JPH08294635A - Regenerating method of catalyst - Google Patents

Regenerating method of catalyst

Info

Publication number
JPH08294635A
JPH08294635A JP7127067A JP12706795A JPH08294635A JP H08294635 A JPH08294635 A JP H08294635A JP 7127067 A JP7127067 A JP 7127067A JP 12706795 A JP12706795 A JP 12706795A JP H08294635 A JPH08294635 A JP H08294635A
Authority
JP
Japan
Prior art keywords
catalyst
particles
treatment
catalyst particles
vanadium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7127067A
Other languages
Japanese (ja)
Inventor
Tatsumi Ichiki
達美 市来
Nagataka Hamashima
長登 浜島
Teiji Nakamura
悌二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polynt SpA
Tonen Chemical Corp
Original Assignee
Polynt SpA
Tonen Sekiyu Kagaku KK
Tonen Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polynt SpA, Tonen Sekiyu Kagaku KK, Tonen Chemical Corp filed Critical Polynt SpA
Priority to JP7127067A priority Critical patent/JPH08294635A/en
Priority to AU55705/96A priority patent/AU5570596A/en
Priority to PCT/US1996/005688 priority patent/WO1996033804A1/en
Publication of JPH08294635A publication Critical patent/JPH08294635A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Furan Compounds (AREA)

Abstract

PURPOSE: To provide a method for generating a catalyst composed of a composite oxide constituted of vanadium and phosphorus (V-P-O based catalyst). CONSTITUTION: A regenerating method of a catalyst composed of a composite oxide constituted of vanadium and phosphorus is used in the process of oxidizing 4C hydrocarbon and preparing maleic anhydride. Catalytic particles are extracted from a reactor, and high speed gas flow is jetted toward the catalytic particles to form a jet layer of catalytic particles. Collisions between the catalytic particles are thereby generated, and inactive layers on the surfaces of catalytic particles are ground and removed in the regenerating method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭素数4の炭化水素を
反応器、特に流動床反応器にて酸化して無水マレイン酸
を製造する方法において使用する触媒を、使用により活
性低下した際に再生する方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a catalyst used in a method for producing maleic anhydride by oxidizing a hydrocarbon having 4 carbon atoms in a reactor, particularly a fluidized bed reactor, when the activity of the catalyst is lowered by the use. On how to play.

【0002】[0002]

【従来の技術】従来、バナジウム‐リン複合酸化物触媒
(いわゆるV−P−O系触媒)を用い、流動床反応器に
て炭素数4の炭化水素を酸化して無水マレイン酸を製造
する方法は公知である。この方法では、触媒を使用する
につれて、触媒活性が低下してしまい、反応温度を上げ
ると無水マレイン酸の収率の低下を生じるという問題が
あった。そこで、種々の触媒再生方法が試みられてき
た。例えば三酸化硫黄を用いてバナジウムの原子価を3.
9 〜4.6 に上げ、それにより部分的に触媒を再生する方
法(米国特許第4,123,442 号明細書);ハロゲンまたは
有機ハロゲン化物の作用により、触媒から不活性バナジ
ウムを除去する方法(米国特許第4,020,174号明細
書);還元気体例えば水素、一酸化炭素などによる触媒
の処理方法(英国特許第1,439,489 号);触媒を水性ア
ンモニアまたはアミンと接触させる方法(英国特許第1,
512,305 号);リン化合物を添加する方法(米国特許第
3,296,282号明細書、米国特許第3,474,041 号明細書、
英国特許第1,291,354 号)等が知られている。しかしな
がら、これらの方法はいずれも、満足のいくものではな
かった。
2. Description of the Related Art Conventionally, a vanadium-phosphorus complex oxide catalyst (so-called VPO catalyst) is used to oxidize a hydrocarbon having 4 carbon atoms in a fluidized bed reactor to produce maleic anhydride. Is known. This method has a problem that the catalytic activity decreases as the catalyst is used, and the yield of maleic anhydride decreases when the reaction temperature is raised. Therefore, various catalyst regeneration methods have been tried. For example, use sulfur trioxide to change the valence of vanadium to 3.
Method of partially regenerating the catalyst by raising it to 9-4.6 (US Pat. No. 4,123,442); Method of removing inert vanadium from the catalyst by the action of halogen or organic halide (US Pat. No. 4,020,174) Specification); Method of treating catalyst with reducing gas such as hydrogen, carbon monoxide, etc. (GB 1,439,489); Method of contacting catalyst with aqueous ammonia or amine (GB 1,
512,305); Method of adding phosphorus compounds (US Patent No.
3,296,282 specification, U.S. Pat.No. 3,474,041 specification,
British Patent No. 1,291,354) and the like are known. However, none of these methods have been satisfactory.

【0003】一方、特開平5-329381号公報では、流動床
反応器で使用される触媒粒子を解凝する方法または流動
床触媒粒子の表面を再び露出させる方法を開示してお
り、流動化状態下の流動床触媒粒子中に高速ガスを吹き
込んで粒子の衝突により粒子表面を研磨する。
On the other hand, Japanese Patent Laid-Open No. 5-329381 discloses a method of deagglomerating catalyst particles used in a fluidized bed reactor or a method of re-exposing the surface of fluidized bed catalyst particles. A high-speed gas is blown into the fluidized bed catalyst particles below to polish the particle surface by collision of the particles.

【0004】また、特開平4-316567号公報は、流動床反
応器から触媒を取り出し、粉砕して触媒の活性な面を出
し、これを再び反応器へ戻す方法を開示する。
Further, Japanese Patent Laid-Open No. 4-316567 discloses a method of taking out a catalyst from a fluidized bed reactor, crushing it to expose an active surface of the catalyst, and returning it to the reactor again.

【0005】[0005]

【発明が解決しようとする課題】本発明は、V−P−O
系触媒の再生を効率よく行う方法を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention is a V-P-O
It is an object of the present invention to provide a method for efficiently regenerating a system catalyst.

【0006】[0006]

【課題を解決するための手段】すなわち本発明は、炭素
数4の炭化水素を酸化して無水マレイン酸を製造する方
法において使用する、バナジウムとリンとの複合酸化物
から成る触媒の再生方法であって、該触媒粒子を反応器
から抜き出し、高速気体流を該触媒粒子に向けて噴射し
て触媒粒子の噴流層を形成せしめ、それによって該触媒
粒子間の衝突を生じさせて、該触媒粒子表面の不活性層
を研磨除去することを特徴とする触媒の再生方法を提供
するものである。
Means for Solving the Problems That is, the present invention provides a method for regenerating a catalyst composed of a complex oxide of vanadium and phosphorus, which is used in a method for producing a maleic anhydride by oxidizing a hydrocarbon having 4 carbon atoms. The catalyst particles are withdrawn from the reactor and a high velocity gas stream is injected towards the catalyst particles to form a spouted bed of catalyst particles, thereby causing collisions between the catalyst particles, It is intended to provide a method for regenerating a catalyst, which comprises polishing and removing an inactive layer on the surface.

【0007】本発明において再生されるべき触媒は、炭
素数4の炭化水素を酸化して無水マレイン酸を製造する
方法において使用されるバナジウムとリンとの複合酸化
物から成る触媒(以下では、V−P−O系触媒と称す
る)であって、使用により活性が低下したものである。
前記触媒は、バナジウム‐リン結晶性混合酸化物を活性
成分として含むものであり、触媒は担体を含んでいても
いなくてもよい。
The catalyst to be regenerated in the present invention is a catalyst composed of a complex oxide of vanadium and phosphorus used in a method for producing maleic anhydride by oxidizing a hydrocarbon having 4 carbon atoms (hereinafter, referred to as V It is referred to as a -P-O catalyst), and its activity is reduced by its use.
The catalyst contains vanadium-phosphorus crystalline mixed oxide as an active ingredient, and the catalyst may or may not contain a carrier.

【0008】このようなV−P−O系触媒は、公知の方
法により製造することができる。例えば、リン酸の存在
下で五酸化バナジウムを塩酸、シュウ酸、ヒドラジン等
で還元することにより生成した前駆体を焼成処理する方
法(特開昭54-120273 号公報、米国特許第4,085,122 号
明細書等);五酸化バナジウムを実質的に無水の有機溶
媒中で還元処理した後、リン酸の存在下で加熱処理する
ことにより生成した前駆体を焼成処理する方法(特公昭
57-8761 号公報、特公平1-50455 号公報等)である。
Such a V-P-O type catalyst can be manufactured by a known method. For example, a method of calcining a precursor produced by reducing vanadium pentoxide with hydrochloric acid, oxalic acid, hydrazine or the like in the presence of phosphoric acid (JP-A-54-120273, US Pat. No. 4,085,122). Etc.); A method in which vanadium pentoxide is subjected to reduction treatment in a substantially anhydrous organic solvent, and then the precursor produced by heat treatment in the presence of phosphoric acid is subjected to calcination treatment (Japanese Patent Publication No.
57-8761 and Japanese Patent Publication No. 1-50455).

【0009】本発明の方法では再生されるべき触媒を処
理容器に入れ、下部から高速気体を連続的又は回部的に
導入し、触媒層に噴流層を形成せしめて、触媒粒子間の
衝突を生じさせる必要がある。高速気体としては、常温
又は加熱した任意の気体たとえば、空気、窒素、水蒸気
等を用いることができる。
In the method of the present invention, the catalyst to be regenerated is placed in a processing vessel, and a high-speed gas is continuously or partly introduced from the lower part to form a spouted bed in the catalyst layer to prevent collision between the catalyst particles. Need to occur. As the high-speed gas, room temperature or any heated gas such as air, nitrogen, or steam can be used.

【0010】本発明における噴流層とは、再生を必要と
する触媒層中に高速気体流を噴射し、かつこの気体流が
触媒層をつきぬけた状態になっているものをいう。従っ
て、触媒層は、粒子密度の低いジェット部と粒子密度の
高い粒子濃厚相部に大別できる。粒子濃厚相部では、ジ
ェット部の粒子の流れの向きとは逆の流れが生じ、粒子
は全体として規則的に循環している。
The spouted bed in the present invention refers to one in which a high-speed gas stream is injected into a catalyst layer that requires regeneration, and this gas stream is in a state of passing through the catalyst layer. Therefore, the catalyst layer can be roughly classified into a jet part having a low particle density and a particle rich phase part having a high particle density. In the particle rich phase portion, a flow opposite to the direction of the flow of particles in the jet portion occurs, and the particles circulate regularly as a whole.

【0011】触媒表面の研磨は、ジェット部における粒
子どうしの衝突、あるいはジェット部と粒子濃厚相部と
の界面部分における粒子どうしの衝突により生じる。噴
流層では特に後者の衝突の頻度が高く、また粒子が全体
として規則的に層内を循環しているため、衝突による研
磨が効率よく起こる。これと対称的に、上記した特開平
5-329381号公報に開示されている方法においては、触媒
粒子全体を流動状態に保ちながら、流動層の中央に高速
ガスノズルを位置させて、高速ガスを流出させている。
従って、高速ガスにより生じる粒子の衝突は比較的ノズ
ル近傍にのみとどまり、しかも流動層全体が攪拌状態に
あるので、個々の粒子の衝突の機会は幅広い分布とな
る。従って、処理時間は必然的に永くなり、個々の粒子
に着目すると、衝突を必要以上の回数受けて破砕してし
まった粒子が存在する一方で、衝突回数が不十分な粒子
が存在することになる。本発明では、このような不都合
がない。
Polishing of the catalyst surface is caused by collision of particles in the jet portion or collision of particles in the interface portion between the jet portion and the particle rich phase portion. In the spouted bed, the latter is particularly frequently collided, and particles circulate in the layer regularly as a whole, so that polishing by collision efficiently occurs. In contrast to this, the above-mentioned
In the method disclosed in Japanese Patent No. 5-329381, while maintaining the whole catalyst particles in a fluidized state, a high-speed gas nozzle is positioned in the center of the fluidized bed to let out high-speed gas.
Therefore, the collision of particles generated by the high-speed gas remains only in the vicinity of the nozzle, and the entire fluidized bed is in a stirring state, so that the chances of collision of individual particles have a wide distribution. Therefore, the processing time will inevitably become long, and when focusing on individual particles, there are particles that have been crushed after receiving more collisions than necessary, while there are particles that have insufficient collision frequency. Become. The present invention does not have such an inconvenience.

【0012】かくして、本発明に従って触媒粒子は比較
的均一な衝突を受ける。かかる適宜な衝突を受けること
により、触媒粒子の表面が研磨され薄く削られることを
見出した。これにより、触媒表面全体が新鮮な表面とな
り、触媒活性が回復されるものと考えられる。本発明の
処理は粒子の粉砕を目的とするものではなく、触媒の粒
径分布は処理を行ってもほとんど変化しない。本発明の
処理により触媒表面が削り取られ、極く微細な粒子が発
生するが、この微粒子は分級して取り除くことが好まし
い。分級方法としては、処理容器と連結して取り付けた
分級器(例えばサイクロン)でも行ってもよいし、処理
後に別途の分級操作のみを行ってもよい。また分級せず
に、被処理物全体を流動層反応器内に投入し、反応器内
で分級を行うこととしてもよい。
Thus, according to the present invention, the catalyst particles are subjected to relatively uniform impingement. It has been found that the surface of the catalyst particles is polished and thinned by receiving such an appropriate collision. As a result, the entire surface of the catalyst becomes a fresh surface, and the catalytic activity is considered to be restored. The treatment of the present invention is not intended to grind the particles, and the particle size distribution of the catalyst hardly changes even when the treatment is performed. The catalyst surface is scraped off by the treatment of the present invention to generate extremely fine particles, but it is preferable to remove these fine particles by classification. As a classification method, a classifier (for example, a cyclone) attached in connection with the treatment container may be used, or only a separate classification operation may be performed after the treatment. It is also possible to put the entire material to be treated in a fluidized bed reactor without performing classification and perform classification in the reactor.

【0013】本発明の方法は、回分式又は連続式で行う
ことができる。連続式の場合、無水マレイン酸製造のた
めに運転中の流動層反応器から触媒粒子を連続的に抜き
出して、本発明の装置に供給し、かつ本発明の装置から
再生処理を受けた触媒粒子を連続的に抜き出して流動層
反応器へ戻すことが好ましい。
The process of the invention can be carried out batchwise or continuously. In the case of the continuous type, the catalyst particles are continuously withdrawn from the fluidized bed reactor in operation for producing maleic anhydride, supplied to the apparatus of the present invention, and subjected to regeneration treatment from the apparatus of the present invention. Is preferably continuously withdrawn and returned to the fluidized bed reactor.

【0014】[0014]

【実施例】以下の実施例により、本発明をより詳しく説
明する。
The present invention will be described in more detail by the following examples.

【0015】比較例 ブタンを酸化して無水マレイン酸を製造する系の流動床
反応器で長時間使用し、活性の低下したV−P−O系触
媒1mlを、何も処理せずに、活性テストに供した。すな
わち試験用の固定床流通系反応装置において、反応を行
った。反応条件は、SV 1200時間-1、ブタン濃度1.5
%、常圧、温度430 ℃に設定した。
Comparative Example 1 1 ml of a V-P-O type catalyst with reduced activity was used for a long time in a fluidized bed reactor of a system for producing butyric acid by oxidizing butane without any treatment. I gave it to the test. That is, the reaction was carried out in a fixed bed flow reactor for testing. The reaction conditions are SV 1200 hours -1 , butane concentration 1.5.
%, Normal pressure and temperature of 430 ° C.

【0016】ブタン転化率51%、無水マレイン酸選択
率64%であった。なお、ブタン転化率および無水マレ
イン酸選択率は、次のようにして求めた。
The butane conversion was 51% and the maleic anhydride selectivity was 64%. The butane conversion rate and maleic anhydride selectivity were determined as follows.

【0017】[0017]

【数1】ブタン転化率=(単位時間当たり反応で消費さ
れたブタンのモル数)/(単位時間当たり反応に供した
ブタンのモル数)×100
## EQU1 ## Butane conversion rate = (number of moles of butane consumed in reaction per unit time) / (number of moles of butane subjected to reaction per unit time) × 100

【0018】[0018]

【数2】無水マレイン酸選択率=(単位時間当たり生成
した無水マレイン酸のモル数)/(単位時間当たり反応
で消費されたブタンのモル数)×100実施例1 比較例で用いたのと同じ、活性の低下した触媒20g
(約20ml)を、次のような処理器中で再生処理に付し
た。
[Equation 2] Maleic anhydride selectivity = (moles of maleic anhydride formed per unit time) / (moles of butane consumed in the reaction per unit time) × 100 Example 1 Used in Comparative Example 20g of the same reduced activity catalyst
(About 20 ml) was regenerated in the following processor.

【0019】処理器は、内径3cm、高さ1mのガラス製
の円筒であり、筒の上部には、内径の最大径が15cmの減
速ゾーンをもうけ、さらにその先にフィルターを取付
け、かつ筒下端の支持板の中心に1つのノズルを設け
た。ノズル上端は支持板の上端と略同一平面にあり、ノ
ズルの内径は0.65 mm であった。高速ガスとして空気を
使用し、ノズル上流圧3kg/cm2 G、空気流量7.3 リッ
トル/分、ノズル出口の空気流の線速度(出口速度)
は、340 m/秒であった。再生処理は、25℃で90分間
行った。
The processing unit is a glass cylinder having an inner diameter of 3 cm and a height of 1 m. A deceleration zone having a maximum inner diameter of 15 cm is provided at the upper part of the cylinder, and a filter is further attached to the deceleration zone, and the lower end of the cylinder is provided. One nozzle was provided at the center of the support plate of the. The upper end of the nozzle was substantially flush with the upper end of the support plate, and the inner diameter of the nozzle was 0.65 mm. Air is used as the high-speed gas, the nozzle upstream pressure is 3 kg / cm 2 G, the air flow rate is 7.3 l / min, and the linear velocity of the air flow at the nozzle outlet (exit velocity)
Was 340 m / sec. The regeneration treatment was performed at 25 ° C. for 90 minutes.

【0020】再生処理後の触媒粒子について、粒径分布
を測定したところ、平均粒子径は処理前に比べ、1μm
程度減少したものの、粒径分布に大きな変化はなかっ
た。また、処理後の触媒粒子を、走査型電子顕微鏡(S
EM)で観察した。図1は、本発明に従う処理を行われ
る前の触媒の写真(倍率1,000)である。図2(倍率50
0)及び図3(倍率1,000)は処理後の触媒の写真であ
る。触媒粒子の粉砕はほとんどなく、粒子表面が一様に
剥離されていることがわかった。
The particle size distribution of the catalyst particles after the regeneration treatment was measured, and the average particle diameter was 1 μm as compared with that before the treatment.
Although it decreased to some extent, there was no significant change in the particle size distribution. In addition, the catalyst particles after the treatment are treated with a scanning electron microscope (S
It was observed by EM). FIG. 1 is a photograph (magnification: 1,000) of a catalyst before being treated according to the present invention. Figure 2 (magnification 50
0) and FIG. 3 (1,000 magnification) are photographs of the catalyst after treatment. It was found that the catalyst particles were scarcely pulverized and the particle surface was uniformly exfoliated.

【0021】再生処理後の触媒の活性を、比較例と同じ
活性テスト用固定床流通系反応装置において、比較例と
同一条件で測定したところ、ブタン転化率81%、無水
マレイン酸選択率64%であった。
The activity of the catalyst after the regeneration treatment was measured in the same fixed-bed flow reactor for activity test as in the comparative example under the same conditions as in the comparative example. The butane conversion was 81% and the maleic anhydride selectivity was 64%. Met.

【0022】実施例2〜6 再生処理条件を表1に示したように変更した以外は実施
例1と同様にして触媒の再生処理を行った。再生処理後
の触媒粒子について、粒径分布を測定したところ、いず
れも粒径分布に大きな変化はなかった。また、走査型電
子顕微鏡(SEM)で観察した結果、触媒粒子の粉砕は
ほとんどなく、粒子表面が一様に剥離されていることが
わかった。
Examples 2 to 6 The catalyst was regenerated in the same manner as in Example 1 except that the regeneration conditions were changed as shown in Table 1. When the particle size distribution of the catalyst particles after the regeneration treatment was measured, there was no significant change in the particle size distribution. Further, as a result of observation with a scanning electron microscope (SEM), it was found that the catalyst particles were hardly pulverized and the particle surface was uniformly exfoliated.

【0023】処理後の触媒活性を、比較例と同じ活性テ
スト用固定床流通系反応装置において、比較例と同一条
件で測定した。結果を表1に示す。
The catalytic activity after the treatment was measured in the same fixed-bed flow reactor for activity test as in the comparative example under the same conditions as in the comparative example. The results are shown in Table 1.

【0024】[0024]

【表1】 実施例7 内径15cmのガラス筒(高さ1.3m)の底部に内径1mm
のノズルを取付け、実施例1と同様に触媒を処理した。
触媒量は500gとし、空気流量は16リットル/min、処
理時間3時間とした。処理後の触媒については、処理に
よる粒径分布の大きな変化はなく、SEM観察により触
媒の粒子表面が一様に削り取られていることがわかっ
た。処理後の触媒の活性を比較例と同一条件で測定し
た。ブタン転化率72%、無水マレイン酸選択率64%
が得られた。処理前に比べ活性が大きく向上するととも
に、活性の向上の割に選択率の低下がない。
[Table 1] Example 7 1 mm inner diameter at the bottom of a 15 cm inner diameter glass tube (height 1.3 m)
The nozzle was attached and the catalyst was treated in the same manner as in Example 1.
The catalyst amount was 500 g, the air flow rate was 16 l / min, and the treatment time was 3 hours. Regarding the catalyst after the treatment, there was no significant change in the particle size distribution due to the treatment, and it was found by SEM observation that the particle surface of the catalyst was evenly scraped off. The activity of the catalyst after the treatment was measured under the same conditions as in the comparative example. Butane conversion 72%, maleic anhydride selectivity 64%
was gotten. The activity is significantly improved as compared with that before the treatment, and the selectivity is not reduced for the improvement in the activity.

【0025】[0025]

【発明の効果】本発明によれば、バナジウムとリンとの
複合酸化物から成る触媒を、簡易に有効に再生すること
ができる。
EFFECTS OF THE INVENTION According to the present invention, a catalyst composed of a complex oxide of vanadium and phosphorus can be simply and effectively regenerated.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1において本発明に従う処理を受ける前
の触媒粒子の構造を示す写真(1,000倍)
FIG. 1 is a photograph showing the structure of catalyst particles before undergoing the treatment according to the present invention in Example 1 (1,000 times).

【図2】処理後の触媒粒子の構造を示す写真(500倍)FIG. 2 is a photograph showing the structure of catalyst particles after treatment (500 times).

【図3】処理後の触媒粒子の構造を示す写真(1,000
倍)
FIG. 3 is a photograph showing the structure of catalyst particles after treatment (1,000
Times)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭素数4の炭化水素を酸化して無水マレ
イン酸を製造する方法において使用する、バナジウムと
リンとの複合酸化物から成る触媒の再生方法であって、
該触媒粒子を反応器から抜き出し、高速気体流を該触媒
粒子に向けて噴射して触媒粒子の噴流層を形成せしめ、
それによって該触媒粒子間の衝突を生じさせて、該触媒
粒子表面の不活性層を研磨除去することを特徴とする触
媒の再生方法。
1. A method for regenerating a catalyst comprising a vanadium-phosphorus complex oxide used in a method for producing maleic anhydride by oxidizing a hydrocarbon having 4 carbon atoms,
Withdrawing the catalyst particles from the reactor and injecting a high-velocity gas flow toward the catalyst particles to form a spouted bed of catalyst particles,
Thereby, a collision between the catalyst particles is caused to polish and remove the inactive layer on the surface of the catalyst particles.
JP7127067A 1995-04-27 1995-04-27 Regenerating method of catalyst Pending JPH08294635A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP7127067A JPH08294635A (en) 1995-04-27 1995-04-27 Regenerating method of catalyst
AU55705/96A AU5570596A (en) 1995-04-27 1996-04-24 Process for the regeneration of a catalyst
PCT/US1996/005688 WO1996033804A1 (en) 1995-04-27 1996-04-24 Process for the regeneration of a catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7127067A JPH08294635A (en) 1995-04-27 1995-04-27 Regenerating method of catalyst

Publications (1)

Publication Number Publication Date
JPH08294635A true JPH08294635A (en) 1996-11-12

Family

ID=14950772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7127067A Pending JPH08294635A (en) 1995-04-27 1995-04-27 Regenerating method of catalyst

Country Status (1)

Country Link
JP (1) JPH08294635A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136217A1 (en) * 2010-04-30 2011-11-03 旭化成ケミカルズ株式会社 Apparatus for removing substances from catalyst surface

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136217A1 (en) * 2010-04-30 2011-11-03 旭化成ケミカルズ株式会社 Apparatus for removing substances from catalyst surface
CN102883810A (en) * 2010-04-30 2013-01-16 旭化成化学株式会社 Apparatus for removing substances from catalyst surface
JP5649236B2 (en) * 2010-04-30 2015-01-07 旭化成ケミカルズ株式会社 Catalyst surface body removal device
US10023529B2 (en) 2010-04-30 2018-07-17 Asaki Kasei Chemicals Corporation Apparatus for removing catalyst surface substances

Similar Documents

Publication Publication Date Title
EP1390135B1 (en) Process for regenerating a slurry fischer-tropsch catalyst
US5356845A (en) Process for the reactivation of nickel-alumina catalysts
US2481253A (en) Method of removing contaminants from cracking catalysts
EP0566785B1 (en) Method for deagglomerating and re-exposing catalyst in a fluid bed reactor
CA1183116A (en) Catalyst regeneration process including metal contaminants removal
CN107848910B (en) Improved oxidative dehydrogenation catalyst
JP2003500188A5 (en)
US2488744A (en) Process for the regeneration of catalyst
US4705770A (en) Method of making anatase-titania attrition-resistant catalyst composition
US3527694A (en) Fluid solids system
JPH0636868B2 (en) Method of regenerating used catalyst with aqueous solution of hydrogen peroxide stabilized by organic compound
EP0533228B1 (en) Process for the activation of a catalyst
JPH08294635A (en) Regenerating method of catalyst
JP4221060B2 (en) Gas phase catalytic oxidation of n-butane to maleic anhydride, including in situ catalyst calcination / activation
US5854161A (en) Process for the regeneration of a catalyst
JPH08318168A (en) Method for regenerating catalyst
WO1996033804A1 (en) Process for the regeneration of a catalyst
US2681305A (en) Revivification of a silicious cracking catalyst by treating with fluosilicic acid
JP3744078B2 (en) Operation method of fluidized bed reactor
JP3361831B2 (en) Method for deagglomerated and re-exposed catalyst in fluidized bed reactor
JP3603352B2 (en) Method for producing phosphorus-vanadium oxide catalyst
JP2004000930A (en) Method for regenerating deteriorated catalyst
JP2023066934A (en) Production method for fine metal particle
JPH0429859Y2 (en)
JPH01201016A (en) Production of vanadium-phosphorus-based crystalline oxide or catalyst containing same