JPH08290947A - Carbon fiber for hydraulic composite material, hydraulic composite material and its production - Google Patents

Carbon fiber for hydraulic composite material, hydraulic composite material and its production

Info

Publication number
JPH08290947A
JPH08290947A JP8019666A JP1966696A JPH08290947A JP H08290947 A JPH08290947 A JP H08290947A JP 8019666 A JP8019666 A JP 8019666A JP 1966696 A JP1966696 A JP 1966696A JP H08290947 A JPH08290947 A JP H08290947A
Authority
JP
Japan
Prior art keywords
carbon fiber
hydraulic
composite material
hydraulic composite
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8019666A
Other languages
Japanese (ja)
Inventor
Toyokazu Mizuguchi
豊和 水口
Tetsuyuki Kyono
哲幸 京野
Toshiyuki Miyoshi
敏之 三好
Keizo Ono
恵三 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP8019666A priority Critical patent/JPH08290947A/en
Publication of JPH08290947A publication Critical patent/JPH08290947A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/386Carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Nanotechnology (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE: To improve both the degree of bonding to a hydraulic raw material and the flexural strength of a hydraulic composite material by including a specific amount of an oxygen functional group therein. CONSTITUTION: This carbon fiber for a hydraulic composite material is obtained by carrying out the oxidation treatment using an inorganic or an organic acid (salt) or an alkaline compound (salt) as an electrolyte capable of producing oxygen in an anode by electrolysis and a carbon fiber as the anode, providing the carbon fiber having 0.1-0.4 content of functional groups containing oxygen O/C, as necessary, applying 0.5-5.0wt.% sizing agent consisting essentially of a thermosetting resin to the resultant carbon fiber, cutting the carbon fiber to 1-100mm length, then adding a hydraulic raw material so as to afford 1-5% volume ratio to the hydraulic raw material and, as necessary, an aggregate, an admixture, a thickener, a retarder, etc., thereto, kneading the prepared mixture and extrusion molding the kneaded mixture. The air, steam, natural curings, etc., are then performed to harden the hydraulic raw material. Thereby, the hydraulic composite material reinforced with the carbon fiber is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水硬性複合材料用
炭素繊維に関するものである。さらに詳しくは、水硬性
複合材料としたときにマトリックスとの接着度合に優
れ、ひいては力学的特性に優れた水硬性複合材料を与え
得る水硬性複合材料用炭素繊維に関する。
TECHNICAL FIELD The present invention relates to carbon fibers for hydraulic composite materials. More specifically, the present invention relates to a carbon fiber for a hydraulic composite material, which is excellent in the degree of adhesion with a matrix when it is made into a hydraulic composite material and can give a hydraulic composite material having excellent mechanical properties.

【0002】[0002]

【従来の技術】近年、ポルトランドセメント、混合セメ
ント、低収縮セメントなどの各種セメント類に代表され
る水硬性原料に炭素繊維を混入した水硬性複合材料が、
軽量で、強度が大きく、かつ靱性が大きく、ひび割れを
防止するなどの特徴を生かして、建築、土木分野などで
利用されるようになってきた。水硬性複合材料の補強材
として、種々の単繊維強度、単繊維径の炭素繊維が用い
られているが、一般に、炭素繊維は伸度が低く、擦過に
弱い繊維であるため、取扱い中に毛羽が発生し易い。従
って炭素繊維束のハンドリング性を改善し、プロセス性
を上げる目的で、通常、炭素繊維にはサイジング剤が付
与されている。例えば、特開昭63−162559号公
報には、炭素繊維短繊維をセメントへ混練したときに、
単繊維に分散し、複合材料として強度が発現できるよう
に、炭素繊維に各種の水溶性サイジング剤を付与させる
方法が開示されている。しかし、この場合、炭素繊維と
セメントとの接着度合に注目した検討がなされていない
ため、炭素繊維を添加したことによる補強効果が小さい
という問題があった。
2. Description of the Related Art In recent years, hydraulic composite materials obtained by mixing carbon fiber into hydraulic raw materials represented by various cements such as Portland cement, mixed cement and low shrinkage cement have been developed.
It has come to be used in the fields of construction and civil engineering due to its characteristics such as light weight, high strength, high toughness, and prevention of cracking. Carbon fibers having various single fiber strengths and single fiber diameters are used as a reinforcing material for hydraulic composite materials.However, since carbon fibers generally have low elongation and are vulnerable to abrasion, they are fluffy during handling. Is likely to occur. Therefore, a sizing agent is usually added to the carbon fiber for the purpose of improving the handling property of the carbon fiber bundle and increasing the processability. For example, in JP-A-63-162559, when carbon fiber short fibers are kneaded into cement,
A method is disclosed in which various water-soluble sizing agents are added to carbon fibers so that the carbon fibers can be dispersed in single fibers and strength can be exhibited as a composite material. However, in this case, there has been a problem that the reinforcing effect due to the addition of the carbon fiber is small because no study has been made paying attention to the degree of adhesion between the carbon fiber and the cement.

【0003】また、一般に水硬性原料を繊維で補強する
場合、繊維強度が高いだけではその補強効果は十分では
なく、炭素繊維の優れた力学的特性を水硬性複合材料に
反映させるためには、水硬性原料と炭素繊維とが十分に
接着し一体化する必要がある。かかる接着度合を向上さ
せるために、特開平05−98565号公報には、炭素
繊維表面を弗素ガスで処理して、濡れ性を改善する方法
が開示されているが、弗素ガスによる処理を行なうため
には、弗素ガスによる腐食等を防止するため、かなり特
殊の設備を必要とし、得られる炭素繊維のコストが上昇
するという問題がある。一方、水硬性原料と炭素繊維と
の接着度合の改善を図って、水硬性原料の中に、添加剤
としてシリカヒュームなどの微粒子を付着させるなどの
方法も提案されているが、十分な効果が得られていない
のが実状である。
Further, in general, when reinforcing a hydraulic material with fibers, the reinforcing effect is not sufficient if the fiber strength is high, and in order to reflect the excellent mechanical properties of carbon fiber in the hydraulic composite material, It is necessary that the hydraulic material and the carbon fiber are sufficiently bonded and integrated. In order to improve the degree of adhesion, Japanese Patent Application Laid-Open No. 05-98565 discloses a method of treating a carbon fiber surface with a fluorine gas to improve the wettability, but the treatment with a fluorine gas is performed. However, there is a problem in that the cost of the carbon fiber to be obtained is increased because a fairly special facility is required to prevent corrosion due to fluorine gas. On the other hand, a method of adhering fine particles such as silica fume as an additive in the hydraulic raw material in order to improve the degree of adhesion between the hydraulic raw material and the carbon fiber has been proposed, but a sufficient effect is obtained. The reality is that it has not been obtained.

【0004】さらには、水硬性複合材料の製造において
は、水硬性原料に炭素繊維短繊維を混練する場合、混練
初期の段階で、短繊維を構成する単繊維が開繊して、単
繊維が無秩序に絡み合って球状となる、いわゆるファイ
バーボールが発生して、水硬性原料に混練できない場合
が生ずるという問題もあった。
Further, in the production of a hydraulic composite material, when carbon fiber short fibers are kneaded with a hydraulic raw material, the single fibers constituting the short fibers are opened at the initial stage of kneading, and the single fibers are There is also a problem in that a so-called fiber ball, which is entangled randomly to form a spherical shape, is generated, and the hydraulic raw material may not be kneaded.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、上記
した従来技術の問題を解決すること、すなわち、水硬性
原料と炭素繊維との接着度合が適性化され、かつ、水硬
性原料に混練したときに、単繊維に分散しやすいため、
水硬性複合材料としたときにその力学的特性を高強度、
高性能なものとし得る炭素繊維および該炭素繊維を含む
水硬性複合材料部材を提供することにある。
The object of the present invention is to solve the above-mentioned problems of the prior art, that is, the degree of adhesion between the hydraulic raw material and the carbon fiber is optimized and the kneading is performed on the hydraulic raw material. When you do, because it is easy to disperse in the single fiber,
The mechanical properties of the hydraulic composite material are high strength,
(EN) It is intended to provide a carbon fiber which can have high performance and a hydraulic composite material member containing the carbon fiber.

【0006】また、本発明の他の目的は、上記炭素繊維
を用いて水硬性複合材料を得るに適した水硬性複合材料
の製造方法を提供するにある。
Another object of the present invention is to provide a method for producing a hydraulic composite material suitable for obtaining a hydraulic composite material using the above carbon fiber.

【0007】[0007]

【課題を解決するための手段】本発明の炭素繊維は、上
記課題を解決するために次の構成を有する。すなわち、
酸素含有官能基量が、0.1〜0.4の範囲内であるこ
とを特徴とする水硬性複合材料用炭素繊維である。
[Means for Solving the Problems] The carbon fiber of the present invention has the following constitution in order to solve the above problems. That is,
The carbon fiber for hydraulic composite material is characterized in that the amount of oxygen-containing functional group is within the range of 0.1 to 0.4.

【0008】また、本発明の水硬性複合材料製部材は、
上記課題を解決するために次の構成を有する。すなわ
ち、上記炭素繊維を含む水硬性複合材料製部材である。
Further, the hydraulic composite material member of the present invention is
In order to solve the above-mentioned subject, it has the following composition. That is, it is a member made of a hydraulic composite material containing the carbon fiber.

【0009】さらに、本発明の水硬性複合材料の製造方
法は、上記課題を解決するために次のいずれかの構成を
有する。すなわち、連続繊維である上記炭素繊維を切断
しながら、その切断されて得られた短繊維と水硬性原料
とを同時に型枠に吹き付け成形することを特徴とする水
硬性複合材料の製造方法、上記炭素繊維と水硬性原料と
を共に混合装置へ投入し、攪拌しながら水を添加し混合
させて後、型枠に流し込み成形することを特徴とする水
硬性複合材料の製造方法、連続繊維である上記炭素繊維
を切断しながら、その切断して得られた短繊維と水硬性
原料とを同時に、孔を有するベルトの上に吹き付け、水
と水硬性原料との比を調整しながら成形することを特徴
とする水硬性複合材料の製造方法、または、上記炭素繊
維と水硬性原料とを共に混合装置へ投入し、攪拌しなが
ら水を添加し混合させて後、押出成形することを特徴と
する水硬性複合材料の製造方法である。
Further, the method for producing a hydraulic composite material of the present invention has one of the following constitutions in order to solve the above problems. That is, while cutting the carbon fiber is a continuous fiber, a method for producing a hydraulic composite material, characterized in that the short fiber obtained by the cutting and the hydraulic raw material are simultaneously blow-molded in a mold, A method for producing a hydraulic composite material, which comprises charging carbon fiber and a hydraulic raw material together into a mixing device, adding water with stirring and mixing, and then casting the mixture into a mold, which is a continuous fiber. While cutting the carbon fiber, the short fibers obtained by cutting and the hydraulic raw material are simultaneously sprayed onto a belt having holes, and molded while adjusting the ratio of water and the hydraulic raw material. A method for producing a hydraulic composite material characterized by the above, or the carbon fiber and the hydraulic raw material are both charged into a mixing device, water is added while stirring and mixed, and then extrusion molding is performed. Manufacture of rigid composite materials It is the law.

【0010】[0010]

【発明の実施の形態】以下、本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.

【0011】本発明の炭素繊維は、酸素含有官能基量を
0.1〜0.4の範囲内、好ましくは0.15〜0.4
0、より好ましくは0.20〜0.30の範囲内とする
ものである。炭素繊維の酸素含有官能基量が、0.1未
満であると、水硬性原料と炭素繊維の接着度合が低いも
のとなり、得られる水硬性複合材料の曲げ強度が低くな
る。一方、炭素繊維の酸素含有官能基量が0.4を越え
るようなものは、繊維強度が低いため、得られる水硬性
複合材料の曲げ強度が低くなる。
The carbon fiber of the present invention has an oxygen-containing functional group content within the range of 0.1 to 0.4, preferably 0.15 to 0.4.
The range is 0, more preferably 0.20 to 0.30. If the amount of oxygen-containing functional groups in the carbon fiber is less than 0.1, the degree of adhesion between the hydraulic raw material and the carbon fiber will be low, and the resulting hydraulic composite material will have low bending strength. On the other hand, a carbon fiber having an oxygen-containing functional group content of more than 0.4 has low fiber strength, and thus the resulting hydraulic composite material has low flexural strength.

【0012】本発明における炭素繊維の酸素含有官能基
量は、X線光電子分光法により、次の手順に従って求め
たものである。
The oxygen-containing functional group content of the carbon fiber in the present invention is determined by X-ray photoelectron spectroscopy according to the following procedure.

【0013】まず、溶剤でサイジング剤などを除去した
炭素繊維(束)をカットして銅製の試料支持台に拡げて
並べた後、X線源としてA1Kα1,2 を用い、試料チャ
ンバー中を1×108 Torrに保つ。測定時の帯電に伴う
ピークの補正としてC1Sの主ピークの運動エネルギー値
(K.E.)を1202eVに合せる。C1Sピーク面積をK.
E.として1191〜1205eVの範囲で直線のベース
ラインを引くことにより求める。O1Sピーク面積をK.
E.として947〜959eVの範囲で直線のベースライ
ンを引くことにより求める。ここで、酸素含有官能基量
とは、上記O1Sピーク面積とC1Sピーク面積の比から装
置固有の感度補正値を用いて原子数比として算出したも
のである。なお、実施例中では、X線光電子分光装置と
して、国際電気社製モデルES−200を用い、感度補
正値を1.74とした。
First, the carbon fibers (bundle) from which the sizing agent and the like have been removed with a solvent are cut and spread on a sample support base made of copper and aligned, and then A1Kα 1,2 is used as an X-ray source, and the inside of the sample chamber is set to 1 Keep at × 10 8 Torr. The kinetic energy value (KE) of the main peak of C 1S is set to 1202 eV as a correction of the peak due to charging during measurement. The C 1S peak area was calculated as K.
E. FIG. Is obtained by drawing a straight base line in the range of 1191 to 1205 eV. The O 1S peak area was measured by K.K.
E. FIG. Is obtained by drawing a straight base line in the range of 947 to 959 eV. Here, the oxygen-containing functional group amount is calculated as an atomic number ratio from the ratio of the O 1S peak area and the C 1S peak area using a sensitivity correction value specific to the apparatus. In the examples, a model ES-200 manufactured by Kokusai Electric Inc. was used as the X-ray photoelectron spectrometer, and the sensitivity correction value was set to 1.74.

【0014】また、本発明の炭素繊維には、炭素繊維重
量当たり0.5〜5.0重量%の範囲のサイジング剤が
付与されていることが好ましい。サイジング剤を付与す
ることにより、炭素繊維に集束性を与え工程通過中の耐
屈曲性や耐擦過性を向上させることができるだけでな
く、水硬性原料と混練する時に炭素繊維が簡単に開繊し
て、水硬性原料に均一に分散し、かつ水硬性原料との接
着度合を良好とすることができるため、得られる水硬性
複合材料の力学的特性をより高めることができる。サイ
ジング剤の付着量が0.5重量%未満であると、単繊維
同士の結束力が不足し、炭素繊維を水硬性原料と混練す
る際に、開繊が短時間の間に起るため、炭素繊維が損傷
しやすくなったり、また、水硬性原料との接着度合があ
まりにも大きくなり過ぎるためか、水硬性複合材料にお
いて、水硬性原料の破壊により炭素繊維が破断しやす
い、すなわち、衝撃破壊を受けやすくなったりする場合
がある。一方、サイジング剤付着量が、5.0重量%を
越えると、単繊維同士の結束力が強くなり過ぎ、水硬性
原料に分散することが困難となったり、水硬性原料との
接着度合が低くなるためか、得られる複合材料の力学的
特性を十分なものとできない場合がある。
The carbon fiber of the present invention is preferably provided with a sizing agent in the range of 0.5 to 5.0% by weight based on the weight of carbon fiber. By adding a sizing agent, not only can the carbon fibers be bundled to improve their bending resistance and scratch resistance during the process, but the carbon fibers can be easily opened when kneading with a hydraulic material. Thus, since it can be uniformly dispersed in the hydraulic raw material and the degree of adhesion with the hydraulic raw material can be improved, the mechanical properties of the obtained hydraulic composite material can be further enhanced. If the adhesion amount of the sizing agent is less than 0.5% by weight, the binding force between the single fibers is insufficient, and when the carbon fibers are kneaded with the hydraulic raw material, opening occurs in a short time. In the hydraulic composite material, the carbon fiber easily breaks due to the fracture of the hydraulic raw material, that is, because the carbon fiber is easily damaged or the degree of adhesion with the hydraulic raw material becomes too large, that is, impact fracture It may be easier to receive. On the other hand, when the amount of the sizing agent attached exceeds 5.0% by weight, the binding force between the single fibers becomes too strong and it becomes difficult to disperse them in the hydraulic raw material, or the degree of adhesion with the hydraulic raw material is low. Perhaps because of this, the mechanical properties of the resulting composite material may not be sufficient.

【0015】サイジング剤としては、ポリアミド樹脂、
ポリエステル樹脂、ポリイミド樹脂などの熱可塑性樹脂
単独あるいはこれに平滑剤、柔軟剤などを添加したもの
も用いることができるが、場合によっては、十分な物性
の水硬性複合材料が得られないこともあるので、エポキ
シ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ウ
レタン樹脂などの熱硬化性樹脂、または合成ゴム、天然
ゴム、架橋ゴムなどのゴム類を主成分として用いるの
が、水硬性原料との相溶性、接着度合を積極的に維持、
向上させる点から好ましい。特に、熱硬化性樹脂を主成
分とするものがより好ましい。一方、サイジング剤とし
て、ポリアルキレンオキサイドおよびその誘導体、ポリ
ビニルピロリドンおよびその誘導体、ポリビニルアルコ
ールなどの水溶性樹脂を主成分として用いても、水硬性
原料と混練する時に炭素繊維が開繊しやすくなるため、
水硬性原料に均一に分散しやすくなり、かつ水硬性原料
との接着度合を良好とすることができる。
As the sizing agent, polyamide resin,
A thermoplastic resin such as a polyester resin or a polyimide resin, or a thermoplastic resin added with a smoothing agent, a softening agent, or the like can be used, but in some cases, a hydraulic composite material having sufficient physical properties may not be obtained. Therefore, use of thermosetting resins such as epoxy resin, unsaturated polyester resin, phenol resin, urethane resin, or rubbers such as synthetic rubber, natural rubber, crosslinked rubber as the main component is compatible with hydraulic materials. , Actively maintain the degree of adhesion,
It is preferable from the viewpoint of improving. In particular, those containing a thermosetting resin as a main component are more preferable. On the other hand, even if a water-soluble resin such as polyalkylene oxide and its derivative, polyvinylpyrrolidone and its derivative, or polyvinyl alcohol is used as a main component as a sizing agent, the carbon fiber is easily opened when kneading with the hydraulic material. ,
It becomes easy to disperse uniformly in the hydraulic material, and the degree of adhesion with the hydraulic material can be improved.

【0016】しかし、不飽和ポリエステル樹脂のみから
なるサイジング剤では、硬化収縮が大きく靭性が小さい
ため、水硬性原料との接着度合が低くなる場合があり、
フェノール樹脂のみからなるサイジング剤では、十分な
性能を得るにはかなり高温での熱処理を必要とし、ま
た、ウレタン樹脂やゴム類のみからなるサイジング剤で
は、炭素繊維束を構成する単繊維が強固に集束しすぎ
て、それを付与した炭素繊維を水硬性原料と混練した場
合、単繊維に分散しにくいこともあるので、水硬性原料
との親和性が特に良好なエポキシ樹脂を主成分とするサ
イジング剤を用いるのが良い。
However, with a sizing agent consisting only of unsaturated polyester resin, since the curing shrinkage is large and the toughness is small, the degree of adhesion with the hydraulic material may be low,
A sizing agent consisting only of phenol resin requires heat treatment at a fairly high temperature to obtain sufficient performance, and a sizing agent consisting only of urethane resin or rubber strongly strengthens the single fibers constituting the carbon fiber bundle. If the carbon fibers that have been over-focused and kneaded with them are kneaded with a hydraulic raw material, it may be difficult to disperse into single fibers, so sizing based on an epoxy resin that has a particularly good affinity for hydraulic raw materials It is better to use an agent.

【0017】エポキシ樹脂としては、たとえばグリシジ
ルエーテル型エポキシ樹脂、グリシジルエステル型エポ
キシ樹脂、グリシジルアミン型エポキシ樹脂、脂肪族エ
ポキサイド型エポキシ樹脂などのグリシジル型エポキシ
樹脂、エポキシ化ブタジエン、エポキシ化グリセライ
ド、エポキシ化大豆油などの非グリシジル型エポキシ樹
脂を用いることができる。好ましくは、ビスフェノール
A、ビスフェノールF、2,2´−ビス(4−ヒドロキ
シフェニル)ブタンなどのビスフェノール類のグリシジ
ルエーテル型エポキシ樹脂を用いるのがよい。かかるエ
ポキシ樹脂としては、具体的には、シェル化学(株)社
製エピコート(登録商標)828,エピコート843,
エピコート1001などが市販されている。
Examples of the epoxy resin include glycidyl ether type epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, aliphatic epoxide type epoxy resin and other glycidyl type epoxy resin, epoxidized butadiene, epoxidized glyceride, epoxidized. A non-glycidyl type epoxy resin such as soybean oil can be used. Preferably, glycidyl ether type epoxy resins of bisphenols such as bisphenol A, bisphenol F, and 2,2'-bis (4-hydroxyphenyl) butane are used. Specific examples of such epoxy resin include Epicoat (registered trademark) 828, Epicoat 843 and Shell Co., Ltd.
Epicoat 1001 and the like are commercially available.

【0018】なお、エポキシ樹脂のみからなるサイジン
グ剤では、炭素繊維の集束性に劣る場合もあるので、エ
ポキシ樹脂と不飽和ポリエステル樹脂とを混合したもの
をサイジング剤として用いることが、工程通過性や水硬
性原料との接着度合をさらに安定して良好なものとする
観点から、特に好ましい。
Since a sizing agent composed of only an epoxy resin may be inferior in the sizing property of carbon fibers, it is preferable to use a mixture of an epoxy resin and an unsaturated polyester resin as a sizing agent in order to improve processability and processability. It is particularly preferable from the viewpoint of making the degree of adhesion with the hydraulic material more stable and good.

【0019】かかる不飽和ポリエステル樹脂としては、
フマル酸、マレイン酸、シトラコン酸、イタコン酸など
の不飽和2塩基酸と、ビスフェノール類のエチレンオキ
シド、プロピレンオキシド、ブチレンオキシド等のアル
キレンオキシドとの付加物とが縮合した縮合生成物を用
いるのが好ましく、特に、フマル酸またはマレイン酸
と、ビスフェノール類のエチレンオキシドまたはプロピ
レンオキシド付加物とが縮合した縮合生成物であること
がより好ましい。
As the unsaturated polyester resin,
It is preferable to use a condensation product obtained by condensing an unsaturated dibasic acid such as fumaric acid, maleic acid, citraconic acid or itaconic acid with an adduct of an alkylene oxide such as ethylene oxide, propylene oxide or butylene oxide of bisphenols. More preferably, it is a condensation product obtained by condensing fumaric acid or maleic acid with an ethylene oxide or propylene oxide adduct of a bisphenol.

【0020】さらに、水硬性原料と混練する時の炭素繊
維の開繊、および水硬性原料への炭素繊維の均一分散性
をより良好なものとするためには、撹拌による嵩密度差
を好ましくは0.02〜0.3cc/g、より好ましく
は0.03〜0.2cc/g、さらに好ましくは0.0
4〜0.1cc/gの範囲とする炭素繊維とするのが良
い。
Furthermore, in order to improve the opening of the carbon fibers when kneading with the hydraulic raw material and the uniform dispersibility of the carbon fibers in the hydraulic raw material, the difference in bulk density due to stirring is preferable. 0.02-0.3 cc / g, more preferably 0.03-0.2 cc / g, still more preferably 0.0
The carbon fiber is preferably in the range of 4 to 0.1 cc / g.

【0021】撹拌による嵩密度差が0.02cc/g未
満である炭素繊維は、単繊維同士の結束力が強いため、
水硬性原料に分散することが困難なことがあり、撹拌に
よる嵩密度差が0.3cc/gを越える炭素繊維は、水
硬性原料に分散する際にファイバーボールが発生し易く
なったり、炭素繊維の損傷が顕著に認められる場合があ
る。
Carbon fibers having a difference in bulk density due to stirring of less than 0.02 cc / g have a strong binding force between single fibers,
It may be difficult to disperse in a hydraulic material, and carbon fibers having a bulk density difference of more than 0.3 cc / g due to stirring tend to easily generate fiber balls when dispersed in a hydraulic material, or carbon fiber. Damage may be noticeable.

【0022】ここで、撹拌による嵩密度差とは、次のよ
うにして測定して得られた値のことをいう。
Here, the difference in bulk density due to stirring means a value obtained by measurement as follows.

【0023】炭素繊維束をカッターで長さ6mmにカッ
トして短繊維を得る。かかる短繊維の200gをメスシ
リンダーで見掛容積を測定し撹拌前の嵩密度を求める。
この200gの短繊維を図1に示す撹拌機の直径120
mmφ×高さ120mmのフラスコビーカーに投入し、
撹拌羽根の撹拌回転数80rpmで15分間撹拌する。
撹拌後の嵩密度を、撹拌前の嵩密度と同様にして求め、
撹拌後の嵩密度から撹拌前の嵩密度を差し引いて、撹拌
による嵩密度差とする。
The carbon fiber bundle is cut into a length of 6 mm with a cutter to obtain short fibers. The apparent volume of 200 g of such short fibers is measured with a graduated cylinder to determine the bulk density before stirring.
This 200 g of short fiber is used as a stirrer having a diameter of 120
Add to a flask beaker of mmφ x height 120 mm,
Stir for 15 minutes at 80 rpm of the stirring blade.
The bulk density after stirring is determined in the same manner as the bulk density before stirring,
The bulk density before stirring is subtracted from the bulk density after stirring to obtain the difference in bulk density due to stirring.

【0024】次に、本発明の炭素繊維を得るための好ま
しい方法について説明する。
Next, a preferred method for obtaining the carbon fiber of the present invention will be described.

【0025】本発明の炭素繊維の原料としては、ピッチ
系,レーヨン系,アクリロニトリル系など、従来公知の
ものを用いることができる。これらを従来公知の方法で
焼成して炭素繊維を得る。
As the raw material of the carbon fiber of the present invention, conventionally known ones such as pitch type, rayon type and acrylonitrile type can be used. These are fired by a conventionally known method to obtain carbon fibers.

【0026】酸素含有官能基量を前記特定の範囲とする
炭素繊維とするための方法としては、液相あるいは気相
での表面酸化処理など、従来公知の種々の手法が利用で
きるが、中でも、電気分解により陽極に酸素を生成し得
る電解質水溶液中で炭素繊維を陽極として酸化処理する
方法が、その簡便性ならびに強度低下が少ないという利
点から好ましい。以下、この方法を例にとって詳細に説
明する。
As a method for producing a carbon fiber having an oxygen-containing functional group content within the above-mentioned specific range, various conventionally known methods such as surface oxidation treatment in a liquid phase or a gas phase can be used. A method in which carbon fiber is used as an anode in a solution of an electrolyte capable of generating oxygen in the anode by electrolysis and subjected to an oxidation treatment is preferable because of its simplicity and the advantage that strength reduction is small. Hereinafter, this method will be described in detail by way of example.

【0027】炭素繊維への給電方法としては、通電ロー
ルに炭素繊維を直接接触させる直接通電法(例えば特公
昭55−20033公報)あるいは電解液を介して非接
触に通電する非接触通電法(例えば特公昭47−299
42公報)のいずれの方法を用いても良い。
As a method for supplying electricity to the carbon fibers, a direct electricity method in which the carbon fibers are brought into direct contact with an electricity roll (for example, Japanese Examined Patent Publication No. 55-20033) or a non-contact electricity method in which electricity is contactlessly passed through an electrolytic solution (for example, Japanese Patent Publication 47-299
42).

【0028】また、電解処理量は、電解表面処理による
接着度合を向上でき、かつ電解表面処理により受ける炭
素繊維のダメージをできるだけ小さいものとするため、
炭素繊維1g当たりの電気量を好ましくは30〜500
クーロン/g、より好ましくは50〜400クーロン/
gの範囲とするのが良い。
Further, the electrolytic treatment amount can improve the degree of adhesion by the electrolytic surface treatment and minimize the damage of the carbon fiber caused by the electrolytic surface treatment.
The amount of electricity per 1 g of carbon fiber is preferably 30 to 500
Coulomb / g, more preferably 50-400 coulomb /
It is preferable that the range is g.

【0029】電解液に用いられる電解質としては、例え
ば硫酸、塩酸、硝酸、リン酸、ギ酸、シュウ酸などの無
機もしくは有機の酸、または、水酸化ナトリウム、水酸
化カリウム、アンモニア、水酸化テトラメチルアンモニ
ウム、水酸化テトラエチルアンモニウムなどの無機もし
くは有機のアルカリ化合物、または、それらの塩などを
もちいることができる。これらの電解質は単独で水溶液
として用いても良いし、目的に合せて適宜選択して二種
以上溶解した水溶液として用いても良い。
Examples of the electrolyte used in the electrolytic solution include inorganic or organic acids such as sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, formic acid and oxalic acid, or sodium hydroxide, potassium hydroxide, ammonia and tetramethyl hydroxide. Inorganic or organic alkali compounds such as ammonium and tetraethylammonium hydroxide, or salts thereof can be used. These electrolytes may be used alone as an aqueous solution, or may be appropriately selected according to the purpose and used as an aqueous solution in which two or more kinds are dissolved.

【0030】このようにして得られた炭素繊維に、必要
に応じて前記したサイジング剤を付与する。サイジング
剤を溶解する溶剤としては、水溶性または水分散性でな
い化合物をサイジング剤として用いる場合には、例えば
ベンゼン、トルエン、キシレンなどの芳香族炭化水素
類、アセトン、メチルエチルケトンなどのケトン類、四
塩化炭素、トリクレン、クロロホルムなどのハロゲン化
水素類もしくはセロソルブなどの変性エーテル類などの
有機溶剤を用いることができ、また、水溶性または水分
散性の化合物をサイジング剤として用いる場合には水を
用いる。なお、サイジング剤として、水溶性または水分
散性でない化合物や、水溶性または水分散性が十分でな
い化合物を用いる場合でも、界面活性剤、特に好ましく
は非イオン系界面活性剤を用いることにより、水分散液
として調合することができる。炭素繊維へのサイジング
剤の付与方法としては、含浸法、ローラータッチ法、ガ
イド給油法、噴霧法など従来公知の方法を用いることが
できる。このようにしてサイジング剤の水溶液または水
分散液を付与した炭素繊維はその後溶剤などを乾燥除去
して、水硬性複合材料用炭素繊維が得られる。
If necessary, the above-described sizing agent is added to the carbon fiber thus obtained. As a solvent for dissolving the sizing agent, when a compound that is not water-soluble or water-dispersible is used as the sizing agent, for example, aromatic hydrocarbons such as benzene, toluene and xylene, ketones such as acetone and methyl ethyl ketone, and tetrachloride. Organic solvents such as hydrogen halides such as carbon, trichlene and chloroform or modified ethers such as cellosolve can be used, and water is used when a water-soluble or water-dispersible compound is used as a sizing agent. As the sizing agent, a compound that is not water-soluble or water-dispersible or a compound that is not sufficiently water-soluble or water-dispersible is used as a surfactant, particularly preferably by using a nonionic surfactant. It can be formulated as a dispersion. As a method of applying the sizing agent to the carbon fiber, a conventionally known method such as an impregnation method, a roller touch method, a guide oiling method, or a spraying method can be used. The carbon fiber to which the aqueous solution or dispersion of the sizing agent is applied in this manner is then dried to remove the solvent and the like to obtain carbon fiber for hydraulic composite material.

【0031】このようにして得られた炭素繊維は、カッ
ターなどで切断して長さ1〜100mm、好ましくは3〜
50mm、より好ましくは3〜30mmの短繊維とした後、
水硬性原料と混練するのが良い。その後、気中養生、蒸
気養生、自然養生などを行なうことにより、水硬性原料
は固化し、炭素繊維で強化された水硬性複合材料が得ら
れる。本発明でいう水硬性原料とは、ポルトランドセメ
ント、混合セメントの他、低収縮セメントなどのセメン
トに水を加えてたものをいう。この水硬性原料には、必
要に応じて骨材、混和材、増粘材、遅延材などが混入さ
れていても良い。
The carbon fiber thus obtained is cut with a cutter or the like to have a length of 1 to 100 mm, preferably 3 to
After making short fibers of 50 mm, more preferably 3 to 30 mm,
It is better to knead with a hydraulic material. After that, by performing air curing, steam curing, natural curing, etc., the hydraulic material is solidified and a carbon fiber reinforced hydraulic composite material is obtained. The hydraulic material as referred to in the present invention refers to cement obtained by adding water to cement such as portland cement, mixed cement, low shrinkage cement and the like. Aggregates, admixtures, thickeners, retarders and the like may be mixed in this hydraulic material as needed.

【0032】特に本発明の炭素繊維を用いた水硬性複合
材料の製造方法として、ダイレクトスプレー法、プリミ
ックス法、スプレー脱水法、押出成形法などがある。
In particular, as a method for producing a hydraulic composite material using the carbon fiber of the present invention, there are a direct spray method, a premix method, a spray dehydration method, an extrusion molding method and the like.

【0033】ダイレクトスプレー法で成形する水硬性複
合材料は、本発明の炭素繊維を長繊維、すなわち連続繊
維のまま、水硬性原料との体積比で通常1〜5%、好ま
しくは2〜4%となるようにダイレクトスプレーガンへ
連続的に供給し、スプレーガン内のカッターで切断し、
ポンプで移送されてくる水硬性原料と同時に圧縮空気で
型枠に吹き付け成形することにより製造できる。この水
硬性複合材料の中には混和剤、増粘剤、遅延剤を混入さ
せてもよい。
The hydraulic composite material molded by the direct spray method is a long fiber, ie, continuous fiber, of the carbon fiber of the present invention, which is usually 1 to 5%, preferably 2 to 4% in volume ratio with the hydraulic material. It is continuously supplied to the direct spray gun so that it will be cut by the cutter inside the spray gun,
It can be manufactured by spraying and molding the mold with compressed air at the same time as the hydraulic material fed by a pump. An admixture, a thickener, and a retarder may be mixed in the hydraulic composite material.

【0034】プリミックス法で成形する水硬性複合材料
は、本発明の炭素繊維を、上記短繊維とした後、水硬性
原料との体積比で通常1〜5%、好ましくは2〜4%と
なるように混合装置に投入し、攪拌しながら水を添加さ
せ混合させた水硬性複合材料を型枠に流し込み成形する
ことにより製造できる。この水硬性複合材料の中には混
和剤、増粘剤、遅延剤を混入させてもよい。
In the hydraulic composite material molded by the premix method, the carbon fiber of the present invention is made into the above-mentioned short fibers, and the volume ratio with the hydraulic raw material is usually 1 to 5%, preferably 2 to 4%. It can be produced by pouring the mixture into a mixing device, adding water while stirring, and mixing the hydraulic composite material into a mold to form the mixture. An admixture, a thickener, and a retarder may be mixed in the hydraulic composite material.

【0035】スプレー脱水法で成形する水硬性複合材料
は、本発明の炭素繊維を長繊維、すなわち連続繊維のま
ま、水硬性原料との体積比で通常1〜5%、好ましくは
2〜4%となるようにスプレーガンへ連続的に供給し、
スプレーガン内のカッターで切断し、ポンプで移送され
てくる水硬性原料と混合させて、同時に圧縮空気で微細
孔を有するベルトの上にトラバースさせながら吹き付
け、真空装置により余分な水を除去し、水分を調整しな
がら成形することにより製造できる。この水硬性複合材
料の中には混和剤、増粘剤、遅延剤を混入させてもよ
い。
The hydraulic composite material molded by the spray dewatering method is the carbon fiber of the present invention which is a continuous fiber, that is, a continuous fiber, and is usually 1 to 5%, preferably 2 to 4% in volume ratio with the hydraulic material. To the spray gun continuously,
Cut with a cutter in the spray gun, mix with hydraulic material that is transferred by a pump, and at the same time spray with compressed air while traversing on a belt having fine holes, remove excess water with a vacuum device, It can be produced by molding while adjusting the water content. An admixture, a thickener, and a retarder may be mixed in the hydraulic composite material.

【0036】押出成形法で成形する水硬性複合材料は、
本発明の炭素繊維を、上記短繊維とした後、水硬性原料
との体積比で通常1〜5%、好ましくは2〜4%となる
ように水硬性原料と一緒に混合装置に投入し、攪拌しな
がら水を添加させ混合させて、連続的に押出成形機に供
給して押出成形することにより製造できる。この水硬性
複合材料の中には混和剤、増粘剤、遅延剤を混入させて
もよい。
The hydraulic composite material molded by the extrusion molding method is
The carbon fiber of the present invention, after being made into the above short fibers, is put into a mixing device together with the hydraulic raw material so that the volume ratio thereof to the hydraulic raw material is usually 1 to 5%, preferably 2 to 4%, It can be produced by adding and mixing water with stirring and continuously supplying the mixture to an extruder to perform extrusion molding. An admixture, a thickener, and a retarder may be mixed in the hydraulic composite material.

【0037】本発明は、さらに、前記した水硬性複合材
料用強用炭素繊維で補強された水硬性複合材料製部材を
提供する。
The present invention further provides a member made of a hydraulic composite material, which is reinforced with the above-mentioned heavy duty carbon fiber for a hydraulic composite material.

【0038】水硬性複合材料製部材としては、たとえ
ば、壁材、型枠、板材などが挙げられる。壁材として
は、間仕切り壁、間仕切り材、壁下地材、壁パネルなど
壁構成物が挙げられる。また、型枠としては、柱型枠、
型枠壁、梁型枠、基礎型枠、永久型枠などの枠状物が挙
げられる。さらに板材としては、内壁、外壁、間仕切
り、屋根、天井、庇、床などの板状物が挙げられる。
Examples of the hydraulic composite material member include a wall material, a mold, and a plate material. Examples of the wall material include wall components such as partition walls, partition materials, wall base materials, and wall panels. Also, as the formwork, pillar formwork,
Frame-shaped objects such as formwork walls, beam forms, basic forms, and permanent formwork are mentioned. Furthermore, examples of the plate material include plate-like materials such as inner walls, outer walls, partitions, roofs, ceilings, eaves, and floors.

【0039】[0039]

【実施例】以下、本発明を実施例により具体的に説明す
る。
EXAMPLES The present invention will be specifically described below with reference to examples.

【0040】(実施例1)単繊維繊度が1.2d、フィ
ラメント数が6000本のアクリル系繊維を常法により
耐炎化、炭化処理して炭素繊維を得た。このアクリル系
炭素繊維糸条を硫酸を電解質とした水溶液中で電気量を
100クーロン/gとして電解処理を行なった。得られ
た炭素繊維の酸素官能基量O/Cは0.23であった。
フマール酸とビスフェノールAのEO付加物との縮合物
にエピコート828を加え撹拌して乳化させた水エマル
ジョンに、この炭素繊維糸条を浸漬後乾燥して、サイジ
ング剤を1.0重量%付与した。得られた炭素繊維束を
ギロチンカッターにて長さ6mmの短繊維にカットし
た。この短繊維を低収縮セメント(秩父(株)製GRC
セメント)と骨剤(ユニオン化成(株)製硅石粉末)、
メチルセルロース(信越化学(株)製SH−400
0)、消泡剤(サンノプコ(株)製SNデフォーマ14
−HP)、遅延剤(小野田セメント(株)製ジェットセ
ッター)と混練水と一緒にオムニミキサーで8分間混練
し、板状のテストピース(長さ:16cm、幅:4cm、厚
さ:1cm)を形成した。この後、気中養生(温度20
℃、湿度65%)を2時間行い、次いで蒸気養生(温度
40℃)を8時間行った後、室温にて自然養生を行い材
令28日目の曲げ強度を中間荷重式(スパン:10mm)
によりテンシロンにて測定した。炭素繊維の酸素官能基
量O/C、サイジング剤付着量、撹拌による嵩密度差、
水硬性複合材料の曲げ強度の測定結果などを表1に示
す。
Example 1 A carbon fiber was obtained by subjecting an acrylic fiber having a single fiber fineness of 1.2 d and a number of 6000 filaments to flame resistance and carbonization treatment by a conventional method. This acrylic carbon fiber yarn was electrolyzed in an aqueous solution containing sulfuric acid as an electrolyte at an electric quantity of 100 coulomb / g. The oxygen functional group amount O / C of the obtained carbon fiber was 0.23.
This carbon fiber yarn was dipped in an aqueous emulsion obtained by adding Epicoat 828 to a condensate of fumaric acid and an EO adduct of bisphenol A and stirring to dry the carbon fiber yarn to give 1.0% by weight of a sizing agent. . The obtained carbon fiber bundle was cut into short fibers having a length of 6 mm with a guillotine cutter. This short fiber is a low shrinkage cement (GRC manufactured by Chichibu Co., Ltd.)
Cement) and bone agent (silica powder manufactured by Union Kasei Co., Ltd.),
Methyl cellulose (SH-400 manufactured by Shin-Etsu Chemical Co., Ltd.)
0), an antifoaming agent (SN Deformer 14 manufactured by San Nopco Ltd.)
-HP), a retarder (jet setter manufactured by Onoda Cement Co., Ltd.), and kneading water for 8 minutes with an omni mixer, and a plate-shaped test piece (length: 16 cm, width: 4 cm, thickness: 1 cm). Was formed. After this, air curing (temperature 20
C., humidity 65%) for 2 hours, then steam curing (temperature 40.degree. C.) for 8 hours, then natural curing at room temperature for bending strength on the 28th day of the intermediate load formula (span: 10 mm).
Was measured by Tensilon. O / C of oxygen functional group of carbon fiber, amount of sizing agent attached, difference in bulk density due to stirring,
Table 1 shows the measurement results of the bending strength of the hydraulic composite material.

【0041】(実施例2)電解処理の電気量を400ク
ーロン/gに変更した以外は、実施例1と同様にして、
炭素繊維の短繊維を得た。酸素官能基量O/Cは0.4
0であった。さらに実施例1と同様にしてテストピース
を作製して曲げ強度を測定した。炭素繊維の酸素官能基
量O/C、サイジング剤付着量、撹拌による嵩密度差、
水硬性複合材料の曲げ強度の測定結果などを表1に示
す。
(Example 2) In the same manner as in Example 1 except that the amount of electricity used in the electrolytic treatment was changed to 400 coulomb / g.
A short fiber of carbon fiber was obtained. Oxygen functional group amount O / C is 0.4
It was 0. Further, a test piece was prepared in the same manner as in Example 1 and the bending strength was measured. O / C of oxygen functional group of carbon fiber, amount of sizing agent attached, difference in bulk density due to stirring,
Table 1 shows the measurement results of the bending strength of the hydraulic composite material.

【0042】(実施例3)酸化処理の電気量を50クー
ロン/gとした以外は、実施例1と同様にして、炭素繊
維の短繊維束を得た。酸素官能基量O/Cは0.20で
あった。さらに実施例1と同様にしてテストピースを作
製して曲げ強度を測定した。炭素繊維の酸素官能基量O
/C、サイジング剤付着量、撹拌による嵩密度差、水硬
性複合材料の曲げ強度の測定結果などを表1に示す。
(Example 3) A short fiber bundle of carbon fibers was obtained in the same manner as in Example 1 except that the electric quantity of the oxidation treatment was changed to 50 coulomb / g. The oxygen functional group amount O / C was 0.20. Further, a test piece was prepared in the same manner as in Example 1 and the bending strength was measured. Oxygen functional group content of carbon fiber O
/ C, the amount of sizing agent attached, the difference in bulk density due to stirring, the measurement result of the bending strength of the hydraulic composite material, and the like are shown in Table 1.

【0043】(実施例4)サイジング剤の付与処理を行
わない以外は、実施例1と同様にして、炭素繊維の短繊
維束を得た。酸素官能基量O/Cは0.23であった。
さらに実施例1と同様にしてテストピースを作製して曲
げ強度を測定した。炭素繊維の酸素官能基量O/C、サ
イジング剤付着量、撹拌による嵩密度差、水硬性複合材
料の曲げ強度の測定結果などを表1に示す。
Example 4 A short fiber bundle of carbon fibers was obtained in the same manner as in Example 1 except that the sizing agent was not applied. The oxygen functional group amount O / C was 0.23.
Further, a test piece was prepared in the same manner as in Example 1 and the bending strength was measured. Table 1 shows the oxygen functional group amount O / C of carbon fiber, the amount of sizing agent attached, the difference in bulk density due to stirring, the measurement result of the bending strength of the hydraulic composite material, and the like.

【0044】(実施例5)サイジング剤を付着量を0.
3重量%と変更した以外は、実施例1と同様にして、炭
素繊維の短繊維束を得た。酸素官能基量O/Cは0.2
3であった。さらに実施例1と同様にしてテストピース
を作製して曲げ強度を測定した。炭素繊維の酸素官能基
量O/C、サイジング剤付着量、撹拌による嵩密度差、
水硬性複合材料の曲げ強度の測定結果などを表1に示
す。
(Embodiment 5) The amount of the sizing agent attached was adjusted to 0.
A short fiber bundle of carbon fibers was obtained in the same manner as in Example 1 except that the amount was changed to 3% by weight. Oxygen functional group amount O / C is 0.2
It was 3. Further, a test piece was prepared in the same manner as in Example 1 and the bending strength was measured. O / C of oxygen functional group of carbon fiber, amount of sizing agent attached, difference in bulk density due to stirring,
Table 1 shows the measurement results of the bending strength of the hydraulic composite material.

【0045】(実施例6)サイジング剤を付着量を5重
量%と変更した以外は、実施例1と同様にして、炭素繊
維の短繊維束を得た。酸素官能基量O/Cは0.23で
あった。さらに実施例1と同様にしてテストピースを作
製して曲げ強度を測定した。炭素繊維の酸素官能基量O
/C、サイジング剤付着量、撹拌による嵩密度差、水硬
性複合材料の曲げ強度の測定結果などを表1に示す。
Example 6 A short fiber bundle of carbon fibers was obtained in the same manner as in Example 1 except that the amount of the sizing agent attached was changed to 5% by weight. The oxygen functional group amount O / C was 0.23. Further, a test piece was prepared in the same manner as in Example 1 and the bending strength was measured. Oxygen functional group content of carbon fiber O
/ C, the amount of sizing agent attached, the difference in bulk density due to stirring, the measurement result of the bending strength of the hydraulic composite material, and the like are shown in Table 1.

【0046】(比較例1)酸化処理もサイジング剤の付
与処理もともに行わない以外は、実施例1と同様にし
て、炭素繊維の短繊維束を得た。酸素官能基量O/Cは
0.07であった。さらに実施例1と同様にしてテスト
ピースを作製して曲げ強度を測定した。炭素繊維の酸素
官能基量O/C、サイジング剤付着量、撹拌による嵩密
度差、水硬性複合材料の曲げ強度の測定結果などを表1
に示す。
Comparative Example 1 A short fiber bundle of carbon fibers was obtained in the same manner as in Example 1 except that neither the oxidation treatment nor the sizing agent application treatment was performed. The amount of oxygen functional groups O / C was 0.07. Further, a test piece was prepared in the same manner as in Example 1 and the bending strength was measured. Table 1 shows the measurement results of oxygen functional group amount O / C of carbon fiber, sizing agent adhesion amount, bulk density difference due to stirring, bending strength of hydraulic composite material, and the like.
Shown in

【0047】(比較例2)酸化処理を行わない以外は、
実施例1と同様にして、炭素繊維の短繊維束を得た。酸
素官能基量O/Cは0.07であった。さらに実施例1
と同様にしてテストピースを作製して曲げ強度を測定し
た。炭素繊維の酸素官能基量O/C、サイジング剤付着
量、撹拌による嵩密度差、水硬性複合材料の曲げ強度の
測定結果などを表1に示す。
(Comparative Example 2) Except that no oxidation treatment is carried out,
A short fiber bundle of carbon fibers was obtained in the same manner as in Example 1. The amount of oxygen functional groups O / C was 0.07. Further Example 1
A test piece was prepared in the same manner as above and the bending strength was measured. Table 1 shows the oxygen functional group amount O / C of carbon fiber, the amount of sizing agent attached, the difference in bulk density due to stirring, the measurement result of the bending strength of the hydraulic composite material, and the like.

【0048】(比較例3)酸化処理の電気量を10クー
ロン/gとした以外は、実施例1と同様にして、炭素繊
維の短繊維束を得た。酸素官能基量O/Cは0.09で
あった。さらに実施例1と同様にしてテストピースを作
製して曲げ強度を測定した。炭素繊維の酸素官能基量O
/C、サイジング剤付着量、撹拌による嵩密度差、水硬
性複合材料の曲げ強度の測定結果などを表1に示す。
(Comparative Example 3) A short fiber bundle of carbon fibers was obtained in the same manner as in Example 1 except that the electric quantity of the oxidation treatment was changed to 10 coulomb / g. The oxygen functional group amount O / C was 0.09. Further, a test piece was prepared in the same manner as in Example 1 and the bending strength was measured. Oxygen functional group content of carbon fiber O
/ C, the amount of sizing agent attached, the difference in bulk density due to stirring, the measurement result of the bending strength of the hydraulic composite material, and the like are shown in Table 1.

【0049】(比較例4)サイジング剤を付着量を6重
量%と変更した以外は、比較例3と同様にして、炭素繊
維の短繊維束を得た。酸素官能基量O/Cは0.09で
あった。さらに実施例1と同様にしてテストピースを作
製して曲げ強度を測定した。炭素繊維の酸素官能基量O
/C、サイジング剤付着量、撹拌による嵩密度差、水硬
性複合材料の曲げ強度の測定結果などを表1に示す。
Comparative Example 4 A short fiber bundle of carbon fibers was obtained in the same manner as in Comparative Example 3 except that the amount of the sizing agent attached was changed to 6% by weight. The oxygen functional group amount O / C was 0.09. Further, a test piece was prepared in the same manner as in Example 1 and the bending strength was measured. Oxygen functional group content of carbon fiber O
/ C, the amount of sizing agent attached, the difference in bulk density due to stirring, the measurement result of the bending strength of the hydraulic composite material, and the like are shown in Table 1.

【0050】(実施例7)実施例1と同様にして調合し
た水硬性原料との体積比で2%となるように、実施例1
で得た炭素繊維束をダイレクトスプレーガンのローター
でガン内に給糸し、カッターで連続的にカットしてポン
プで移送されてきた前記水硬性原料と同時に圧縮空気で
型枠に吹き付けて、実施例1と同様のテストピースを作
製した。炭素繊維の酸素官能基量O/C、サイジング剤
付着量、撹拌による嵩密度差、水硬性複合材料の曲げ強
度の測定結果などを表1に示す。
Example 7 Example 1 was prepared so that the volume ratio to the hydraulic raw material prepared in the same manner as in Example 1 was 2%.
The carbon fiber bundle obtained in step 2 is fed into the gun with a direct spray gun rotor, continuously cut with a cutter, and blown onto the mold with compressed air simultaneously with the hydraulic material that has been transferred by a pump. A test piece similar to that in Example 1 was produced. Table 1 shows the oxygen functional group amount O / C of carbon fiber, the amount of sizing agent attached, the difference in bulk density due to stirring, the measurement result of the bending strength of the hydraulic composite material, and the like.

【0051】(実施例8)実施例1と同様にして調合し
た水硬性原料との体積比で2%となるように、実施例1
で得た炭素繊維束をスプレーガンへ連続的に供給し、ス
プレーガン内のカッターで切断し、ポンプで移送されて
くる前記水硬性原料と同時に圧縮空気で微細孔を有する
ベルトの上にトラバースさせながら吹き付け、真空装置
により余分な水を除去し、水分を調整して実施例1と同
様のテストピースを作製した。炭素繊維の酸素官能基量
O/C、サイジング剤付着量、撹拌による嵩密度差、水
硬性複合材料の曲げ強度の測定結果などを表1に示す。
Example 8 Example 1 was prepared so that the volume ratio to the hydraulic raw material prepared in the same manner as in Example 1 was 2%.
The carbon fiber bundle obtained in 1. is continuously supplied to a spray gun, cut by a cutter in the spray gun, and traverseed on a belt having fine holes with compressed air at the same time as the hydraulic material fed by a pump. While spraying, excess water was removed by a vacuum device, the water content was adjusted, and a test piece similar to that of Example 1 was produced. Table 1 shows the oxygen functional group amount O / C of carbon fiber, the amount of sizing agent attached, the difference in bulk density due to stirring, the measurement result of the bending strength of the hydraulic composite material, and the like.

【0052】(実施例9)実施例1で得た炭素繊維短繊
維を、実施例1と同様の水硬性原料との体積比で2%と
なるように混合装置に投入し、水硬性原料と水と混合さ
せた水硬性複合材料を連続的に押出成形機のホッパーに
供給して押出成形し、実施例1と同様のテストピースを
作製した。炭素繊維の酸素官能基量O/C、サイジング
剤付着量、撹拌による嵩密度差、水硬性複合材料の曲げ
強度の測定結果などを表1に示す。
(Example 9) The carbon fiber short fibers obtained in Example 1 were charged into a mixing device so that the volume ratio of the carbon fiber short fibers to that of the hydraulic raw material similar to that of Example 1 was 2% to obtain a hydraulic raw material. The hydraulic composite material mixed with water was continuously supplied to the hopper of an extrusion molding machine and extrusion-molded to prepare a test piece similar to that of Example 1. Table 1 shows the oxygen functional group amount O / C of carbon fiber, the amount of sizing agent attached, the difference in bulk density due to stirring, the measurement result of the bending strength of the hydraulic composite material, and the like.

【表1】 [Table 1]

【0053】[0053]

【発明の効果】本発明の炭素繊維は、特定量の酸素官能
基量を有することにより、水硬性原料との接着度合を良
好なものとするため、本発明の炭素繊維を用いて得た水
硬性複合材料は、曲げ強度などの力学的特性に優れたも
のとなる。また、本発明における好ましい態様の炭素繊
維は、特定量の酸素官能基量を有することに加えて、特
定サイジング剤が付与されているため、水硬性原料と混
練する時の炭素繊維のばらけやすさ、または水硬性原料
への均一分散性が向上し、そのためその炭素繊維を用い
て得た水硬性複合材料は、曲げ強度などの力学的特性が
より優れたものとなる。
EFFECTS OF THE INVENTION The carbon fiber of the present invention has a specific amount of oxygen functional groups so that the carbon fiber of the present invention has a good degree of adhesion with a hydraulic material. The rigid composite material has excellent mechanical properties such as bending strength. In addition, the carbon fiber of the preferred embodiment of the present invention has a specific amount of oxygen functional groups and, in addition, is provided with a specific sizing agent, so that the carbon fiber easily scatters when kneaded with a hydraulic material. In other words, the uniform dispersibility in the hydraulic raw material is improved, so that the hydraulic composite material obtained by using the carbon fiber has more excellent mechanical properties such as bending strength.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明において、撹拌による嵩密度差を測定す
るための撹拌機の概略断面図である。
FIG. 1 is a schematic cross-sectional view of a stirrer for measuring a bulk density difference due to stirring in the present invention.

【図2】図1の撹拌機に用いる撹拌羽根3の概略見取り
図である。
FIG. 2 is a schematic sketch of a stirring blade 3 used in the stirrer of FIG.

【符号の説明】[Explanation of symbols]

1:モーター 2:フラスコビーカー 3:撹拌羽根 4:炭素繊維短繊維 1: Motor 2: Flask beaker 3: Stirring blade 4: Carbon fiber short fiber

フロントページの続き (72)発明者 小野 恵三 愛媛県伊予郡松前町大字筒井1515番地 東 レ株式会社愛媛工場内Front page continued (72) Inventor Keizo Ono 1515 Tsutsui, Matsumae-cho, Iyo-gun, Ehime Prefecture Toray Co., Ltd. Ehime factory

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】酸素含有官能基量が、0.1〜0.4の範
囲内であることを特徴とする水硬性複合材料用炭素繊
維。
1. A carbon fiber for a hydraulic composite material, which has an oxygen-containing functional group content within a range of 0.1 to 0.4.
【請求項2】サイジング剤が0.5〜5.0重量%の範
囲内で付与されてなることを特徴とする請求項1記載の
水硬性複合材料用炭素繊維。
2. The carbon fiber for a hydraulic composite material according to claim 1, wherein a sizing agent is added within a range of 0.5 to 5.0% by weight.
【請求項3】撹拌による嵩密度差が、0.02〜0.3
0cc/gであることを特徴とする請求項1または請求
項2記載の水硬性複合材料用炭素繊維。
3. The difference in bulk density due to stirring is 0.02 to 0.3.
It is 0 cc / g, The carbon fiber for hydraulic composite materials of Claim 1 or Claim 2 characterized by the above-mentioned.
【請求項4】サイジング剤が、熱硬化性樹脂を主成分と
することを特徴とする請求項1〜3のいずれかに記載の
水硬性複合材料用炭素繊維。
4. The carbon fiber for hydraulic composite material according to claim 1, wherein the sizing agent contains a thermosetting resin as a main component.
【請求項5】長さが1〜100mmの短繊維であること
を特徴とする請求項1〜4のいずれかに記載の水硬性複
合材料用炭素繊維。
5. The carbon fiber for a hydraulic composite material according to claim 1, which is a short fiber having a length of 1 to 100 mm.
【請求項6】長繊維であることを特徴とする請求項1〜
4のいずれかに記載の水硬性複合材料用炭素繊維。
6. A long fiber, which is characterized in that
4. The carbon fiber for hydraulic composite material according to any one of 4 above.
【請求項7】請求項1〜5のいずれかに記載の炭素繊維
を含む水硬性複合材料。
7. A hydraulic composite material containing the carbon fiber according to claim 1.
【請求項8】請求項6記載の炭素繊維を切断しながら、
その切断されて得られた短繊維と水硬性原料とを同時に
型枠に吹き付け成形することを特徴とする水硬性複合材
料の製造方法。
8. While cutting the carbon fiber according to claim 6,
A method for producing a hydraulic composite material, characterized in that the short fibers obtained by the cutting and the hydraulic raw material are simultaneously spray-molded on a mold.
【請求項9】請求項1〜5のいずれかに記載の炭素繊維
と水硬性原料とを共に混合装置へ投入し、攪拌しながら
水を添加し混合させて後、型枠に流し込み成形すること
を特徴とする水硬性複合材料の製造方法。
9. A method in which the carbon fiber according to any one of claims 1 to 5 and the hydraulic raw material are both put into a mixing device, water is added while stirring and mixed, and then the mixture is poured into a mold for molding. A method for producing a hydraulic composite material, comprising:
【請求項10】請求項6記載の炭素繊維を切断しなが
ら、その切断されて得られた短繊維と水硬性原料とを同
時に、孔を有するベルトの上に吹き付け、水と水硬性原
料との比を調整しながら成形することを特徴とする水硬
性複合材料の製造方法。
10. While cutting the carbon fiber according to claim 6, the short fibers obtained by cutting and the hydraulic material are simultaneously sprayed onto a belt having holes to form a mixture of water and the hydraulic material. A method for producing a hydraulic composite material, which comprises molding while adjusting a ratio.
【請求項11】請求項1〜5のいずれかに記載の炭素繊
維と水硬性原料とを共に混合装置へ投入し、攪拌しなが
ら水を添加し混合させて後、押出成形することを特徴と
する水硬性複合材料の製造方法。
11. The carbon fiber according to any one of claims 1 to 5 and the hydraulic raw material are put into a mixing apparatus together, water is added with stirring and mixed, and then extrusion molding is performed. A method for producing a hydraulic composite material.
JP8019666A 1995-02-08 1996-02-06 Carbon fiber for hydraulic composite material, hydraulic composite material and its production Pending JPH08290947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8019666A JPH08290947A (en) 1995-02-08 1996-02-06 Carbon fiber for hydraulic composite material, hydraulic composite material and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2053995 1995-02-08
JP7-20539 1995-02-08
JP8019666A JPH08290947A (en) 1995-02-08 1996-02-06 Carbon fiber for hydraulic composite material, hydraulic composite material and its production

Publications (1)

Publication Number Publication Date
JPH08290947A true JPH08290947A (en) 1996-11-05

Family

ID=26356514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8019666A Pending JPH08290947A (en) 1995-02-08 1996-02-06 Carbon fiber for hydraulic composite material, hydraulic composite material and its production

Country Status (1)

Country Link
JP (1) JPH08290947A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006273603A (en) * 2005-03-28 2006-10-12 Denki Kagaku Kogyo Kk Cement admixture, cement composition, and cement mortar obtained by using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006273603A (en) * 2005-03-28 2006-10-12 Denki Kagaku Kogyo Kk Cement admixture, cement composition, and cement mortar obtained by using the same

Similar Documents

Publication Publication Date Title
EP0599340B1 (en) Carbon fibers for reinforcement of cement and cement composite material
Kwon et al. Effect of wollastonite microfiber on ultra-high-performance fiber-reinforced cement-based composites based on application of multi-scale fiber-reinforcement system
Fu et al. Improving the tensile properties of carbon fiber reinforced cement by ozone treatment of the fiber
JP4252369B2 (en) Reinforcing short fibers with excellent defibration properties
JPH08290947A (en) Carbon fiber for hydraulic composite material, hydraulic composite material and its production
JPH042715B2 (en)
CN1045280C (en) Hydraulic composition and process for producing concrete pile using the same
JP2660143B2 (en) Carbon fiber and cement composite for cement reinforcement
JPH06321650A (en) Lightweight concrete material, lightweight concrete using the same and production of lightweight concrete using the same
JP6887375B2 (en) Fiber-containing carbonated roof tile and its manufacturing method
JP2018111632A (en) Fiber material for cement reinforcement
CN109679285A (en) A kind of multi-walled carbon nanotube modified epoxy and its composite material and preparation method thereof
JP3895842B2 (en) Cement-based inorganic material reinforcing carbon fiber and method for producing the same
JP2752871B2 (en) Carbon fiber and cement composite for cement reinforcement
JPS6020339B2 (en) Glass fiber reinforced cement composition
JP2004137119A (en) Cement-based fiber composite material
JPH07291765A (en) Aging method of cement molding
JPH03193645A (en) Production of carbon fiber-reinforced cement-based composite material
JPH0465338A (en) Production of carbon fiber reinforced concrete or similar composition
JP2756068B2 (en) Carbon fiber and cement composite for cement reinforcement
JPH1179804A (en) Carbon fiber-reinforced concrete
JPH08259303A (en) Production of glass fiber-reinforced gypsum board
JP2002012465A (en) Extrusion compact and its manufacturing method
WO2023181605A1 (en) Carbon-fiber-containing concrete or mortar composition, carbon-fiber-reinforced concrete or mortar structure, and production method therefor
JP3936014B2 (en) Carbon fiber bundle for cement reinforcement

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040224