JP2004000930A - Method for regenerating deteriorated catalyst - Google Patents

Method for regenerating deteriorated catalyst Download PDF

Info

Publication number
JP2004000930A
JP2004000930A JP2003095691A JP2003095691A JP2004000930A JP 2004000930 A JP2004000930 A JP 2004000930A JP 2003095691 A JP2003095691 A JP 2003095691A JP 2003095691 A JP2003095691 A JP 2003095691A JP 2004000930 A JP2004000930 A JP 2004000930A
Authority
JP
Japan
Prior art keywords
catalyst
regenerating
deteriorated catalyst
deteriorated
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003095691A
Other languages
Japanese (ja)
Inventor
Hiroya Nakamura
中村 浩也
Kazuharu Tazawa
田澤 和治
Yukio Sakai
酒井 幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2003095691A priority Critical patent/JP2004000930A/en
Publication of JP2004000930A publication Critical patent/JP2004000930A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for regenerating a catalyst deteriorated in plant operations concerning a molybdenum-bismuth-iron system composite oxide catalyst used for gas phase catalytic oxidization for manufacturing acrolein and/or acrylic acid from propylene and methacrolein and/or methacrylic acid from isobutene or tert-butanol. <P>SOLUTION: The deteriorated catalyst is regenerated through a process comprising the successive steps of: pulverizing the deteriorated catalyst in a dry state; slurrying the resultant pulverized catalyst by using an aqueous medium; drying the obtained slurry; molding the obtained dried powder; calcining the obtained molded bodies at 400 to 600 °C. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、プロピレンからアクロレイン及びもしくはアクリル酸を、イソブテンまたはターシャリーブタノールからメタクロレイン及びもしくはメタクリル酸を製造する気相接触酸化反応に使用されるモリブデン−ビスマス−鉄系複合酸化物触媒について、プラント運転で使用した後の劣化触媒を再生する方法に関する。
【0002】
【従来の技術】
モリブデン−ビスマス−鉄系複合酸化物触媒はプロピレンからアクロレイン及びもしくはアクリル酸、イソブテンまたはターシャリーブタノールからメタクロレイン及びもしくはメタクリル酸等の選択的酸化反応に対して有用な触媒であり、工業的にも用いられている。
【0003】
このような気相接触酸化反応に用いられる触媒は比較的長時間使用され、触媒性能の劣化がある程度進行した時点で新しい触媒と交換される。使用済み触媒は一部の有用金属が回収される程度で、廃棄処分されることがほとんどである。
【0004】
これらの気相接触酸化反応に用いられるモリブデン−ビスマス−鉄系複合酸化物触媒の性能劣化は、主として、モリブデンの昇華による損失によって生じることはよく知られている。
【0005】
上記触媒の再生方法に関し、特開平5−245382号公報、特公平5−29502号公報、特公平5−70503号公報、特許第3140135号公報、特開平7−165663号公報、特開平7−185349号公報及び特開平9−12489号公報等に示されたものが提案されている。
【0006】
例えば、特開平5−245382号公報では、アンチモン、鉄,ビスマス、モリブデン、バナジウム、タングステン及び/又はウラニュウムの中の少なくとも1つの元素と解膠可能な担体から成る失活した金属酸化物触媒の再生法として、劣化触媒を水の存在下で摺り潰し、担体を解膠する酸を加え、そのスラリーを噴霧乾燥して得られた流動性金属酸化物粒子を500〜800℃に加熱して再生する方法を提案している。この方法は磨耗及び破砕抵抗が高く、又、流動性が著しく優れている再生触媒を得るために、劣化触媒を水の存在下で摺り潰し、担体を解膠する酸を加える処方を採用している。しかしながら、本発明のように劣化触媒を乾式で粒子化して成形工程で成形しその後焼成して劣化触媒を再生する場合、劣化触媒を水の存在下で摺り潰し、担体を解膠する酸を加える工程は不必要である。さらに劣化触媒を水の存在下で摺り潰し、担体を解膠する酸を加えることにより触媒構造が破壊し、成形工程を経て触媒を再生した場合、細孔径が小さくなる等触媒構造を復元できない。触媒細孔径が小さくなると、反応条件下で反応原料あるいは反応生成物の拡散が阻害されて転化率の低下あるいは逐次反応の進行による選択率の低下という弊害が生じると考えられる。
【0007】
また、特公平5−29502号公報あるいは特公平5−70503号公報では、モリブデン−ビスマス−鉄系多元酸化物触媒の再生方法として、空気あるいは酸素含有ガス雰囲気中で劣化触媒を加熱処理する方法を提案している。ところが、これらの方法では再生処理の際に、劣化により実質的に飛散したモリブデンを補うことを行わず、加熱条件下で空気と接触させることで、触媒粒子表面へのモリブデンの粒子内拡散により触媒性能を回復させるというものであるから、再生方法としての効果は十分でない。
【0008】
また、特開平7−165663号公報あるいは特開平9−12489号公報には、前述の酸化物触媒の再生方法として、飛散したモリブデンを補うために実質的に不活性な酸化モリブデンあるいは未使用触媒粉末を混合あるいは粉砕後混合してから熱処理する方法が提案されている。しかしながら、これらの方法では、補給したモリブデンを加熱処理の際の固相反応により、拡散させ再生するものであるから、十分な再生効果が得られないと思われる。
【0009】
【発明が解決しようとする課題】
そこで、この発明の課題は、プロピレンからアクロレイン及びもしくはアクリル酸を、イソブテンまたはターシャリーブタノールからメタクロレイン及びもしくはメタクリル酸を製造する気相接触酸化反応に使用されるモリブデン−ビスマス−鉄系複合酸化物触媒について、プラント運転で使用した後の劣化触媒のより有効な再生方法を提供することにある。
【0010】
【課題を解決するための手段】
この発明者らは、上記課題を解決するために鋭意検討した結果、プロピレン、イソブチレンまたはターシャリーブタノールの気相接触酸化反応によってそれぞれに対応する不飽和アルデヒド及びもしくは不飽和のカルボン酸を製造する工程に用いられるモリブデン、ビスマス、及び鉄を主成分とする複合酸化物触媒をプラント運転で使用した後、その劣化触媒を乾式で粉砕する粉砕工程、粉砕された粉体を水性媒体によりスラリー化するスラリー化工程、得られたスラリーを乾燥する乾燥工程、得られた乾燥粉体を成形する成形工程、得られた成形体を400℃〜600℃の温度で焼成する焼成工程を順次経ることにより、劣化触媒の再生化が可能であり、さらに、該複合酸化物触媒の前駆体を含有する水性スラリーとを混合する方法や、二酸化ケイ素を添加することが再生触媒の強度を向上させるうえで効果があることを見いだしたのである。
【0011】
【発明の実施の形態】
以下、この発明をさらに詳しく説明する。この発明の対象となる触媒は、プロピレンからアクロレイン及びもしくはアクリル酸を、イソブテンまたはターシャリーブタノールからメタクロレイン及びもしくはメタクリル酸を製造する気相接触酸化反応に使用されるモリブデン−ビスマス−鉄系複合酸化物触媒について、プラント運転で使用した後の劣化触媒である。
【0012】
つづいて各工程について詳細に説明する。
<粉砕工程>
再生効果を向上させるうえで、当該劣化触媒を一度粉砕する工程である。この工程の再生に及ぼす効果はあきらかではないが、粒子間の組成の格差を均一にする効果と再生の際のモリブデンの粒子内拡散効果を向上させ、より有効に再生することができると考えられる。粉砕方法としては、乾式で種々の方法をとることが可能であるが、粉砕後の平均粒子径として5μm〜60μm、より好ましくは10μm〜20μmである。これは、粒径が大きすぎる場合、後工程で得られる水性スラリー中の固形物の沈降性が激しくハンドリングが困難なうえ、均一性が損なわれる恐れがあり、また粒径が小さすぎる場合、微粉が多くなりすぎハンドリングが困難になる可能性がある。
【0013】
<水性スラリー化工程>
この工程は粉砕工程で得られた粉体を水性媒体に分散させ水性スラリーを得る工程である。スラリー濃度については特に制限はないが、高濃度すぎるとハンドリングが悪化し、また低濃度すぎると乾燥工程でエネルギーコストがかかり経済性の悪化が考えられるため、通常はスラリー原料の粒子重量/スラリー重量として20重量%〜50重量%とすることが多い。またスラリーの分散性の向上あるいはスラリーを乾燥する際の粒子形状保持のために適宜有機結合剤を添加することが好ましい。有機結合剤としては種々のものがあるが、一般的に用いられるものはポリビニルアルコール等の水溶性ポリマー、あるいは各種セルロースなどである。有機結合剤の添加量としては粉砕粒子に対し0.5重量%〜5重量%が好ましく、より好ましくは1重量%〜3重量%である。この有機結合剤の添加量が少なすぎる場合は、その添加効果が十分でなく、多すぎる場合は焼成工程において異常発熱を起こす恐れがある。
【0014】
<乾燥工程>
水性スラリーを乾燥する工程である。乾燥方法としては種々の方法をとることが可能であるが、一般的には乾燥時の前駆体粒子の均一性を高めるうえでスプレードライヤーなどによる噴霧乾燥法が採用される。
【0015】
<成形工程>
この工程は、乾燥工程で得られた乾燥粉体を成形する工程である。成形方法としては種々の方法が考えられ、打錠成形あるいは押し出し成形等があげられる。押し出し成形の際には、予め必要量の水を添加し、また必要に応じて成形助剤として有機結合剤を添加した上で成形を行うことが好ましい。打錠成形の際にも必要に応じ成形助剤として有機結合剤を添加することが好ましい。上記有機結合剤としては、種々のものがあげられるが、一般的には前述のようなポリビニルアルコール等の水溶性ポリマー、あるいは各種セルロースなどである。有機結合剤の添加量としては粉砕粒子に対し、1重量%〜10重量%が好ましく、より好ましくは2重量%〜6重量%である。この有機結合剤の添加量が少なすぎる場合は、その添加効果が十分でなく、多すぎる場合は焼成工程において異常発熱を起こす恐れがある。
【0016】
<焼成工程>
再生効果を向上させるうえで、再生工程の最後に加熱処理する工程である。この工程の再生に及ぼす効果はあきらかではないが、触媒内のモリブデン成分を十分に熱拡散させる効果があるものと考えられる。焼成は、空気流通下で行うのが好ましく、また、その温度は400℃〜600℃である。より好ましい焼成温度は420℃〜550℃である。この焼成温度が低すぎる場合はモリブデン元素の熱拡散が十分でなく、高すぎる場合はモリブデン元素が昇華により失われる恐れがある。また前工程で有機結合剤を添加する場合、この工程において異常発熱をおこすことが考えられるため、焼成の際は、予め低温状態で保持した後に昇温するか、あるいは昇温速度を制御することが望ましい。
【0017】
<触媒強度の向上>
焼成工程で得られた触媒の強度向上のため水性スラリー化工程で複合酸化物触媒の前駆体水性スラリーを混合することが好ましい。触媒強度が向上する機構は明らかではないが、焼成工程で前駆体から複合酸化物触媒へ転化するときに触媒構造を強化させる効果があるものと考えられる。複合酸化物触媒の前駆体水性スラリーは複合酸化物触媒製造工程で得られた水性スラリーあるいは噴霧乾燥粒子もしくは焼成前の成形体を水に分散して得られた水性スラリー等、その製造方法に依存しない。混合する前駆体の量は特に制限はないが、触媒強度向上効果を得るためには再生触媒に対して20重量%以上の前駆体を含有するのが望ましい。
【0018】
また焼成工程で得られた触媒の強度向上のために水性スラリー化工程で二酸化ケイ素を添加することも好ましい。触媒強度が向上する機構は明らかではないが、二酸化ケイ素微粒子表面に存在するシラノール基の水素結合架橋のバインダー効果が触媒構造を強化させる効果があるものと考えられる。添加する二酸化ケイ素の量としては、再生触媒に対し0.5重量%〜10重量%であるが、より好ましくは3重量%〜6重量%である。二酸化ケイ素の添加量が少なすぎる場合は、その添加効果が十分でなく、多すぎる場合は二酸化ケイ素が触媒活性点を覆い触媒性能に影響を及ぼす恐れがある。
【0019】
【実施例】
<触媒性能試験>
触媒40mlを内径15mmのステンレス鋼製ナイタージャケット付反応管に充填し、プロピレン濃度12%、スチーム濃度10%、空気濃度78%の原料ガスを常圧にて、接触時間4.8秒で通過させて、プロピレンの酸化反応を実施した。なお、生成物の分析は、ガスクロマトグラフィー法を用いて、常法により実施した。
【0020】
<落下強度試験>
垂直に立てた内径25mm、長さ5mのステンレス鋼製パイプの上部から触媒100gを落下させ、厚さ2mmのステンレス鋼製の板で受け止めた後、目開き4mmの篩で割れた触媒を篩分し、篩上に残った触媒の重量を測定した。
【0021】
<未使用新触媒の調製>
パラモリブデン酸アンモニウム2.7kgを純水11.5Lに加熱して溶解させる。次に硝酸第二鉄206g、硝酸コバルト740g及び硝酸ニッケル1110gを純水1.72Lに加温して溶解させる。これらの溶液を、充分に攪拌しながら徐々に混合する。これをスラリーAとする。次に、このスラリーAにホウ砂24.4g、硝酸ソーダ10.9g及び硝酸カリウム10.3gを純水1.15Lに加温溶解した液を加えて、充分に攪拌する。次に、次炭酸ビスマス1658gと二酸化ケイ素1836gとを加えて、攪拌混合する。これをスラリーBとする。このスラリーBを加熱乾燥した後、空気雰囲気で300℃/1時間の熱処理を行う。
得られた個体を小型成形機にて径5mm、高さ4mmの錠剤に打錠成形し、次に480℃/8時間の焼成を行って、触媒とした。
この触媒を用いて触媒性能試験及び落下強度試験を実施したところ、表1に示す結果が得られた。
【0022】
<劣化触媒の作製>
上記未使用触媒を内径25mmのステンレス鋼製ナイタージャケット付反応管に充填し、プロピレン濃度12%、スチーム濃度10%、及び空気濃度78%の原料ガスを常圧にて接触時間4.8秒にて通過させて、反応浴温290℃にてプロピレンの酸化反応を2年間継続した。次にこの反応管から触媒を抜き出し、劣化触媒を得た。
この劣化触媒を用いて触媒性能試験及び落下強度試験を実施したところ、表1に示す結果が得られた。
【0023】
<実施例1>
上記劣化触媒1000gをハンマーミルにて乾式粉砕し、粉砕粒子を得た。この粉砕粒子の粒度分布をレーザー回折・散乱式粒度分布測定器(セイシン企業(株)製、LMS−24)にて測定したところ、平均粒径は25μmであった。次に純水890mlに上記で得た粉砕粒子800gを添加し、水性スラリーを得た。次にこの水性スラリーをスプレードライヤーにて出口温度140℃に制御して乾燥した。この乾燥粒子の粒度分布を同様の方法で測定したところ、平均粒子径は69μmであった。次にこの乾燥粒子300gに対し、微結晶セルロース18gを添加し十分に混合させた後、打錠成形機にて径5mm、高さ4mmに成形した。最後に成形品を空気流通下で480℃/8時間の焼成を行って、再生触媒とした。この再生触媒を用いて触媒性能試験及び落下強度試験を実施したところ、表1に示す結果が得られた。
【0024】
<比較例1>
焼成時の温度を350℃としたこと以外は実施例1と同様の方法で再生触媒を得た。この再生触媒を用いて触媒性能試験及び落下強度試験を実施したところ、表1に示す結果が得られた。
【0025】
<比較例2>
5Lのボールミル容器に上記使用済の劣化触媒800g、直径10mmのアルミナ製ボール1000ml及び純水890mlを入れて85rpmで17時間容器を回転して劣化触媒を湿式粉砕し、目開き106μmの篩でボールを分離して水性スラリーを得た。この水性スラリー中の粉砕粒子の粒度分布を実施例1と同様の方法で測定したところ、平均粒径5μmであった。次にこの水性スラリーをスプレードライヤーにて出口温度140℃に制御して乾燥した。この乾燥粒子の粒度分布を同様の方法で測定したところ、平均粒子径は70μmであった。次にこの乾燥粒子300gに対し、微結晶セルロース18gを添加し十分に混合させた後、打錠成形機にて径5mm、高さ4mmに成形した。最後に成形品を空気流通下で480℃/8時間の焼成を行って、再生触媒とした。この再生触媒を用いて触媒性能試験及び落下強度試験を実施したところ、表1に示す結果が得られた。
【0026】
<実施例2>
上記使用済の劣化触媒3000gをハンマーミルにて乾式粉砕し、粉砕粒子を得た。この粉砕粒子の粒度分布を実施例1と同様の方法で測定したところ、平均粒径25μmであった。次に、この粉砕粒子640gと未使用触媒160g相当の前記未使用触媒の調製スラリーBとを攪拌混合させ、混合後スラリー中の水分が890mlになるよう純水を添加して水性スラリーを得た。次にこの水性スラリーをスプレードライヤーにて出口温度140℃に制御して乾燥した。次にこの乾燥粒子300gを打錠成形機にて径5mm、高さ4mmに成形した。最後に成形品を空気流通下で480℃/8時間の焼成を行って、再生触媒とした。この再生触媒を用いて触媒性能試験及び落下強度試験を実施したところ、表1に示す結果が得られた。
【0027】
<実施例3>
実施例2の劣化触媒粉砕粒子から400gを分取し、この粒子と未使用触媒400g相当の前記未使用触媒の調製スラリーBを攪拌混合させた以外は、実施例2と同様の方法で再生触媒を得た。この再生触媒を用いて触媒性能試験及び落下強度試験を実施したところ、表1に示す結果が得られた。
【0028】
<実施例4>
実施例2の劣化触媒粉砕粒子から240gを分取し、この粒子と未使用触媒560g相当の前記未使用触媒の調製スラリーBを攪拌混合させた以外は、実施例2と同様の方法で再生触媒を得た。この再生触媒を用いて触媒性能試験及び落下強度試験を実施したところ、表1に示す結果が得られた。
【0029】
<実施例5>
実施例2の劣化触媒粉砕粒子から80gを分取し、この粒子と未使用触媒720g相当の前記未使用触媒の調製スラリーBを攪拌混合させた以外は、実施例2と同様の方法で再生触媒を得た。この再生触媒を用いて触媒性能試験及び落下強度試験を実施したところ、表1に示す結果が得られた。
【0030】
<実施例6>
実施例2の劣化触媒粉砕粒子から640gを分取し、この粒子と未使用触媒160g相当の前記未使用触媒の調製スラリーBを攪拌混合させ、二酸化ケイ素24gを添加した以外は、実施例2と同様の方法で再生触媒を得た。この再生触媒を用いて触媒性能試験及び落下強度試験を実施したところ、表1に示す結果が得られた。
【0031】
<実施例7>
二酸化ケイ素の添加が48gであること以外は、実施例6と同様の方法で再生触媒を得た。この再生触媒を用いて触媒性能試験及び落下強度試験を実施したところ、表1に示す結果が得られた。
【0032】
表1は、反応浴温290℃における反応評価であり、プロピレン転化率、アクロレイン収率、アクリル酸の定義は、次の通りである。
プロピレン転化率(モル%)=(反応したプロピレンのモル数/供給したプロピレンのモル数)×100
アクロレイン収率(モル%)=(生成したアクロレインのモル数/供給したプロピレンのモル数)×100
アクリル酸収率(モル%)=(生成したアクリル酸のモル数/供給したプロピレンのモル数)×100
また、落下強度の定義は、次の通りである。
落下強度(%)=(篩上に残った触媒重量/落下させた触媒重量)×100
【0033】
【表1】

Figure 2004000930
【0034】
【発明の効果】
以上のように、この発明によれば、プロピレンからアクロレイン及びもしくはアクリル酸を、イソブテンまたはターシャリーブタノールからメタクロレイン及びもしくはメタクリル酸を製造する気相接触酸化反応に使用されるモリブデン−ビスマス−鉄系複合酸化物触媒について、プラント運転で使用した後の劣化触媒を新触媒と同等の性能を有するまで、再生することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a molybdenum-bismuth-iron composite oxide catalyst used in a gas phase catalytic oxidation reaction for producing acrolein and / or acrylic acid from propylene and methacrolein and / or methacrylic acid from isobutene or tertiary butanol. The present invention relates to a method for regenerating a deteriorated catalyst after use in operation.
[0002]
[Prior art]
The molybdenum-bismuth-iron composite oxide catalyst is a catalyst useful for a selective oxidation reaction of propylene to acrolein and / or acrylic acid, isobutene or tert-butanol to methacrolein and / or methacrylic acid, and is industrially useful. Used.
[0003]
The catalyst used in such a gas phase catalytic oxidation reaction is used for a relatively long time, and is replaced with a new catalyst when the deterioration of the catalyst performance progresses to some extent. Spent catalysts are mostly disposed of to the extent that some useful metals are recovered.
[0004]
It is well known that the performance degradation of the molybdenum-bismuth-iron-based composite oxide catalyst used in these gas-phase catalytic oxidation reactions is mainly caused by loss due to sublimation of molybdenum.
[0005]
Regarding the method for regenerating the catalyst, JP-A-5-245382, JP-B 5-29502, JP-B 5-70503, JP-A-3140135, JP-A-7-165563, and JP-A-7-185349. And Japanese Unexamined Patent Publication No. 9-12489 have been proposed.
[0006]
For example, JP-A-5-245382 discloses regeneration of a deactivated metal oxide catalyst comprising at least one element of antimony, iron, bismuth, molybdenum, vanadium, tungsten and / or uranium and a deflocculable carrier. As a method, the deteriorated catalyst is crushed in the presence of water, an acid for peptizing the carrier is added, and the slurry is spray-dried, and the fluid metal oxide particles obtained are heated to 500 to 800 ° C. to regenerate. Suggest a way. This method employs a formulation in which an aged catalyst is crushed in the presence of water and an acid is added to peptize the carrier in order to obtain a regenerated catalyst having high abrasion and crush resistance and excellent fluidity. I have. However, when the deteriorated catalyst is regenerated by granulating the deteriorated catalyst in a dry process, forming it in a molding step, and then calcining it as in the present invention, the deteriorated catalyst is crushed in the presence of water, and an acid to peptize the carrier is added. No steps are required. Further, the deteriorated catalyst is crushed in the presence of water, and the catalyst structure is destroyed by adding an acid for peptizing the carrier. When the catalyst is regenerated through a molding step, the catalyst structure cannot be restored, for example, the pore diameter becomes small. When the catalyst pore size is reduced, it is considered that the diffusion of the reaction raw material or the reaction product is inhibited under the reaction conditions, and the conversion rate is reduced or the selectivity is reduced due to the progress of the sequential reaction.
[0007]
In Japanese Patent Publication No. 5-29502 or Japanese Patent Publication No. 5-70503, as a method of regenerating a molybdenum-bismuth-iron-based multi-component oxide catalyst, a method of heating a deteriorated catalyst in an air or oxygen-containing gas atmosphere is described. is suggesting. However, these methods do not compensate for the molybdenum substantially scattered due to deterioration during the regeneration treatment, but make contact with the air under heating conditions, so that the molybdenum diffuses into the catalyst particle surface due to intra-particle diffusion into the catalyst. Since the performance is restored, the effect as the reproduction method is not sufficient.
[0008]
Japanese Patent Application Laid-Open Nos. Hei 7-165661 and Hei 9-12489 disclose, as a method for regenerating the above-mentioned oxide catalyst, molybdenum oxide or an unused catalyst powder which is substantially inactive in order to supplement the scattered molybdenum. There is proposed a method of mixing or grinding and then heat-treating. However, in these methods, the replenished molybdenum is diffused and regenerated by a solid-phase reaction at the time of heat treatment, and thus it is considered that a sufficient regenerating effect cannot be obtained.
[0009]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a molybdenum-bismuth-iron-based composite oxide used for a gas phase catalytic oxidation reaction for producing acrolein and / or acrylic acid from propylene and methacrolein and / or methacrylic acid from isobutene or tert-butanol. It is an object of the present invention to provide a more effective method for regenerating a deteriorated catalyst after use in a plant operation.
[0010]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, produced a corresponding unsaturated aldehyde and / or unsaturated carboxylic acid by a gas phase catalytic oxidation reaction of propylene, isobutylene or tertiary butanol. After using a composite oxide catalyst containing molybdenum, bismuth, and iron as main components in a plant operation, a pulverizing step of pulverizing the degraded catalyst in a dry manner, a slurry of pulverized powder into an aqueous medium Deterioration step by sequentially passing through a curing step, a drying step of drying the obtained slurry, a molding step of molding the obtained dry powder, and a firing step of firing the obtained molded body at a temperature of 400 ° C to 600 ° C. It is possible to regenerate the catalyst and further comprises a method of mixing with an aqueous slurry containing a precursor of the composite oxide catalyst, It was found that the addition of silicon hydride is effective in improving the strength of the regenerated catalyst.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail. The catalyst which is the object of the present invention is a molybdenum-bismuth-iron composite oxidation used in a gas phase catalytic oxidation reaction for producing acrolein and / or acrylic acid from propylene and methacrolein and / or methacrylic acid from isobutene or tertiary butanol. This is a degraded catalyst after the product catalyst is used in plant operation.
[0012]
Next, each step will be described in detail.
<Pulverizing process>
This is a step of once pulverizing the deteriorated catalyst in order to improve the regeneration effect. The effect of this step on the regeneration is not obvious, but it is considered that the effect of equalizing the compositional difference between the particles and the effect of molybdenum diffusion in the particles during the regeneration can be improved, and the regeneration can be performed more effectively. . Various methods can be used as a pulverization method in a dry system, and the average particle diameter after pulverization is 5 μm to 60 μm, more preferably 10 μm to 20 μm. This is because, if the particle size is too large, sedimentation of solids in the aqueous slurry obtained in the subsequent step is severe, handling is difficult, and uniformity may be impaired.If the particle size is too small, fine powder May be too large and handling may be difficult.
[0013]
<Aqueous slurry process>
In this step, the powder obtained in the pulverizing step is dispersed in an aqueous medium to obtain an aqueous slurry. The concentration of the slurry is not particularly limited. However, if the concentration is too high, the handling is deteriorated, and if the concentration is too low, energy cost is increased in the drying step and economic efficiency may be deteriorated. 20% by weight to 50% by weight. It is preferable to add an organic binder as appropriate to improve the dispersibility of the slurry or maintain the particle shape when the slurry is dried. There are various organic binders, and a commonly used one is a water-soluble polymer such as polyvinyl alcohol or various celluloses. The addition amount of the organic binder is preferably 0.5% by weight to 5% by weight, more preferably 1% by weight to 3% by weight, based on the pulverized particles. If the amount of the organic binder is too small, the effect of the addition is not sufficient. If the amount is too large, abnormal heat generation may occur in the firing step.
[0014]
<Drying process>
This is a step of drying the aqueous slurry. Various methods can be used as the drying method. Generally, a spray drying method using a spray drier or the like is employed to enhance the uniformity of the precursor particles during drying.
[0015]
<Molding process>
This step is a step of molding the dry powder obtained in the drying step. Various molding methods are conceivable, including tablet molding and extrusion molding. At the time of extrusion molding, it is preferable to add a necessary amount of water in advance and, if necessary, to add an organic binder as a molding aid before molding. It is preferable to add an organic binder as a molding aid, if necessary, during tableting. As the organic binder, various ones can be mentioned, and generally, water-soluble polymers such as polyvinyl alcohol as described above, or various celluloses are used. The addition amount of the organic binder is preferably 1% by weight to 10% by weight, more preferably 2% by weight to 6% by weight, based on the pulverized particles. If the amount of the organic binder is too small, the effect of the addition is not sufficient. If the amount is too large, abnormal heat generation may occur in the firing step.
[0016]
<Firing step>
This is a step of performing a heat treatment at the end of the regeneration step to improve the regeneration effect. Although the effect of this step on regeneration is not obvious, it is considered that there is an effect that the molybdenum component in the catalyst is sufficiently thermally diffused. The calcination is preferably performed under a flow of air, and the temperature is 400 ° C to 600 ° C. A more preferred firing temperature is from 420C to 550C. If the firing temperature is too low, the thermal diffusion of the molybdenum element is not sufficient, and if it is too high, the molybdenum element may be lost by sublimation. In addition, if an organic binder is added in the previous step, it is considered that abnormal heat generation may occur in this step. Is desirable.
[0017]
<Improvement of catalyst strength>
In order to improve the strength of the catalyst obtained in the calcination step, it is preferable to mix the precursor aqueous slurry of the composite oxide catalyst in the aqueous slurry step. Although the mechanism for improving the catalyst strength is not clear, it is considered that the catalyst has an effect of strengthening the catalyst structure when the precursor is converted into the composite oxide catalyst in the calcination step. The precursor aqueous slurry of the composite oxide catalyst depends on the production method, such as the aqueous slurry obtained in the composite oxide catalyst manufacturing process or the aqueous slurry obtained by dispersing spray-dried particles or a molded body before firing in water. do not do. The amount of the precursor to be mixed is not particularly limited, but it is desirable to contain the precursor in an amount of 20% by weight or more based on the regenerated catalyst in order to obtain the effect of improving the catalyst strength.
[0018]
It is also preferable to add silicon dioxide in the aqueous slurrying step in order to improve the strength of the catalyst obtained in the firing step. Although the mechanism for improving the catalyst strength is not clear, it is considered that the binder effect of hydrogen bond crosslinking of silanol groups present on the surface of the silicon dioxide fine particles has an effect of strengthening the catalyst structure. The amount of silicon dioxide to be added is 0.5% by weight to 10% by weight based on the regenerated catalyst, and more preferably 3% by weight to 6% by weight. If the amount of silicon dioxide is too small, the effect of the addition is not sufficient. If the amount is too large, the silicon dioxide may cover the catalytically active sites and affect the catalytic performance.
[0019]
【Example】
<Catalyst performance test>
40 ml of the catalyst was charged into a stainless steel reaction tube equipped with a 15 mm inner diameter stainless steel jacket, and a raw material gas having a propylene concentration of 12%, a steam concentration of 10% and an air concentration of 78% was allowed to pass therethrough at normal pressure for a contact time of 4.8 seconds. Thus, an oxidation reaction of propylene was performed. In addition, the analysis of the product was carried out by a conventional method using a gas chromatography method.
[0020]
<Drop strength test>
100 g of the catalyst was dropped from the upper part of a vertical stainless steel pipe having an inner diameter of 25 mm and a length of 5 m, received by a stainless steel plate having a thickness of 2 mm, and then the catalyst broken by a sieve having an aperture of 4 mm was sieved. Then, the weight of the catalyst remaining on the sieve was measured.
[0021]
<Preparation of unused new catalyst>
2.7 kg of ammonium paramolybdate is dissolved by heating in 11.5 L of pure water. Next, 206 g of ferric nitrate, 740 g of cobalt nitrate and 1110 g of nickel nitrate are heated and dissolved in 1.72 L of pure water. These solutions are mixed gradually with thorough stirring. This is designated as slurry A. Next, a solution prepared by heating and dissolving 24.4 g of borax, 10.9 g of sodium nitrate and 10.3 g of potassium nitrate in 1.15 L of pure water is added to the slurry A, and the mixture is sufficiently stirred. Next, 1658 g of bismuth subcarbonate and 1836 g of silicon dioxide are added and mixed with stirring. This is referred to as slurry B. After heating and drying this slurry B, heat treatment is performed at 300 ° C./1 hour in an air atmosphere.
The obtained solid was tablet-formed into a tablet having a diameter of 5 mm and a height of 4 mm using a small molding machine, and then calcined at 480 ° C. for 8 hours to obtain a catalyst.
When a catalyst performance test and a drop strength test were performed using this catalyst, the results shown in Table 1 were obtained.
[0022]
<Preparation of deteriorated catalyst>
The unused catalyst was charged into a stainless steel reaction tube equipped with a 25 mm inner diameter stainless steel jacket, and a raw material gas having a propylene concentration of 12%, a steam concentration of 10%, and an air concentration of 78% was contacted at normal pressure for 4.8 seconds. The propylene oxidation reaction was continued at a reaction bath temperature of 290 ° C. for 2 years. Next, the catalyst was extracted from the reaction tube to obtain a deteriorated catalyst.
When a catalyst performance test and a drop strength test were performed using this deteriorated catalyst, the results shown in Table 1 were obtained.
[0023]
<Example 1>
1000 g of the deteriorated catalyst was dry-pulverized with a hammer mill to obtain pulverized particles. When the particle size distribution of the pulverized particles was measured with a laser diffraction / scattering type particle size distribution analyzer (LMS-24, manufactured by Seishin Enterprise Co., Ltd.), the average particle size was 25 μm. Next, 800 g of the pulverized particles obtained above was added to 890 ml of pure water to obtain an aqueous slurry. Next, this aqueous slurry was dried by controlling the outlet temperature to 140 ° C. with a spray dryer. When the particle size distribution of the dried particles was measured by the same method, the average particle size was 69 μm. Next, 18 g of microcrystalline cellulose was added to 300 g of the dried particles and mixed well, and then molded into a diameter of 5 mm and a height of 4 mm by a tableting machine. Finally, the molded article was calcined at 480 ° C. for 8 hours under air flow to obtain a regenerated catalyst. When a catalyst performance test and a drop strength test were performed using this regenerated catalyst, the results shown in Table 1 were obtained.
[0024]
<Comparative Example 1>
A regenerated catalyst was obtained in the same manner as in Example 1, except that the temperature during the calcination was 350 ° C. When a catalyst performance test and a drop strength test were performed using this regenerated catalyst, the results shown in Table 1 were obtained.
[0025]
<Comparative Example 2>
800 g of the used deteriorated catalyst, 1000 ml of alumina balls having a diameter of 10 mm, and 890 ml of pure water are put into a 5 L ball mill container, and the container is rotated at 85 rpm for 17 hours to wet-pulverize the deteriorated catalyst, and the ball is sieved with a sieve having an opening of 106 μm. Was separated to obtain an aqueous slurry. When the particle size distribution of the pulverized particles in the aqueous slurry was measured by the same method as in Example 1, the average particle size was 5 μm. Next, this aqueous slurry was dried by controlling the outlet temperature to 140 ° C. with a spray dryer. When the particle size distribution of the dried particles was measured by the same method, the average particle size was 70 μm. Next, 18 g of microcrystalline cellulose was added to 300 g of the dried particles and mixed well, and then molded into a diameter of 5 mm and a height of 4 mm by a tableting machine. Finally, the molded article was calcined at 480 ° C. for 8 hours under air flow to obtain a regenerated catalyst. When a catalyst performance test and a drop strength test were performed using this regenerated catalyst, the results shown in Table 1 were obtained.
[0026]
<Example 2>
3000 g of the used deteriorated catalyst was dry-pulverized with a hammer mill to obtain pulverized particles. When the particle size distribution of the pulverized particles was measured by the same method as in Example 1, the average particle size was 25 μm. Next, 640 g of the pulverized particles and 160 g of unused catalyst were mixed under stirring with the prepared slurry B of unused catalyst, and after mixing, pure water was added so that the water content in the slurry was 890 ml to obtain an aqueous slurry. . Next, this aqueous slurry was dried by controlling the outlet temperature to 140 ° C. with a spray dryer. Next, 300 g of the dried particles were formed into a diameter of 5 mm and a height of 4 mm using a tableting machine. Finally, the molded article was calcined at 480 ° C. for 8 hours under air flow to obtain a regenerated catalyst. When a catalyst performance test and a drop strength test were performed using this regenerated catalyst, the results shown in Table 1 were obtained.
[0027]
<Example 3>
A regenerated catalyst was prepared in the same manner as in Example 2 except that 400 g of the degraded catalyst pulverized particles of Example 2 were collected, and the prepared catalyst B of the unused catalyst equivalent to 400 g of the unused catalyst was stirred and mixed. Got. When a catalyst performance test and a drop strength test were performed using this regenerated catalyst, the results shown in Table 1 were obtained.
[0028]
<Example 4>
A regenerated catalyst was prepared in the same manner as in Example 2, except that 240 g of the degraded catalyst ground particles of Example 2 was fractionated, and the prepared catalyst B for unused catalyst equivalent to 560 g of unused catalyst was stirred and mixed. Got. When a catalyst performance test and a drop strength test were performed using this regenerated catalyst, the results shown in Table 1 were obtained.
[0029]
<Example 5>
A regenerated catalyst was prepared in the same manner as in Example 2, except that 80 g of the degraded catalyst pulverized particles of Example 2 were fractionated, and the prepared catalyst B of the unused catalyst equivalent to 720 g of unused catalyst was stirred and mixed. Got. When a catalyst performance test and a drop strength test were performed using this regenerated catalyst, the results shown in Table 1 were obtained.
[0030]
<Example 6>
Example 2 was repeated except that 640 g of the deteriorated catalyst pulverized particles of Example 2 was fractionated, and the prepared catalyst B of the unused catalyst equivalent to 160 g of unused catalyst was stirred and mixed, and 24 g of silicon dioxide was added. A regenerated catalyst was obtained in the same manner. When a catalyst performance test and a drop strength test were performed using this regenerated catalyst, the results shown in Table 1 were obtained.
[0031]
<Example 7>
A regenerated catalyst was obtained in the same manner as in Example 6, except that the amount of silicon dioxide added was 48 g. When a catalyst performance test and a drop strength test were performed using this regenerated catalyst, the results shown in Table 1 were obtained.
[0032]
Table 1 shows the reaction evaluation at a reaction bath temperature of 290 ° C. The definitions of propylene conversion, acrolein yield, and acrylic acid are as follows.
Propylene conversion (mol%) = (mol number of reacted propylene / mol number of supplied propylene) × 100
Acrolein yield (mol%) = (mol number of acrolein generated / mol number of supplied propylene) × 100
Acrylic acid yield (mol%) = (mol number of generated acrylic acid / mol number of supplied propylene) × 100
The definition of the drop strength is as follows.
Drop strength (%) = (weight of catalyst remaining on sieve / weight of catalyst dropped) × 100
[0033]
[Table 1]
Figure 2004000930
[0034]
【The invention's effect】
As described above, according to the present invention, a molybdenum-bismuth-iron system used in a gas phase catalytic oxidation reaction for producing acrolein and / or acrylic acid from propylene and methacrolein and / or methacrylic acid from isobutene or tert-butanol. With respect to the composite oxide catalyst, it is possible to regenerate the deteriorated catalyst after use in plant operation until it has the same performance as the new catalyst.

Claims (8)

プロピレン、イソブチレンまたはターシャリーブタノールの気相接触酸化反応によってそれぞれに対応する不飽和アルデヒド及びもしくは不飽和カルボン酸を製造する工程に用いられるモリブデン、ビスマス、及び鉄を主成分とする複合酸化物触媒をプラント運転で使用した後、その劣化触媒を乾式で粉砕する粉砕工程、粉砕された粉体を水性媒体によりスラリー化するスラリー化工程、得られたスラリーを乾燥する乾燥工程、得られた乾燥粉体を成形する成形工程、得られた成形体を400℃〜600℃の温度で焼成する焼成工程を順次経て、劣化触媒を再生することを特徴とする劣化触媒の再生方法。Molybdenum, bismuth, and iron-based composite oxide catalysts used in the process of producing the corresponding unsaturated aldehyde and / or unsaturated carboxylic acid by gas phase catalytic oxidation reaction of propylene, isobutylene or tertiary butanol, respectively. After use in plant operation, a pulverizing step of pulverizing the deteriorated catalyst in a dry manner, a slurrying step of slurrying the pulverized powder with an aqueous medium, a drying step of drying the obtained slurry, and a obtained dry powder A method for regenerating a deteriorated catalyst, comprising sequentially performing a forming step of forming a molded article and a firing step of firing the obtained molded body at a temperature of 400 ° C to 600 ° C, and then regenerating the deteriorated catalyst. 上記粉砕工程により粉砕した粉砕粒子の平均粒子径が5μm〜60μmであることを特徴とする請求項1記載の劣化触媒の再生方法。The method for regenerating a deteriorated catalyst according to claim 1, wherein the average particle diameter of the pulverized particles pulverized in the pulverization step is 5 µm to 60 µm. 上記スラリー化工程で得られるスラリーに、有機結合剤を添加することを特徴とする請求項1又は2記載の劣化触媒の再生方法。The method for regenerating a deteriorated catalyst according to claim 1 or 2, wherein an organic binder is added to the slurry obtained in the slurrying step. 粉砕粒子に対し有機結合剤を0.5重量%〜5重量%添加することを特徴とする請求項3記載の劣化触媒の再生方法。4. The method for regenerating a deteriorated catalyst according to claim 3, wherein 0.5 to 5% by weight of an organic binder is added to the pulverized particles. 上記成形工程において、有機結合剤を添加することを特徴とする請求項1〜4のいずれか1項に記載の劣化触媒の再生方法。The method for regenerating a deteriorated catalyst according to any one of claims 1 to 4, wherein an organic binder is added in the molding step. 上記成形工程において、粉砕粒子に対し有機結合剤を1重量%〜10重量%添加することを特徴とする請求項5記載の劣化触媒の再生方法。6. The method for regenerating a deteriorated catalyst according to claim 5, wherein in the forming step, an organic binder is added in an amount of 1% by weight to 10% by weight based on the pulverized particles. 劣化触媒と上記複合酸化物触媒の前駆体を含有する水性スラリーとを混合することを特徴とする請求項1〜6記載の劣化触媒の再生方法。7. The method for regenerating a deteriorated catalyst according to claim 1, wherein the deteriorated catalyst and an aqueous slurry containing a precursor of the composite oxide catalyst are mixed. 二酸化ケイ素を再生された触媒に対して0.5重量%〜10重量%添加することを特徴とする請求項1〜7記載の劣化触媒の再生方法。8. The method for regenerating a deteriorated catalyst according to claim 1, wherein 0.5 to 10% by weight of silicon dioxide is added to the regenerated catalyst.
JP2003095691A 2002-04-12 2003-03-31 Method for regenerating deteriorated catalyst Pending JP2004000930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003095691A JP2004000930A (en) 2002-04-12 2003-03-31 Method for regenerating deteriorated catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002110590 2002-04-12
JP2003095691A JP2004000930A (en) 2002-04-12 2003-03-31 Method for regenerating deteriorated catalyst

Publications (1)

Publication Number Publication Date
JP2004000930A true JP2004000930A (en) 2004-01-08

Family

ID=30446956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003095691A Pending JP2004000930A (en) 2002-04-12 2003-03-31 Method for regenerating deteriorated catalyst

Country Status (1)

Country Link
JP (1) JP2004000930A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222854A (en) * 2006-02-27 2007-09-06 Mitsubishi Rayon Co Ltd Catalyst for synthesizing methacrolein and methacrylic acid, its manufacturing method, method for producing methacrolein and methacrylic acid
JP2010514897A (en) * 2006-12-28 2010-05-06 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド Free-flowing filler composition and rubber composition containing the same
JP2010514896A (en) * 2006-12-28 2010-05-06 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド Free-flowing filler composition and rubber composition containing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222854A (en) * 2006-02-27 2007-09-06 Mitsubishi Rayon Co Ltd Catalyst for synthesizing methacrolein and methacrylic acid, its manufacturing method, method for producing methacrolein and methacrylic acid
JP2010514897A (en) * 2006-12-28 2010-05-06 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド Free-flowing filler composition and rubber composition containing the same
JP2010514896A (en) * 2006-12-28 2010-05-06 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド Free-flowing filler composition and rubber composition containing the same

Similar Documents

Publication Publication Date Title
US8008227B2 (en) Mixed oxide catalysts for the catalytic gas-phase oxidation of olefins and processes for producing them
TW200427509A (en) Particulate porous ammoxidation catalyst
CN102039143B (en) Preparation method of catalyst for acrylic acid by oxidizing acraldehyde
EP2617491B1 (en) Catalyst for producing unsaturated aldehyde and/or unsaturated carboxylic acid and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid using catalyst
JPS6112488B2 (en)
TW201002420A (en) Method for producing catalyst for use in production of unsaturated aldehyde and/or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
CN1098665A (en) The regeneration of the waste multi-metal oxide oxidation catalyst of rudimentary catalytic organism gaseous oxidation
WO2004105941A1 (en) Process for producing catalyst for methacrylic acid production
RU2491122C2 (en) Mixed oxide catalysts in form of hollow bodies
JP3418393B2 (en) Shaped oxidation catalyst structures for maleic anhydride production
US20190054454A1 (en) Mechanically strong catalyst and catalyst carrier, its preparation, and its use
TW201107490A (en) Method for recovering molybdenum and cobalt
EP3325148B1 (en) Method for preparing mixed metal oxide catalysts containing molybdenum and bismuth
JP2012045516A (en) Method of manufacturing catalyst for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid and the catalyst, and method of manufacturing acrolein and/or acrylic acid using the catalyst
WO2019117744A1 (en) Method for producing a granular catalyst for oxidation processes
EP2647429B1 (en) Catalyst for producing unsaturated carboxylic acids and unsaturated carboxylic acid production method using said catalyst
JP4296020B2 (en) Regeneration method of deteriorated catalyst
JP2004000930A (en) Method for regenerating deteriorated catalyst
JP4420991B2 (en) Silica spherical particles and method for producing the same
JP4065710B2 (en) Regeneration method of deteriorated catalyst
JPS63315148A (en) Catalyst of synthesis of methacrylic acid and preparation thereof showing excellent reproducibility
JP4065709B2 (en) Regeneration method of deteriorated catalyst
JP4424192B2 (en) Method for producing composite oxide catalyst
KR20130000348A (en) Method for regenerating catalyst for production of methacrylic acid and process for preparing methacrylic acid
JP2005095874A (en) Method of regenerating catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051013

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080922

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081021