JPH08311586A - Alpha plus beta titanium alloy matrix composite, titanium alloy material for various products, and titanium alloy product - Google Patents

Alpha plus beta titanium alloy matrix composite, titanium alloy material for various products, and titanium alloy product

Info

Publication number
JPH08311586A
JPH08311586A JP11670695A JP11670695A JPH08311586A JP H08311586 A JPH08311586 A JP H08311586A JP 11670695 A JP11670695 A JP 11670695A JP 11670695 A JP11670695 A JP 11670695A JP H08311586 A JPH08311586 A JP H08311586A
Authority
JP
Japan
Prior art keywords
titanium alloy
powder
composite material
phase titanium
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11670695A
Other languages
Japanese (ja)
Inventor
Masaru Kobayashi
勝 小林
Kunio Funemi
国男 船見
Atsumasa Okada
厚正 岡田
Seiichi Suzuki
誠一 鈴木
Kazuo Sato
一男 佐藤
Sunao Hasegawa
直 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MARUTO HASEGAWA KOSAKUSHO KK
Original Assignee
MARUTO HASEGAWA KOSAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MARUTO HASEGAWA KOSAKUSHO KK filed Critical MARUTO HASEGAWA KOSAKUSHO KK
Priority to JP11670695A priority Critical patent/JPH08311586A/en
Publication of JPH08311586A publication Critical patent/JPH08311586A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide an alpha plus beta titanium alloy matrix composite having high strength, high hardness, high wear resistance, and high elastic modulus, and to provide titanium alloy materials for various products, and titanium alloy products. CONSTITUTION: A boride powder is mixed with an alpha plus beta titanium alloy powder by about 5-20vol.%, and the resulting powder mixture is compacted, heated, and sintered, by which the alpha plus beta titanium alloy matrix composite in which an acicular or granular TiB compound is crystallized in a matrix can be produced. By this method, titanium alloy products with high Young's modulus can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高強度,高硬度,高耐
磨耗性,高弾性率を発揮するα,β二相チタン合金複合
材料並びに各種製品のチタン合金材料とチタン合金製品
に係るものである。
BACKGROUND OF THE INVENTION The present invention relates to an α, β two-phase titanium alloy composite material exhibiting high strength, high hardness, high wear resistance and high elastic modulus, and titanium alloy materials and titanium alloy products for various products. It is related.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
チタン合金は各種の元素を合金化することによってその
強度を上昇させているが、150kgf/mm2の引張強さが
限界であり、また硬度はHv700が限界であり、耐磨
耗性は著しく劣る。また、ヤング率は12000kgf/mm
2で鋼の約1/2である。
2. Description of the Related Art Conventionally, the problems to be solved by the invention
Titanium alloys increase their strength by alloying various elements, but the tensile strength of 150kgf / mm 2 is the limit, and the hardness is Hv700, the wear resistance is extremely poor. . Young's modulus is 12000kgf / mm
2 is about 1/2 of steel.

【0003】本発明は、α,β二相チタン合金粉末にボ
ロン粉末或いは各種硼化物粉末を配合して混合し、圧粉
加熱して反応焼結させることによりTiB化合物を晶出
させ、強度,硬度を上昇させ、また高ヤング率,高耐磨
耗性などの特性が向上することを確認し、未だチタン合
金の高強度化,高硬度化,高ヤング率化,高耐磨耗性化
が実用化されていないことに着眼して本発明を完成し
た。
In the present invention, α, β two-phase titanium alloy powder is mixed with boron powder or various boride powders and mixed, and the powder is heated and reacted and sintered to crystallize the TiB compound to obtain strength, It has been confirmed that the hardness is increased and the properties such as high Young's modulus and high wear resistance are improved, and the titanium alloy still has high strength, high hardness, high Young's modulus, and high wear resistance. The present invention has been completed focusing on the fact that it has not been put to practical use.

【0004】[0004]

【課題を解決するための手段】金属学的結晶構造が最密
六方晶であるα相と体心立方晶であるβ相の二相より成
る結晶構造のチタン合金を母相とし、その結晶粒内及び
粒界にチタンの化合物であるTiB化合物の粒子を反応
焼結によって微細且つ均一に体積率で20%以下で含有
せしめることを特徴とするもので、以下その要旨を列記
する。
[Means for Solving the Problems] A titanium alloy having a crystal structure consisting of an α phase, which is a close-packed hexagonal crystal, and a β phase, which is a body-centered cubic crystal, is used as a mother phase, and its crystal grains It is characterized in that particles of TiB compound, which is a compound of titanium, are finely and uniformly contained at 20% or less in volume ratio inside and at grain boundaries by reaction sintering, and the summary thereof will be listed below.

【0005】α,β二相チタン合金粉末に、硼化物粉末
を5〜20Vol%程度混合し、圧粉加熱して焼結し、針
状或いは粒状のTiB化合物をマトリックス中に晶出さ
せたことを特徴とするα,β二相チタン合金複合材料に
係るものである。
Boron powder was mixed in the α, β two-phase titanium alloy powder in an amount of about 5 to 20% by volume, heated by compaction and sintered to crystallize a needle-like or granular TiB compound in the matrix. The present invention relates to an α, β two-phase titanium alloy composite material.

【0006】また、α,β二相チタン合金粉末として、
粒径約50μm程度のTi−6Al−4V合金粉末,Ti−
6Al−6V−2Sn合金粉末,Ti−6Al−2Sn−4
Zr−6Mo合金粉末などを使用し、硼化物粉末として、
粒径約1〜5μm程度のボロン粉末やFeB,MoB,W
B,NbB,CrB粉末などを使用したことを特徴とする
請求項1記載のα,β二相チタン合金複合材料に係るも
のである。
Further, as α, β two-phase titanium alloy powder,
Ti-6Al-4V alloy powder with a particle size of about 50 μm, Ti-
6Al-6V-2Sn alloy powder, Ti-6Al-2Sn-4
Using Zr-6Mo alloy powder etc. as boride powder,
Boron powder or FeB, MoB, W with a particle size of about 1-5 μm
The present invention relates to an α, β two-phase titanium alloy composite material according to claim 1, characterized in that B, NbB, CrB powder and the like are used.

【0007】また、α,β二相チタン合金粉末と硼化物
粉末とを混合圧粉した後、真空炉で900〜1200℃
程度に加熱して反応焼結させるか、又は圧粉した後90
0〜1200℃程度に真空中或いは不活性ガス中加熱加
圧して反応焼結させることを特徴とする請求項1,2の
いずれか1項に記載のα,β二相チタン合金複合材料に
係るものである。
Further, after the α and β two-phase titanium alloy powder and the boride powder are mixed and compressed, the powder is heated in a vacuum furnace at 900 to 1200 ° C.
90 after heating to a certain degree for reaction sintering or pressing
The α, β two-phase titanium alloy composite material according to any one of claims 1 and 2, wherein the material is heated and pressurized in a vacuum or an inert gas to about 0 to 1200 ° C to cause reaction sintering. It is a thing.

【0008】また、請求項1,2,3のα,β二相チタ
ン合金複合材料を水素脆化した後粉砕し、この粉砕粉に
プラズマ,電子ビーム或いはレーザーを用いて溶射或い
は溶解が可能なTiB化合物の粒子を晶出させたことを
特徴とする粉状のα,β二相チタン合金複合材料に係る
ものである。
Further, the α, β two-phase titanium alloy composite material according to claims 1, 2 and 3 is hydrogen embrittled and then pulverized, and the pulverized powder can be sprayed or melted by using plasma, electron beam or laser. The present invention relates to a powdery α, β two-phase titanium alloy composite material characterized by crystallizing particles of a TiB compound.

【0009】また、各種チタン合金材の所望箇所の表面
に、TiB化合物の粒子を晶出させたα,β二相チタン
合金複合材料粉末をプラズマ,電子ビーム或いはレーザ
ーを用いて溶射或いは溶解することによって基地表面に
溶着せしめたことを特徴とする各種製品のチタン合金材
料に係るものである。
Further, the α, β two-phase titanium alloy composite material powder in which TiB compound particles are crystallized is sprayed or melted by using plasma, electron beam or laser on the surface of a desired portion of various titanium alloy materials. The present invention relates to a titanium alloy material for various products, which is characterized by being welded to the surface of a base material.

【0010】また、刃物素材形状のチタン合金材の端縁
表面にTiB化合物を晶出させたα,β二相チタン合金
複合材料粉末を基地表面に溶着せしめ、熱処理して刃物
用チタン複合材を形成することを特徴とする請求項5記
載の各種製品のチタン合金材料に係るものである。
Further, the α, β two-phase titanium alloy composite material powder in which the TiB compound is crystallized on the edge surface of the blade-shaped titanium alloy material is deposited on the surface of the base material, and heat-treated to form a titanium composite material for blade. It is related to the titanium alloy material of various products according to claim 5, which is formed.

【0011】また、請求項1,2,3のα,β二相チタ
ン合金複合材料をバルク材として機械部品やスポーツ用
品などの所望製品形状に反応焼結させて成形することを
特徴とするチタン合金製品に係るものである。
Further, the α, β two-phase titanium alloy composite material according to claims 1, 2 and 3 is used as a bulk material by reaction sintering into a desired product shape such as machine parts and sports equipment, and is formed. It relates to alloy products.

【0012】また、製品や部品などの各種のチタン合金
製品の表面にTiB化合物を晶出させたα,β二相チタ
ン合金複合材料粉末をプラズマ,電子ビーム,レーザー
などを用いて溶射或いは溶解することによって基地表面
に溶着せしめたことを特徴とするチタン合金製品に係る
ものである。
Further, the α, β two-phase titanium alloy composite material powder obtained by crystallizing the TiB compound on the surface of various titanium alloy products such as products and parts is sprayed or melted by using plasma, electron beam, laser or the like. The present invention relates to a titanium alloy product characterized by being welded to the base surface.

【0013】[0013]

【作用】α,β二相チタン合金は、粒径約50μm程度
にし、反応焼結以前に配合するボロン或いは硼化物は1
〜5μm程度にして両者を均一に混合することが両者の
反応焼結による複合を均一な分布にする。
[Function] The α, β two-phase titanium alloy has a grain size of about 50 μm, and the boron or boride compounded before the reaction sintering is 1
Uniform mixing of both with a thickness of about 5 μm results in a uniform distribution of the composite by reaction sintering of both.

【0014】上記反応焼結においては溶融することなく
反応生成物のTiB化合物を晶出形成させる必要がある
ことから、900〜1200℃の範囲の適切な温度を選
択する必要がある。
In the above reaction sintering, it is necessary to crystallize and form the TiB compound as the reaction product without melting, so it is necessary to select an appropriate temperature in the range of 900 to 1200 ° C.

【0015】この反応焼結体は、微細な焼結組織をとる
ことから、900〜1000℃の温度範囲において超塑
性現象を示し、10-3〜10-4/sの歪み速度で破壊す
ることなく変形が可能であり、高硬度,高耐磨耗のチタ
ン合金歯車,ベアリングなどの機械摺動部品の成形を可
能とする。
Since this reaction sintered body has a fine sintered structure, it exhibits a superplastic phenomenon in the temperature range of 900 to 1000 ° C. and is destroyed at a strain rate of 10 −3 to 10 −4 / s. Without deformation, it enables the molding of mechanical sliding parts such as titanium alloy gears and bearings with high hardness and high wear resistance.

【0016】また、上記α,β二相チタン合金複合材料
をチタン合金にプラズマ,電子ビーム或いはレーザーを
用いて溶射,溶着するためにこれを粉砕する必要がある
が、この反応焼結体が高硬度であるため、600〜80
0℃水素中で加熱して脆化させると打撃によって破砕す
ることが可能となる。
Further, it is necessary to grind the above α, β two-phase titanium alloy composite material in order to spray and weld the titanium alloy to the titanium alloy by using plasma, electron beam or laser. 600-80 due to hardness
When it is embrittled by heating in hydrogen at 0 ° C, it becomes possible to crush it by hitting.

【0017】更に、板状チタン合金板の端縁,棒状チタ
ン合金棒端面或いはチタン合金歯車のような各種のチタ
ン合金製品やベアリングのような機械摺動部品の表面に
上記α,β二相チタン合金複合材料粉末をプラズマ,電
子ビーム或いはレーザーを用い、溶射或いは溶解するこ
とによって溶着させ、更に溶着を確実にするため熱処理
を施すことによって高硬度,耐磨耗のチタン合金刃物や
チタン合金製品や機械摺動部品などを得ることが可能と
なるが、特に高耐磨耗に対しては母相でβ相をα相より
多く含ませることが望ましい。
Further, the α, β two-phase titanium is formed on the edge of the plate-shaped titanium alloy plate, the end surface of the rod-shaped titanium alloy rod, various titanium alloy products such as titanium alloy gears, and the surface of mechanical sliding parts such as bearings. The alloy composite material powder is welded by thermal spraying or melting using plasma, electron beam or laser, and further heat-treated to ensure the welding. Although it becomes possible to obtain mechanical sliding parts and the like, it is desirable to include more β phase than α phase in the mother phase, especially for high wear resistance.

【0018】本発明のα,β二相チタン合金複合材料
で、ゴルフクラブのドライバーやアイアンを製作する
か,若しくは本発明でフェース板を製作し、チタンその
他の母材面にチタンロー材で結合させると飛距離の出る
ゴルフクラブとなる。
A golf club driver or iron is manufactured from the α, β two-phase titanium alloy composite material of the present invention, or a face plate is manufactured according to the present invention and bonded to titanium or another base material surface with a titanium brazing material. It becomes a golf club with a long flight distance.

【0019】チタン合金のヤング率は12000kgf/mm
2であり、TiB単体のヤング率は55000kgf/mm2
あるので、15Vol%TiB含有の複合材料のヤング率
は理論的には18450kgf/mm2になるが、針状晶が様
々の方向を向くことによって多少減少するので、160
00kgf/mm2程度は確保できる。
The Young's modulus of titanium alloy is 12000 kgf / mm
2 and the Young's modulus of TiB alone is 55000 kgf / mm 2 , so the Young's modulus of the composite material containing 15 Vol% TiB is theoretically 18450 kgf / mm 2 , but the needle-like crystals face various directions. It will decrease a little, so 160
About 00 kgf / mm 2 can be secured.

【0020】[0020]

【実施例】【Example】

1.α,β二相チタン合金とTiB化合物粒子との複合
材料の製作 Ti−6Al−4Vの組成の平均粒径約45μmのα,β
二相チタン合金粉に平均粒径3μmの硼化物FeB或いは
MoBを5〜20Vol%配合し、酸素ガスを全く含まな
いアルゴン雰囲気中遊星回転ボールミルで毎分180回
転の速度のもと1時間混合する。この混合粉を10×1
0×50mmの凹みを有する金型に装填し、4000kgf/
cm2の荷重を加えて圧粉し、その圧粉体を真空中、FeB
添加の場合は900℃,2h,MoB添加の場合は12
00℃,2h加熱して焼結体を得る。この焼結過程にお
いて圧粉体内で Ti+FeB→TiB+Fe Ti+MoB→TiB+Mo の反応が起こり、焼結体内にTiB化合物が微細且つ均
一に分散することになる。また、反応によって生じたF
e或いはMoはTi−6Al−4Vの母相中に溶け込み、F
eB添加の場合はα相に近いα,β二相に、MoB添加の
場合はβ相に近いα,β二相となる。
1. Manufacture of a composite material of α, β two-phase titanium alloy and TiB compound particles α, β having a composition of Ti-6Al-4V and an average particle size of about 45 μm
5 to 20 Vol% of boride FeB or MoB having an average particle diameter of 3 μm is mixed with two-phase titanium alloy powder and mixed for 1 hour at 180 rpm in a planetary rotary ball mill in an argon atmosphere containing no oxygen gas. . 10 x 1 of this mixed powder
Loaded in a mold with 0x50mm dent, 4000kgf /
Apply a load of cm 2 to compact and compact the compact in vacuum with FeB
900 ° C for 2 hours when added, 12 when added MoB
A sintered body is obtained by heating at 00 ° C. for 2 hours. In this sintering process, a reaction of Ti + FeB → TiB + FeTi + MoB → TiB + Mo occurs in the green compact, and the TiB compound is finely and uniformly dispersed in the sintered body. In addition, F generated by the reaction
e or Mo dissolves in the mother phase of Ti-6Al-4V, and F
When eB is added, the α and β phases are close to the α phase, and when MoB is added, the α and β phases are close to the β phase.

【0021】反応焼結体は更に熱間静水圧プレス機でア
ルゴン雰囲気中FeB添加の場合は900℃,2000
気圧,2h,MoB添加の場合は1200℃,2000
気圧,2h加熱されるか、又は反応焼結体を鉄板で真空
パックし、低速熱間圧延機で空気中,FeB添加の場合
は900℃,MoB添加の場合は1200℃,圧下量約
50%の熱間圧延を与える。これによって真密度99.
5%以上のバルク材が得られる。
The reaction-sintered body was further subjected to hot isostatic pressing in an argon atmosphere at 900 ° C. and 2000 ° C. when FeB was added.
Atmospheric pressure, 2h, 1200 ℃, 2000 when adding MoB
It is heated at atmospheric pressure for 2 hours, or the reaction sintered body is vacuum-packed with an iron plate and in a low-speed hot rolling mill in air, at 900 ° C for FeB addition, 1200 ° C for MoB addition, and a reduction of about 50%. Give hot rolling. This gives a true density of 99.
A bulk material of 5% or more is obtained.

【0022】以上の工程をフローチャートで図1に示
す。
The above steps are shown in a flow chart in FIG.

【0023】ここで、得られた(Ti−6Al−4V)−
TiB複合材料のビッカース硬さ及び圧縮強さを硼化物
添加量との関係で示すと、図2及び3に示すようにな
る。また、ピンオンディスク磨耗試験における5km磨耗
量をTi−6Al−4Vのみの焼結体及び耐磨耗性のステ
ライトNo.1との比較において示すと図4に示すように
なり、15Vol%FeB及びMoBを配合した反応焼結体
で熱間静水圧加圧したものはステライトNo.1に非常に
近い耐磨耗性を示す。この高耐磨耗性の原因は15Vol
%FeB配合材では図5及び6から分かるように母相は
α相の多いα,β二相で内部に微細で硬い粒状TiB化
合物と塊状Fe2Ti,FeTi(単体ではHv約110
0)を生ずること、また15Vol%MoB配合材では図
5及び6から分かるように母相はβ相の多いα,β二相
で内部に微細で硬い針状及び粒状TiBを生ずることに
よる。
Here, the obtained (Ti-6Al-4V)-
The Vickers hardness and compressive strength of the TiB composite material are shown in FIGS. 2 and 3 in relation to the amount of boride added. In addition, the abrasion amount of 5 km in the pin-on-disc abrasion test is shown in comparison with the sintered body of only Ti-6Al-4V and the abrasion-resistant Stellite No. 1 as shown in FIG. 4, which is 15 Vol% FeB and A reaction sintered body containing MoB and subjected to hot isostatic pressing exhibits wear resistance very close to that of Stellite No.1. The cause of this high wear resistance is 15 Vol
As can be seen from FIGS. 5 and 6, in the% FeB compounded material, the mother phase is α and β two phases having many α phases, and fine and hard granular TiB compounds and massive Fe 2 Ti and FeTi (Hv about 110 as a single substance).
0), and in the 15 Vol% MoB compounded material, as can be seen from FIGS. 5 and 6, the parent phase is an α, β two phase having many β phases, and fine and hard needle-like and granular TiB are internally generated.

【0024】2.プラズマ溶射用のTiB化合物を含む
α,β二相チタン合金複合粉の製作とプラズマ溶射 図1に示すように反応焼結を行ったTiB化合物を含有
するα,β二相チタン合金複合組成より成る真空焼結体
を水素炉中600〜800℃,2h加熱することによっ
て脆化させた後、乳鉢で粉砕して粒径約45μmの粉体
を得る。これをプラズマトーチに供給し、Ti−6Al−
4V丸棒束の端面にプラズマ溶射を行った。約400μ
mの厚さに溶射を行った後、空孔を消滅させたり、組織
を均一化するため真空中900℃,2hの熱処理を行っ
た。
2. Manufacture of α, β Two-Phase Titanium Alloy Composite Powder Containing TiB Compound for Plasma Spraying and Plasma Spraying It consists of α, β two-phase titanium alloy composite composition containing TiB compound which is reaction sintered as shown in FIG. The vacuum sintered body is embrittled by heating in a hydrogen furnace at 600 to 800 ° C. for 2 hours and then crushed in a mortar to obtain a powder having a particle size of about 45 μm. This is supplied to the plasma torch and Ti-6Al-
Plasma spraying was performed on the end surface of the 4V round bar bundle. About 400μ
After thermal spraying to a thickness of m, heat treatment was performed in vacuum at 900 ° C. for 2 hours to eliminate pores and homogenize the structure.

【0025】プラズマ溶射皮膜のビッカース硬さは図7
に示す通りであり、15Vol%FeB配合材のTiBを含
有するα,β二相合金複合粉をプラズマ溶射した場合の
熱処理材はビッカース硬さ800以上を示した。
The Vickers hardness of the plasma spray coating is shown in FIG.
And the heat-treated material when plasma spraying the α, β two-phase alloy composite powder containing TiB of 15 Vol% FeB blended material showed Vickers hardness of 800 or more.

【0026】また、ピンオンディスク磨耗試験における
10km累積磨耗量は図8に示す通りで、15Vol%配合
の場合はステライトNo.1に非常に近い磨耗量で高い耐
磨耗性を示した。
Further, the 10 km cumulative wear amount in the pin-on-disk wear test is as shown in FIG. 8, and in the case of blending 15 Vol%, the wear amount was very close to that of Stellite No. 1, and high wear resistance was exhibited.

【0027】3.TiB化合物を含有するα,β二相チ
タン合金複合物をプラズマ溶射した刃物の製作 図1に示すように反応焼結を行ったTiB化合物を含有
するα,β二相チタン合金複合組成よりなる真空焼結体
を水素炉中600〜800℃,2h加熱することによっ
て脆化させた後、乳鉢で粉砕して粒径約45μmの粉体
を得る。これをプラズマトーチに供給し、短冊状Ti−
6Al−4V刃材縁にプラズマ溶射を行った。図9に断
面を示すように溶射を行った後、空孔を消滅させたり、
組成を均一化するため真空中900℃,2h熱処理を行
った。
3. Fabrication of a blade in which an α, β two-phase titanium alloy composite containing a TiB compound was plasma sprayed A vacuum consisting of an α, β two-phase titanium alloy composite composition containing a TiB compound which was reaction-sintered as shown in FIG. The sintered body is embrittled by heating in a hydrogen furnace at 600 to 800 ° C. for 2 hours, and then ground in a mortar to obtain a powder having a particle size of about 45 μm. This is supplied to the plasma torch, and strip-shaped Ti-
Plasma spraying was performed on the edges of the 6Al-4V blade material. After spraying as shown in the cross section in FIG. 9, the holes disappear,
In order to make the composition uniform, heat treatment was performed in vacuum at 900 ° C. for 2 hours.

【0028】その後目的とする刃先形状に研磨を行って
仕上げた。
After that, the desired cutting edge shape was ground and finished.

【0029】4.反応焼結によって得たTiB化合物を
含有するα,β二相チタン合金複合組成より成る歯車 Ti−6Al−4Vの組成の平均粒径約45μmのα,β
二相チタン合金粉に平均粒径3μmの硼化物FeB或いは
MoBを15Vol%配合し、酸素ガスを全く含まないア
ルゴン雰囲気中遊星ボールミルで毎分180回転の速度
のもと1時間混合した。この混合粉を歯車金型に装填
し、4000kgf/cm2の荷重を加えて圧粉し、その圧粉
体を真空中FeB添加の場合は900℃,2h,MoB添
加の場合は1200℃,2h加熱して焼結体を得た。圧
粉体内では前述の反応が起こり、焼結体内にTiB化合
物が微細且つ均一に分散し、直径で3〜4%の収縮を起
こす。
4. Gears made of α, β two-phase titanium alloy composite composition containing TiB compound obtained by reaction sintering Gears of composition Ti-6Al-4V α, β with an average particle size of about 45 μm
15 Vol% of boride FeB or MoB having an average particle diameter of 3 μm was mixed with the two-phase titanium alloy powder, and the mixture was mixed for one hour at 180 rpm in an argon atmosphere containing no oxygen gas at a planetary ball mill. This mixed powder is loaded into a gear mold and pressed under a load of 4000 kgf / cm 2 , and the pressed powder is vacuumed at 900 ° C. for 2 hours, and for MoB addition at 1200 ° C. for 2 hours. It heated and the sintered compact was obtained. The above-mentioned reaction occurs in the green compact, the TiB compound is finely and uniformly dispersed in the sintered body, and contracts by 3 to 4% in diameter.

【0030】この焼結体は微細な結晶組織をとることか
ら、超塑性現象を示すので、900℃で10-3〜10-4
/sの歪み速度で破壊することなく、同一金型を用いて
圧縮成形することができ、目的の歯車形状のものを得る
ことができた。
Since this sintered body has a fine crystal structure, it exhibits a superplastic phenomenon, so that it is 10 -3 to 10 -4 at 900 ° C.
It was possible to perform compression molding using the same mold without breaking at a strain rate of / s, and it was possible to obtain the target gear shape.

【0031】[0031]

【発明の効果】【The invention's effect】

1.請求項1の記載の発明は、マトリックスのα,β二
相チタン合金となじみ性の良いTiBを複合させること
によって高強度,高硬度,高耐磨耗,高弾性率のα,β
二相チタン合金複合材料となる。
1. According to the invention described in claim 1, by combining a matrix α, β two-phase titanium alloy and TiB having good compatibility, α, β having high strength, high hardness, high abrasion resistance and high elastic modulus can be obtained.
It becomes a two-phase titanium alloy composite material.

【0032】2.請求項2記載の発明は、マトリックス
のα,β二相チタン合金と焼結時反応し易い硼化物を使
用することによって短工程でTiBを均一微細に分布さ
せた高強度,高硬度,高耐磨耗,高弾性率のα,β二相
チタン合金複合材料となる。
2. According to the second aspect of the present invention, by using a boride which easily reacts with the α, β two-phase titanium alloy of the matrix during sintering, TiB is uniformly and finely distributed in a short process. It becomes an α, β two-phase titanium alloy composite material with high wear and high elastic modulus.

【0033】3.請求項3記載の発明は、マトリックス
のα,β二相チタン合金と硼化物を適切温度で反応焼結
させることによって短工程でTiBを均一微細に晶出分
布させた高強度,高硬度,高耐磨耗,高弾性率のα,β
二相チタン合金複合材料となる。
3. According to the third aspect of the present invention, TiB is homogeneously finely crystallized and distributed in a short process by reacting and sintering a matrix α, β two-phase titanium alloy and a boride at an appropriate temperature. Abrasion resistance, high elastic modulus α, β
It becomes a two-phase titanium alloy composite material.

【0034】4.請求項4記載の発明は、α,β二相チ
タン合金複合材料を水素脆化,粉砕することによってT
iBを均一微細に分布させた粉状α,β二相チタン合金
複合材料となる。
4. In the invention according to claim 4, the α, β two-phase titanium alloy composite material is hydrogen embrittled and pulverized to obtain T.
It becomes a powdery α, β two-phase titanium alloy composite material in which iB is uniformly and finely distributed.

【0035】5.請求項5記載の発明は、チタン合金材
表面にTiBを含有するα,β二相チタン合金複合粉を
溶着して被膜を形成させることによって高硬度,高耐磨
耗のチタン合金材料となる。
5. According to the fifth aspect of the present invention, a titanium alloy material having high hardness and high wear resistance is obtained by welding α-β two-phase titanium alloy composite powder containing TiB to the surface of the titanium alloy material to form a film.

【0036】6.請求項6記載の発明は、刃物形状チタ
ン合金材端縁表面にTiBを含有するα,β二相チタン
合金複合粉を溶着して被膜を形成させることによって高
硬度,高耐磨耗の刃物チタン合金材料となる。
6. The invention according to claim 6 is a blade titanium having a high hardness and a high wear resistance, by forming a coating by welding α, β two-phase titanium alloy composite powder containing TiB to the edge surface of the blade-shaped titanium alloy material. It becomes an alloy material.

【0037】7.請求項7記載の発明は、マトリックス
のα,β二相チタン合金と硼化物を適切温度で反応焼結
させることによってTiBを均一微細に分布させた高強
度,高硬度,高耐磨耗の機械部品や高強度,高硬度,高
弾性率のスポーツ用品であるチタン合金製品となる。
7. A seventh aspect of the present invention is a machine having high strength, high hardness and high wear resistance in which TiB is uniformly and finely distributed by reacting and sintering a matrix α, β two-phase titanium alloy and a boride at an appropriate temperature. It will be a titanium alloy product that is a sporting goods with parts and high strength, high hardness and high elastic modulus.

【0038】8.請求項8記載の発明は、チタン合金製
品表面にTiBを均一微細に含有するα,β二相チタン
合金複合粉を溶着して被膜を形成させることによって高
強度,高硬度,高耐磨耗,高弾性率のチタン合金製品と
なる。
8. The invention according to claim 8 has a high strength, a high hardness, a high abrasion resistance, by forming a coating by welding α, β two-phase titanium alloy composite powder containing TiB uniformly and finely on the surface of the titanium alloy product. It becomes a high-modulus titanium alloy product.

【0039】以上、本発明は、上述のように構成したか
ら従来のチタン合金よりも高強度,高硬度,高弾性度の
α,β二相チタン合金複合材料となる。
As described above, the present invention is an α, β two-phase titanium alloy composite material having higher strength, higher hardness, and higher elasticity than the conventional titanium alloy because it is configured as described above.

【0040】また、高ヤング率,高耐磨耗性などの特性
が著しく向上したチタン合金製品が得られる秀れた特長
を発揮する。
Further, the titanium alloy product having excellent properties such as high Young's modulus and high abrasion resistance is excellently obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】α,β二相チタン合金とTiB化合物粒子との
複合材料の製作工程フローチャートである。
FIG. 1 is a flow chart of a manufacturing process of a composite material of an α, β two-phase titanium alloy and TiB compound particles.

【図2】熱間静水圧処理材の硬さの硼化物添加量による
変化である。
FIG. 2 is a graph showing a change in hardness of the hot isostatically treated material depending on the amount of boride added.

【図3】熱間静水圧処理材の圧縮強さの硼化物添加量に
よる変化である。
FIG. 3 shows changes in the compressive strength of the hot isostatically treated material depending on the amount of boride added.

【図4】ピンオンディスク試験による磨耗量と硼化物添
加量との関係である。
FIG. 4 is a relationship between the amount of wear and the amount of boride added by a pin-on-disk test.

【図5】熱間静水圧処理材のα,β二相チタン合金複合
材料の金属組織を顕微鏡で拡大して見たときのSEM組
織を表した説明図である。
FIG. 5 is an explanatory diagram showing an SEM structure when a metal structure of an α, β two-phase titanium alloy composite material of a hot isostatically treated material is enlarged and viewed with a microscope.

【図6】熱間静水圧処理材のX線回折図形である。FIG. 6 is an X-ray diffraction pattern of the hot isostatically treated material.

【図7】溶射被膜のビッカース硬さである。FIG. 7 is the Vickers hardness of the thermal spray coating.

【図8】ピンオンディスク試験における磨耗量である。FIG. 8 is a wear amount in a pin-on-disk test.

【図9】刃材縁にプラズマ溶射し、研磨除去する状況で
ある。
FIG. 9 is a situation in which plasma spraying is performed on the edge of the blade material and polishing removal is performed.

【図10】TiB強化チタン合金複合材料による歯車及
びチタン合金歯車にTiB強化チタン合金複合粉を溶射
する状況である。
FIG. 10 is a situation in which a TiB-reinforced titanium alloy composite powder is sprayed onto a gear and a titanium alloy gear made of the TiB-reinforced titanium alloy composite material.

【図11】チタン合金ゴルフクラブヘッドにTiB強化
チタン合金複合材を貼り合わす状況である。
FIG. 11 shows a situation in which a TiB reinforced titanium alloy composite material is attached to a titanium alloy golf club head.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 誠一 新潟県中蒲原郡亀田町東野3−2−14 (72)発明者 佐藤 一男 新潟県三条市上保内甲432 (72)発明者 長谷川 直 新潟県三条市島田3−5−15 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Seiichi Suzuki 3-2-14, Higashino, Kameda-cho, Nakagahara-gun, Niigata Prefecture (72) Inventor Kazuo Sato Inoue Kamihonai, Sanjo City, Niigata Prefecture (72) Inventor Nao Hasegawa Niigata 3-5-15 Shimada, Sanjo City, Japan

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 α,β二相チタン合金粉末に、硼化物粉
末を5〜20Vol%程度混合し、圧粉加熱して焼結し、
針状或いは粒状のTiB化合物をマトリックス中に晶出
させたことを特徴とするα,β二相チタン合金複合材
料。
1. An α, β two-phase titanium alloy powder is mixed with boride powder in an amount of about 5 to 20% by volume, and heated by compacting to sinter.
An α, β two-phase titanium alloy composite material characterized by crystallizing a needle-like or granular TiB compound in a matrix.
【請求項2】 α,β二相チタン合金粉末として、粒径
約50μm程度のTi−6Al−4V合金粉末,Ti−6A
l−6V−2Sn合金粉末,Ti−6Al−2Sn−4Zr−
6Mo合金粉末などを使用し、硼化物粉末として、粒径
約1〜5μm程度のボロン粉末やFeB,MoB,WB,
NbB,CrB粉末などを使用したことを特徴とする請求
項1記載のα,β二相チタン合金複合材料。
2. An α, β two-phase titanium alloy powder, Ti-6Al-4V alloy powder, Ti-6A having a particle size of about 50 μm.
1-6V-2Sn alloy powder, Ti-6Al-2Sn-4Zr-
Using 6Mo alloy powder, etc., as boride powder, boron powder with a particle size of about 1 to 5 μm, FeB, MoB, WB,
The α, β two-phase titanium alloy composite material according to claim 1, wherein NbB, CrB powder or the like is used.
【請求項3】 α,β二相チタン合金粉末と硼化物粉末
とを混合圧粉した後、真空炉で900〜1200℃程度
に加熱して反応焼結させるか、又は圧粉した後900〜
1200℃程度に真空中或いは不活性ガス中加熱加圧し
て反応焼結させることを特徴とする請求項1,2のいず
れか1項に記載のα,β二相チタン合金複合材料。
3. An α, β two-phase titanium alloy powder and a boride powder are mixed and compressed, and then heated in a vacuum furnace at about 900 to 1200 ° C. for reaction sintering, or compressed and then 900 to 1200 ° C.
The α, β two-phase titanium alloy composite material according to any one of claims 1 and 2, wherein the α-β two-phase titanium alloy composite material is heated and pressurized to about 1200 ° C in a vacuum or in an inert gas for reaction sintering.
【請求項4】 請求項1,2,3のα,β二相チタン合
金複合材料を水素脆化した後粉砕し、この粉砕粉にプラ
ズマ,電子ビーム或いはレーザーを用いて溶射或いは溶
解が可能なTiB化合物の粒子を晶出させたことを特徴
とする粉状のα,β二相チタン合金複合材料。
4. The α, β two-phase titanium alloy composite material according to claim 1, 2, 3 is hydrogen embrittled and then pulverized, and the pulverized powder can be sprayed or melted by using plasma, electron beam or laser. A powdery α, β two-phase titanium alloy composite material characterized by crystallizing particles of a TiB compound.
【請求項5】 各種チタン合金材の所望箇所の表面に、
TiB化合物の粒子を晶出させたα,β二相チタン合金
複合材料粉末をプラズマ,電子ビーム或いはレーザーを
用いて溶射或いは溶解することによって基地表面に溶着
せしめたことを特徴とする各種製品のチタン合金材料。
5. A surface of a desired portion of various titanium alloy materials,
Titanium of various products characterized in that α, β two-phase titanium alloy composite material powder in which TiB compound particles are crystallized is sprayed or melted by using plasma, electron beam or laser to be deposited on the base surface. Alloy material.
【請求項6】 刃物素材形状のチタン合金材の端縁表面
にTiB化合物を晶出させたα,β二相チタン合金複合
材料粉末を基地表面に溶着せしめ、熱処理して刃物用チ
タン複合材を形成することを特徴とする請求項5記載の
各種製品のチタン合金材料。
6. A titanium composite material for blades is produced by depositing α, β two-phase titanium alloy composite material powder in which TiB compound is crystallized on the edge surface of a blade-shaped titanium alloy material, and heat-treating it to heat-treat it. The titanium alloy material for various products according to claim 5, which is formed.
【請求項7】 請求項1,2,3のα,β二相チタン合
金複合材料をバルク材として機械部品やスポーツ用品な
どの所望製品形状に反応焼結させて成形することを特徴
とするチタン合金製品。
7. Titanium formed by reacting and sintering the α, β two-phase titanium alloy composite material according to any one of claims 1, 2, and 3 as a bulk material into a desired product shape such as machine parts and sports equipment. Alloy products.
【請求項8】 製品や部品などの各種のチタン合金製品
の表面にTiB化合物を晶出させたα,β二相チタン合
金複合材料粉末をプラズマ,電子ビーム,レーザーなど
を用いて溶射或いは溶解することによって基地表面に溶
着せしめたことを特徴とするチタン合金製品。
8. An α, β two-phase titanium alloy composite material powder obtained by crystallizing a TiB compound on the surface of various titanium alloy products such as products and parts is sprayed or melted by using plasma, electron beam, laser or the like. This is a titanium alloy product characterized by being welded to the base surface.
JP11670695A 1995-05-16 1995-05-16 Alpha plus beta titanium alloy matrix composite, titanium alloy material for various products, and titanium alloy product Pending JPH08311586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11670695A JPH08311586A (en) 1995-05-16 1995-05-16 Alpha plus beta titanium alloy matrix composite, titanium alloy material for various products, and titanium alloy product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11670695A JPH08311586A (en) 1995-05-16 1995-05-16 Alpha plus beta titanium alloy matrix composite, titanium alloy material for various products, and titanium alloy product

Publications (1)

Publication Number Publication Date
JPH08311586A true JPH08311586A (en) 1996-11-26

Family

ID=14693818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11670695A Pending JPH08311586A (en) 1995-05-16 1995-05-16 Alpha plus beta titanium alloy matrix composite, titanium alloy material for various products, and titanium alloy product

Country Status (1)

Country Link
JP (1) JPH08311586A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7111376B2 (en) 2003-01-13 2006-09-26 The Stanley Works Tool with inserted blade members
JP2007143956A (en) * 2005-11-29 2007-06-14 Kyocera Corp Cutting tool
JP5153624B2 (en) * 2006-05-31 2013-02-27 京セラ株式会社 COMPOSITE MATERIAL AND ITS MANUFACTURING METHOD, COMPOSITION USED FOR THE SAME, AND CUTTER USING SAME
JP2014040674A (en) * 2004-11-12 2014-03-06 General Electric Co <Ge> Article having dispersion of ultrafine titanium boride particles in titanium-base matrix
US10100386B2 (en) 2002-06-14 2018-10-16 General Electric Company Method for preparing a metallic article having an other additive constituent, without any melting
CN112695262A (en) * 2020-12-11 2021-04-23 西安理工大学 Titanium alloy-based composite material with micro-structure and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10100386B2 (en) 2002-06-14 2018-10-16 General Electric Company Method for preparing a metallic article having an other additive constituent, without any melting
US7111376B2 (en) 2003-01-13 2006-09-26 The Stanley Works Tool with inserted blade members
JP2014040674A (en) * 2004-11-12 2014-03-06 General Electric Co <Ge> Article having dispersion of ultrafine titanium boride particles in titanium-base matrix
US10604452B2 (en) 2004-11-12 2020-03-31 General Electric Company Article having a dispersion of ultrafine titanium boride particles in a titanium-base matrix
JP2007143956A (en) * 2005-11-29 2007-06-14 Kyocera Corp Cutting tool
JP5153624B2 (en) * 2006-05-31 2013-02-27 京セラ株式会社 COMPOSITE MATERIAL AND ITS MANUFACTURING METHOD, COMPOSITION USED FOR THE SAME, AND CUTTER USING SAME
CN112695262A (en) * 2020-12-11 2021-04-23 西安理工大学 Titanium alloy-based composite material with micro-structure and preparation method thereof
CN112695262B (en) * 2020-12-11 2021-10-22 西安理工大学 Titanium alloy-based composite material with micro-structure and preparation method thereof

Similar Documents

Publication Publication Date Title
WO2011152359A1 (en) Titanium alloy composite powder containing ceramics and manufacturing method thereof, and densified titanium alloy and manufacturing method thereof using the same
JP2516590B2 (en) Compressed metal article and manufacturing method thereof
US6010661A (en) Method for producing hydrogen-containing sponge titanium, a hydrogen containing titanium-aluminum-based alloy powder and its method of production, and a titanium-aluminum-based alloy sinter and its method of production
EP1780300A2 (en) Carbon containing sputter target alloy compositions
JPH01116002A (en) Production of composite metal powder from base iron powder and alloying component and composite metal powder
JP4303821B2 (en) Method for forming TiC dispersed titanium alloy composite material and method for forming TiC dispersed titanium alloy composite layer
JPS6362474B2 (en)
JP2539712B2 (en) Nitride powder
JPH08311586A (en) Alpha plus beta titanium alloy matrix composite, titanium alloy material for various products, and titanium alloy product
Kim et al. In-situ fabrication of TiC-Fe3Al cermet
JPH0475295B2 (en)
Moon et al. A study on the microstructure of D023 Al3Zr and L12 (Al+ 12.5 at.% Cu) 3Zr intermetallic compounds synthesized by PBM and SPS
JP4730338B2 (en) COMPOSITE MATERIAL FOR INJECTION MOLDING COMPRISING CERAMIC DISPERSED MAGNESIUM COMPOSITE MATERIAL AND ITS MANUFACTURING METHOD
JP4008597B2 (en) Aluminum-based composite material and manufacturing method thereof
JPS5857502B2 (en) Sintered material with toughness and wear resistance
JP2006509908A (en) Composite metal products and methods of manufacturing such products
JPS6199640A (en) Manufacture of composite target material
Romański et al. Sintered Fe-Ni-Cu-Sn-C alloys made of ball-milled powders
US11085109B2 (en) Method of manufacturing a crystalline aluminum-iron-silicon alloy
JPH02259029A (en) Manufacture of aluminide
JP2020164916A (en) Powder for molding, manufacturing method of the powder and manufacturing method of molded article
JP3793813B2 (en) High strength titanium alloy and method for producing the same
JP2005281769A (en) High hardness high carbon nanocrystal iron alloy powder and bulk material and production method therefor
Muchavi Effects of thermal processing of blended and roll compacted Ti6Al4V strips on microstructure and properties
JP3413921B2 (en) Method for producing Ti-Al based intermetallic compound sintered body