 1,439,489); Method of contacting catalyst with aqueous ammonia or amine (GB 1,
512,305); Method of adding phosphorus compounds (US Patent No.
3,296,282 specification, U.S. Pat.No. 3,474,041 specification,
British Patent No. 1,291,354) and the like are known. However, none of these methods have been satisfactory. For example, when a phosphorus compound is added, the selectivity is improved but the activity is lowered, so that the reaction temperature must be raised.

【0003】一方、特開平5-329381号公報では、流動床
反応器で使用される触媒粒子を解凝する方法または流動
床触媒粒子の表面を再び露出させる方法を開示してお
り、流動化状態下の流動床触媒粒子中に高速ガスを吹き
込んで粒子の衝突により粒子表面を研磨する。
On the other hand, Japanese Patent Laid-Open No. 5-329381 discloses a method of deagglomerating catalyst particles used in a fluidized bed reactor or a method of re-exposing the surface of fluidized bed catalyst particles. A high-speed gas is blown into the fluidized bed catalyst particles below to polish the particle surface by collision of the particles.

【0004】また、特開平4-316567号公報は、流動床反
応器から触媒を取り出し、粉砕して触媒の活性な面を出
し、これを再び反応器へ戻す方法を開示する。
Further, Japanese Patent Laid-Open No. 4-316567 discloses a method of taking out a catalyst from a fluidized bed reactor, crushing it to expose an active surface of the catalyst, and returning it to the reactor again.

【0005】[0005]

【発明が解決しようとする課題】本発明は、V−P−O
系触媒の再生を効率よく行う方法を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention is a V-P-O
It is an object of the present invention to provide a method for efficiently regenerating a system catalyst.

【0006】[0006]

【課題を解決するための手段】すなわち本発明は、炭素
数4の炭化水素を酸化して無水マレイン酸を製造する方
法において使用する、バナジウムとリンとの複合酸化物
から成る触媒の再生方法であって、該触媒粒子を反応器
から抜き出し、ジェットミル中で高圧でノズルから噴出
する気体流に該触媒粒子を巻き込み、それによって該触
媒粒子間又は該粒子と衝突板との間の衝突を生じさせ
て、該触媒粒子表面の不活性層を除去することを特徴と
する触媒の再生方法を提供するものである。
Means for Solving the Problems That is, the present invention provides a method for regenerating a catalyst composed of a complex oxide of vanadium and phosphorus, which is used in a method for producing a maleic anhydride by oxidizing a hydrocarbon having 4 carbon atoms. And withdrawing the catalyst particles from the reactor and entraining them in a gas stream ejected from a nozzle at high pressure in a jet mill, thereby causing collisions between the catalyst particles or between the particles and a collision plate. Then, the method for regenerating a catalyst is provided, which comprises removing the inactive layer on the surface of the catalyst particles.

【0007】本発明において再生されるべき触媒は、炭
素数4の炭化水素を酸化して無水マレイン酸を製造する
方法において使用されるバナジウムとリンとの複合酸化
物から成る触媒(以下では、V−P−O系触媒と称す
る)であって、使用により活性が低下したものである。
前記触媒は、バナジウム‐リン結晶性混合酸化物を活性
成分として含むものであり、触媒は担体を含んでいても
いなくてもよい。
The catalyst to be regenerated in the present invention is a catalyst composed of a complex oxide of vanadium and phosphorus used in a method for producing maleic anhydride by oxidizing a hydrocarbon having 4 carbon atoms (hereinafter, referred to as V It is referred to as a -P-O catalyst), and its activity is reduced by its use.
The catalyst contains vanadium-phosphorus crystalline mixed oxide as an active ingredient, and the catalyst may or may not contain a carrier.

【0008】このようなV−P−O系触媒は、公知の方
法により製造することができる。例えば、リン酸の存在
下で五酸化バナジウムを塩酸、シュウ酸、ヒドラジン等
で還元することにより生成した前駆体を焼成処理する方
法(特開昭54-120273 号公報、米国特許第4,085,122 号
明細書等);五酸化バナジウムを実質的に無水の有機溶
媒中で還元処理した後、リン酸の存在下で加熱処理する
ことにより生成した前駆体を焼成処理する方法(特公昭
57-8761 号公報、特公平1-50455 号公報等)である。
Such a V-P-O type catalyst can be manufactured by a known method. For example, a method of calcining a precursor produced by reducing vanadium pentoxide with hydrochloric acid, oxalic acid, hydrazine or the like in the presence of phosphoric acid (JP-A-54-120273, US Pat. No. 4,085,122). Etc.); A method in which vanadium pentoxide is subjected to reduction treatment in a substantially anhydrous organic solvent, and then the precursor produced by heat treatment in the presence of phosphoric acid is subjected to calcination treatment (Japanese Patent Publication No.
57-8761 and Japanese Patent Publication No. 1-50455).

【0009】本発明においてジェットミルとしては、た
とえば公知のジェット気流衝突型、衝突板型及び流動層
型のジェットミルを用いることができる。ジェットミル
は通常、ミクロンオーダーの粒径へと微粉砕を行うため
に使用され、粒子の磨耗が少ないことが特徴とされてい
る。本発明では逆に、触媒粒子の粉砕を極力行わず、粒
子表面の不活性層を除去する。従って、本発明におい
て、ジェット気流の速度あるいは処理時間は、通常の微
粉砕の場合に比べて小さくする必要がある。たとえば本
発明に従い好ましく使用される流動層型のジェットミル
の場合、処理エネルギーの指標E
In the present invention, as the jet mill, for example, known jet stream collision type, collision plate type and fluidized bed type jet mills can be used. Jet mills are commonly used to perform fine milling to particle sizes on the order of microns and are characterized by low particle wear. On the contrary, in the present invention, the inactive layer on the particle surface is removed without crushing the catalyst particles as much as possible. Therefore, in the present invention, the velocity of the jet stream or the treatment time needs to be shorter than that in the case of ordinary fine pulverization. For example, in the case of a fluidized bed type jet mill preferably used according to the present invention, an index E of processing energy is

【数3】 E={気体の噴出速度(m/秒)}2×処理時間(秒) が下記式[Equation 3] E = {gas ejection velocity (m / sec)} 2 × treatment time (sec) is the following formula.

【数4】2.5×107<E<5.0×108 を満すことが好ましく、下記式[Equation 4] It is preferable to satisfy 2.5 × 10 7 <E <5.0 × 10 8, and the following formula

【数5】5.0×107<E<5.0×108 を満すことがより好ましい。他の型のジェットミルにお
いても、予備実験を行うことにより、本発明の対象の触
媒粒子の微粉砕が起きず、しかし表面の不活性層の除去
を起す条件を容易に決めることができる。
[Equation 5] It is more preferable to satisfy 5.0 × 10 7 <E <5.0 × 10 8 . In other types of jet mills, preliminary experiments can be performed to easily determine the conditions under which the finely pulverized catalyst particles of the present invention do not occur, but the removal of the surface inactive layer occurs.

【0010】これと対称的に、上記した特開平5-329381
号公報に開示されている方法においては、触媒粒子全体
を反応器中で流動状態に保ちながら、流動層の中央に高
速ガスノズルを位置させて、高速ガスを流出させてい
る。従って、高速ガスにより生じる粒子の衝突は比較的
ノズル近傍にのみとどまり、しかも反応器中の流動層全
体が攪拌状態にあるので、個々の粒子の衝突の機会は幅
広い分布となる。従って、処理時間は必然的に永くな
り、個々の粒子に着目すると、衝突を必要以上の回数受
けて破砕してしまった粒子が存在する一方で、衝突回数
が不十分な粒子が存在することになる。本発明では、こ
のような不都合がない。ジェット気流として空気を用い
ることが経済上有利であるが、これに限定されない。
In contrast to this, the above-mentioned Japanese Patent Laid-Open No. 5-329381.
In the method disclosed in the publication, while maintaining the whole catalyst particles in a fluidized state in a reactor, a high-speed gas nozzle is positioned in the center of a fluidized bed to let out high-speed gas. Therefore, the collision of particles generated by the high-speed gas stays only in the vicinity of the nozzle, and the whole fluidized bed in the reactor is in a stirring state, so that the opportunities for collision of individual particles have a wide distribution. Therefore, the processing time will inevitably become long, and when focusing on individual particles, there are particles that have been crushed after receiving more collisions than necessary, while there are particles that have insufficient collision frequency. Become. The present invention does not have such an inconvenience. It is economically advantageous to use air as the jet stream, but it is not limited thereto.

【0011】かくして、本発明に従って触媒粒子は比較
的均一な衝突を受ける。かかる適宜な衝突を受けること
により、触媒粒子の表面が薄く削られることを見出し
た。これにより、触媒表面全体が新鮮な表面となり、触
媒活性が回復されるものと考えられる。しかも、選択率
も回復することが見い出された。
Thus, according to the present invention, the catalyst particles are subjected to relatively uniform impingement. It has been found that the surface of the catalyst particles is thinly shaved by receiving such an appropriate collision. As a result, the entire surface of the catalyst becomes a fresh surface, and the catalytic activity is considered to be restored. Moreover, it was found that the selectivity also recovered.

【0012】本発明の処理は粒子の粉砕を目的とするも
のではなく、触媒の粒径分布は処理を行ってもほとんど
変化しない。本発明の処理により触媒表面が削り取ら
れ、極く微細な粒子が発生するが、この微粒子は分級し
て取り除くことが好ましい。分級方法としては、ジェッ
トミルに内蔵された分級器(例えばサイクロン)で行っ
てもよいし、処理後に別途の分級操作のみを行ってもよ
い。また分級せずに、被処理物全体を流動層反応器内に
投入し、反応器内で分級を行うこととしてもよい。
The treatment of the present invention is not intended to pulverize the particles, and the particle size distribution of the catalyst hardly changes even after the treatment. The catalyst surface is scraped off by the treatment of the present invention to generate extremely fine particles, but it is preferable to remove these fine particles by classification. As a classification method, a classifier (for example, a cyclone) built in the jet mill may be used, or only a separate classification operation may be performed after the treatment. It is also possible to put the entire material to be treated in a fluidized bed reactor without performing classification and perform classification in the reactor.

【0013】本発明の方法は、回分式又は連続式で行う
ことができる。連続式の場合、無水マレイン酸製造のた
めに運転中の流動層反応器から触媒粒子を連続的に抜き
出して、ジェットミルに供給し、かつジェットミルから
再生処理を受けた触媒粒子を連続的に抜き出して流動層
反応器へ戻すことが好ましい。
The process of the invention can be carried out batchwise or continuously. In the case of the continuous system, the catalyst particles are continuously withdrawn from the operating fluidized bed reactor for the production of maleic anhydride, supplied to the jet mill, and the catalyst particles subjected to the regeneration treatment from the jet mill are continuously extracted. It is preferably withdrawn and returned to the fluidized bed reactor.

【0014】[0014]

【実施例】以下の実施例により、本発明をより詳しく説
明する。
The present invention will be described in more detail by the following examples.

【0015】[0015]

【比較例1】ブタンを酸化して無水マレイン酸を製造す
る系の流動床反応器で長時間使用し、活性の低下したV
−P−O系触媒1mlを、何も処理せずに、活性テストに
供した。すなわち試験用の固定床流通系反応装置におい
て、反応を行った。反応条件は、SV 1200時間-1、ブ
タン濃度1.5 %、常圧、温度430 ℃に設定した。
[Comparative Example 1] V which has been used for a long time in a fluidized bed reactor in which butane is oxidized to produce maleic anhydride
1 ml of -P-O based catalyst was subjected to activity test without any treatment. That is, the reaction was carried out in a fixed bed flow reactor for testing. The reaction conditions were SV 1200 hours -1 , butane concentration 1.5%, normal pressure and temperature 430 ° C.

【0016】ブタン転化率47%、無水マレイン酸選択
率65%であった。なお、ブタン転化率および無水マレ
イン酸選択率は、次のようにして求めた。
The butane conversion was 47% and the maleic anhydride selectivity was 65%. The butane conversion rate and maleic anhydride selectivity were determined as follows.

【0017】[0017]

【数6】ブタン転化率=(単位時間当たり反応で消費さ
れたブタンのモル数)/(単位時間当たり反応に供した
ブタンのモル数)×100
## EQU6 ## Butane conversion rate = (number of moles of butane consumed in reaction per unit time) / (number of moles of butane subjected to reaction per unit time) × 100

【0018】[0018]

【数7】無水マレイン酸選択率=(単位時間当たり生成
した無水マレイン酸のモル数)/(単位時間当たり反応
で消費されたブタンのモル数)×100
[Formula 7] Maleic anhydride selectivity = (number of moles of maleic anhydride formed per unit time) / (number of moles of butane consumed in the reaction per unit time) x 100

【実施例1】流動層型のジェットミルであるホソカワミ
クロン(株)製のカウンタージェットミル200AFGを
用いた。比較例1で用いたのと同じ、活性の低下した触
媒10kgを再生処理に付した。
Example 1 A counter jet mill 200AFG manufactured by Hosokawa Micron Corp., which is a fluidized bed type jet mill, was used. The same 10 kg of catalyst with reduced activity as used in Comparative Example 1 was regenerated.

【0019】ノズル上流の空気圧を1kg/cm2G(噴出
速度290m/秒)とし、1時間処理した。従って、E=3.
0×108であった。
The air pressure upstream of the nozzle was set to 1 kg / cm 2 G (jet speed 290 m / sec) and the treatment was carried out for 1 hour. Therefore, E = 3.
It was 0 × 10 8 .

【0020】再生処理後の触媒粒子について、粒径分布
を測定したところ、平均粒子径は処理前に比べ、2μm
程度減少したものの、粒径分布に大きな変化はなかっ
た。また、処理後の触媒粒子を、走査型電子顕微鏡(S
EM)で観察した。図1は、本発明に従う処理を行われ
る前の触媒の写真(倍率750)である。図2は処理後の
触媒の写真(倍率1000)である。触媒粒子の粉砕はほと
んどなく、粒子表面が一様に剥離されていることがわか
った。
When the particle size distribution of the catalyst particles after the regeneration treatment was measured, the average particle diameter was 2 μm as compared with that before the treatment.
Although it decreased to some extent, there was no significant change in the particle size distribution. In addition, the catalyst particles after the treatment are treated with a scanning electron microscope (S
It was observed by EM). FIG. 1 is a photograph (magnification 750) of a catalyst before being treated according to the invention. FIG. 2 is a photograph (magnification: 1000) of the catalyst after the treatment. It was found that the catalyst particles were scarcely pulverized and the particle surface was uniformly exfoliated.

【0021】再生処理後の触媒の活性を、比較例と同じ
活性テスト用固定床流通系反応装置において、比較例と
同一条件で測定したところ、ブタン転化率59%、無水
マレイン酸選択率67%であった。
The activity of the catalyst after the regeneration treatment was measured in the same fixed-bed flow reactor for activity test as in Comparative Example under the same conditions as in Comparative Example. The butane conversion was 59% and the maleic anhydride selectivity was 67%. Met.

【0022】[0022]

【実施例2】ノズル上流の空気圧を2kg/cm2G(噴出
速度480m/s)、処理時間を30分に変更した以外は、実施
例1と同様にして処理を行った。この時のEは4.1×108
であった。処理後の触媒について粒径分布を測定したと
ころ、平均粒子径は処理前に比べ3μm程度減少したも
のの、粒径分布に大きな変化はなかった。処理後の触媒
の活性を比較例1と同一条件で測定した。ブタン転化率
64%、無水マレイン酸選択率66%が得られた。
Example 2 The same process as in Example 1 was carried out except that the air pressure upstream of the nozzle was changed to 2 kg / cm 2 G (jet speed 480 m / s) and the treatment time was changed to 30 minutes. E at this time is 4.1 × 10 8
Met. When the particle size distribution of the treated catalyst was measured, the average particle size was reduced by about 3 μm as compared with that before the treatment, but there was no significant change in the particle size distribution. The activity of the catalyst after the treatment was measured under the same conditions as in Comparative Example 1. A butane conversion rate of 64% and a maleic anhydride selectivity of 66% were obtained.

【0023】[0023]

【実施例3】ノズル上流の空気圧を3kg/cm2G(噴出
速度650m/s)、処理時間を5分に変更した以外は、実施
例1と同様にして処理を行った。この時のEは1.3×108
であった。処理後の触媒について粒径分布を測定したと
ころ、平均粒子径は処理前に比べ1μm程度減少したも
のの、粒径分布に大きな変化はなかった。処理後の触媒
の活性を比較例1と同一条件で測定した。ブタン転化率
69%、無水マレイン酸選択率65%が得られた。
Example 3 The same process as in Example 1 was carried out except that the air pressure upstream of the nozzle was changed to 3 kg / cm 2 G (jet speed 650 m / s) and the treatment time was changed to 5 minutes. E at this time is 1.3 × 10 8
Met. When the particle size distribution of the catalyst after the treatment was measured, the average particle size was reduced by about 1 μm as compared with that before the treatment, but there was no significant change in the particle size distribution. The activity of the catalyst after the treatment was measured under the same conditions as in Comparative Example 1. A butane conversion of 69% and a maleic anhydride selectivity of 65% were obtained.

【0024】[0024]

【実施例4】ノズル上流の空気圧を6kg/cm2G(噴出
速度1170m/s)、処理時間を1分に変更した以外は、実
施例1と同様にして処理を行った。この時のEは8.2×1
07であった。処理後の触媒について粒径分布を測定した
ところ、平均粒子径は処理前に比べ1μm程度減少した
ものの、粒径分布に大きな変化はなかった。処理後の触
媒の活性を比較例1と同一条件で測定した。ブタン転化
率57%、無水マレイン酸選択率65%が得られた。
Example 4 The process was performed in the same manner as in Example 1 except that the air pressure upstream of the nozzle was changed to 6 kg / cm 2 G (jet speed 1170 m / s) and the treatment time was changed to 1 minute. E at this time is 8.2 × 1
It was 0 7 . When the particle size distribution of the catalyst after the treatment was measured, the average particle size was reduced by about 1 μm as compared with that before the treatment, but there was no significant change in the particle size distribution. The activity of the catalyst after the treatment was measured under the same conditions as in Comparative Example 1. A butane conversion of 57% and a maleic anhydride selectivity of 65% were obtained.

【0025】結果をまとめて表1に示す。The results are summarized in Table 1.

【表1】 [Table 1]

【0026】[0026]

【比較例2】ノズル上流の空気圧を6kg/cm2G(噴出
速度1170m/s)、処理時間を10分に変更した以外は、
実施例1と同様にして処理を行った。この時のEは8.2
×108であった。処理後の触媒について粒径分布を測定
したところ、粒径分布が大きく変化していた。またSE
Mにより処理後の触媒を観察したところ、触媒の粉砕が
顕著に起こっていることがわかった。すなわち、ジェッ
トミルの処理が過大であるために、触媒粒子表面の除去
ではなくて、通常のジェットミル操作における如く粉砕
が生じていた。
[Comparative Example 2] Except that the air pressure upstream of the nozzle was changed to 6 kg / cm 2 G (jet speed 1170 m / s) and the treatment time was changed to 10 minutes,
Processing was carried out in the same manner as in Example 1. E at this time is 8.2
It was × 10 8 . When the particle size distribution of the treated catalyst was measured, the particle size distribution was significantly changed. SE
When the catalyst after treatment with M was observed, it was found that the catalyst was significantly ground. That is, since the treatment of the jet mill was excessive, the surface of the catalyst particles was not removed, but pulverization occurred as in a normal jet mill operation.

【0027】[0027]

【発明の効果】本発明によれば、バナジウムとリンとの
複合酸化物から成る触媒を、簡易に有効に再生すること
ができ、触媒の活性ならびに選択率が大きく向上され
る。
According to the present invention, a catalyst comprising a complex oxide of vanadium and phosphorus can be simply and effectively regenerated, and the activity and selectivity of the catalyst can be greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1において本発明に従う処理を受ける前
の触媒粒子の構造を示す写真(750倍)
FIG. 1 is a photograph showing the structure of catalyst particles before being subjected to the treatment according to the present invention in Example 1 (750 times).

【図2】処理後の触媒粒子の構造を示す写真(1000倍)FIG. 2 is a photograph showing the structure of catalyst particles after treatment (1000 times).

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年9月18日[Submission date] September 18, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 FIG.

【図2】 [Fig. 2]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭素数4の炭化水素を酸化して無水マレ
イン酸を製造する方法において使用する、バナジウムと
リンとの複合酸化物から成る触媒の再生方法であって、
該触媒粒子を反応器から抜き出し、ジェットミル中で高
圧でノズルから噴出する気体流に該触媒粒子を巻き込
み、それによって該触媒粒子間又は該粒子と衝突板との
間の衝突を生じさせて、該触媒粒子表面の不活性層を除
去することを特徴とする触媒の再生方法。
1. A method for regenerating a catalyst comprising a vanadium-phosphorus complex oxide used in a method for producing maleic anhydride by oxidizing a hydrocarbon having 4 carbon atoms,
Withdrawing the catalyst particles from the reactor and entraining them in a gas stream ejected from a nozzle at high pressure in a jet mill, thereby causing a collision between the catalyst particles or between the particles and a collision plate, A method for regenerating a catalyst, which comprises removing an inactive layer on the surface of the catalyst particles.
【請求項2】 ジェットミルが流動層型であり、処理エ
ネルギーの指標E 【数1】 E={気体の噴出速度(m/秒)}2×処理時間(秒) が下記式を満す請求項1記載の方法。 【数2】2.5×107<E<5.0×108
2. The jet mill is a fluidized bed type, and an index E of processing energy E = {Ejection velocity of gas (m / sec)} 2 × processing time (sec) satisfies the following equation: The method according to item 1. [Equation 2] 2.5 × 10 7 <E <5.0 × 10 8
JP7149792A 1995-04-27 1995-05-25 Method for regenerating catalyst Pending JPH08318168A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP7149792A JPH08318168A (en) 1995-05-25 1995-05-25 Method for regenerating catalyst
AU55705/96A AU5570596A (en) 1995-04-27 1996-04-24 Process for the regeneration of a catalyst
PCT/US1996/005688 WO1996033804A1 (en) 1995-04-27 1996-04-24 Process for the regeneration of a catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7149792A JPH08318168A (en) 1995-05-25 1995-05-25 Method for regenerating catalyst

Publications (1)

Publication Number Publication Date
JPH08318168A true JPH08318168A (en) 1996-12-03

Family

ID=15482825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7149792A Pending JPH08318168A (en) 1995-04-27 1995-05-25 Method for regenerating catalyst

Country Status (1)

Country Link
JP (1) JPH08318168A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136217A1 (en) * 2010-04-30 2011-11-03 旭化成ケミカルズ株式会社 Apparatus for removing substances from catalyst surface

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136217A1 (en) * 2010-04-30 2011-11-03 旭化成ケミカルズ株式会社 Apparatus for removing substances from catalyst surface
CN102883810A (en) * 2010-04-30 2013-01-16 旭化成化学株式会社 Apparatus for removing substances from catalyst surface
JP5649236B2 (en) * 2010-04-30 2015-01-07 旭化成ケミカルズ株式会社 Catalyst surface body removal device
US10023529B2 (en) 2010-04-30 2018-07-17 Asaki Kasei Chemicals Corporation Apparatus for removing catalyst surface substances

Similar Documents

Publication Publication Date Title
US4666945A (en) Catalyst composition suitable for synthesis of methanol
JP3868514B2 (en) Fluidized bed process for the acetoxylation of ethylene in the production of vinyl acetate.
US5356845A (en) Process for the reactivation of nickel-alumina catalysts
JP2010540220A (en) Method for producing catalyst used for producing carbon nanotube
EP0277137B1 (en) Method of making an attrition-resistant catalyst composition and use of the same
JPH0234353B2 (en)
EP0533228B1 (en) Process for the activation of a catalyst
US5854161A (en) Process for the regeneration of a catalyst
JPH08318168A (en) Method for regenerating catalyst
EP0107274B1 (en) Attrition resistant microspheroidal fluid bed catalysts containing the mixed oxides of vanadium and phosphorus
EP0384749B1 (en) Process for producing catalyst precursor and corresponding catalyst
KR20070095899A (en) Method of preparing acrylic acid from propane in the absence of water vapor
JP4221060B2 (en) Gas phase catalytic oxidation of n-butane to maleic anhydride, including in situ catalyst calcination / activation
EP0255295B1 (en) Process for producing fluidized catalyst for synthesis of methanol
KR101602685B1 (en) Continuous process and apparatus for producing carbon nanotubes
JP4296020B2 (en) Regeneration method of deteriorated catalyst
JPH08294635A (en) Regenerating method of catalyst
WO1996033804A1 (en) Process for the regeneration of a catalyst
US4386215A (en) Maleic anhydride production with high crush strength catalysts
GB2090155A (en) Process for producing phosphorous-vanadium-oxygen catalysts
JP3744078B2 (en) Operation method of fluidized bed reactor
JP4065710B2 (en) Regeneration method of deteriorated catalyst
JP3603352B2 (en) Method for producing phosphorus-vanadium oxide catalyst
JP2004000930A (en) Method for regenerating deteriorated catalyst
JP3013457B2 (en) Method for producing dicarboxylic anhydride

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20081114

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20111114

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20121114