JPH08287924A - Solid high polymer fuel cell - Google Patents

Solid high polymer fuel cell

Info

Publication number
JPH08287924A
JPH08287924A JP7082234A JP8223495A JPH08287924A JP H08287924 A JPH08287924 A JP H08287924A JP 7082234 A JP7082234 A JP 7082234A JP 8223495 A JP8223495 A JP 8223495A JP H08287924 A JPH08287924 A JP H08287924A
Authority
JP
Japan
Prior art keywords
fuel cell
unit cell
polymer electrolyte
high polymer
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7082234A
Other languages
Japanese (ja)
Inventor
Hiroko Fukuoka
裕子 福岡
Makoto Uchida
誠 内田
Nobuo Eda
信夫 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7082234A priority Critical patent/JPH08287924A/en
Publication of JPH08287924A publication Critical patent/JPH08287924A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE: To provide a solid high polymer fuel cell which can exhibit high performance in a high electric current density area by uniformly supplying reaction gas to electrodes. CONSTITUTION: A solid high polymer fuel cell is provided with a unit cell 4 where electrodes 2 and 3 are arranged on both surfaces of a solid high polymer electrolyte film 1, flow distributing plates 8 arranged on both side so as to contact with this unit cell 4 and separators 5 arranged outside these flow distributing plates 8. In this solid high polymer fuel cell, at least one of the flow distributing plates 8 is formed of a porous carbon plate which has a rib on a surface contacting with the unit cell and is composed of polyacrylonitrile carbon fiber on which water repellent treatment is performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料として純水素、ま
たはメタノール及び化石燃料からの改質水素などの還元
剤を用い、空気や酸素を酸化剤とする燃料電池に関する
ものであり、特に固体高分子型燃料電池の配流板に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell using pure hydrogen as a fuel or a reducing agent such as reformed hydrogen from methanol and fossil fuel and using air or oxygen as an oxidant, and particularly to a solid-state fuel cell The present invention relates to a distribution plate of a polymer fuel cell.

【0002】[0002]

【従来の技術】固体高分子型燃料電池は電解質にイオン
交換膜を用い、常温・常圧で1A/cm2以上の高出力
が得られる。水素を燃料とした場合、負極では以下のよ
うな反応が起こる。
2. Description of the Related Art A polymer electrolyte fuel cell uses an ion exchange membrane as an electrolyte and can obtain a high output of 1 A / cm 2 or more at room temperature and atmospheric pressure. When hydrogen is used as a fuel, the following reactions occur at the negative electrode.

【0003】[0003]

【化1】 Embedded image

【0004】酸素を酸化剤とした場合、正極ではWhen oxygen is used as an oxidant,

【0005】[0005]

【化2】 Embedded image

【0006】の反応が起こり、水が生成される。固体高
分子型燃料電池では、電解質であるイオン交換膜が含水
状態でないとイオン伝導性を示さないため、反応ガスは
セル温度よりも高い温度で加湿する必要がある。その結
果、水蒸気によって反応ガスの濃度が低下し、高出力を
可能にするためには電極ならびに電極触媒層内部の反応
サイトへの多量のガス供給、すなわちガス供給能の向上
が必要となる。
The reaction (1) occurs and water is produced. In the polymer electrolyte fuel cell, the ion exchange membrane, which is the electrolyte, does not exhibit ionic conductivity unless it is in a water-containing state, so the reaction gas must be humidified at a temperature higher than the cell temperature. As a result, the concentration of the reaction gas is reduced by the water vapor, and in order to enable high output, it is necessary to supply a large amount of gas to the reaction site inside the electrode and the electrode catalyst layer, that is, to improve the gas supply ability.

【0007】このうち電極へのガス供給能を向上させる
ためには、電池の構造材料である配流板が重要となる。
配流板は集電体であると同時に、電極平面に対して反応
ガスを均一に供給し、かつ余剰の加湿水と生成水を速や
かに排出する機能を有さなければならない。そのため配
流板は撥水性および導電性を有する多孔質の材料である
ことが望ましいが積層電池の構造を簡易にするために、
例えば特開平5−251097号公報では図2に示すよ
うなカーボンまたはチタンなどの金属からなるリブ付き
セパレータ9によって電極2及び3側にガス流路溝10
を設けている。一方、特開平6−168728号公報で
は、片面にリブを有する多孔質炭素板の平面側を触媒層
と接してガス拡散層を兼ねた配流板としている。また固
体高分子型燃料電池と類似の電極を用いるリン酸型燃料
電池において、特公昭63−22421号公報では無孔
質のカーボン基板の表面にカーボンペーパーを基材とす
る多孔質帯状片を所定間隔を存して配列させたセパレー
タを用いている。さらに特開平6−231773号公報
ではセパレータの電極側の表面に多孔性の導電材によっ
て、ガス流路溝を形成させている。
Among them, in order to improve the gas supply ability to the electrodes, the distribution plate which is a structural material of the battery is important.
The flow distribution plate must be a collector and at the same time have a function of uniformly supplying the reaction gas to the flat surface of the electrode and promptly discharging excess humidifying water and generated water. Therefore, the flow distribution plate is preferably a porous material having water repellency and conductivity, but in order to simplify the structure of the laminated battery,
For example, in JP-A-5-251097, a gas passage groove 10 is provided on the electrodes 2 and 3 side by a ribbed separator 9 made of a metal such as carbon or titanium as shown in FIG.
Is provided. On the other hand, in Japanese Unexamined Patent Publication No. 6-168728, a flow distribution plate which also serves as a gas diffusion layer is formed by contacting the flat surface side of a porous carbon plate having a rib on one side with a catalyst layer. Further, in a phosphoric acid fuel cell using an electrode similar to that of a solid polymer fuel cell, Japanese Patent Publication No. 63-22421 discloses that a porous strip having carbon paper as a base material is provided on the surface of a nonporous carbon substrate. It uses separators arranged at intervals. Further, in Japanese Patent Laid-Open No. 6-231773, a gas flow channel groove is formed by a porous conductive material on the surface of the separator on the electrode side.

【0008】[0008]

【発明が解決しようとする課題】しかしながら上記従来
のリブ付きセパレータ9を用いる方法では、セパレータ
がガス不透性であるため電極2または3の集電部のリブ
と接する部分にガスが供給されにくく、電極へのガスの
供給が不均一になるという欠点を有していた。またリン
酸型燃料電池の構造として一般的に知られているガス拡
散層を兼ねたリブ付き多孔質炭素板を用いると、リブ付
きセパレータと比較して集電部へも反応ガスが供給され
る。しかしカーボンペーパーをガス拡散層に用いた場合
と比較して、強度上ガス拡散層の厚みを大きくするため
ガス拡散層のガス透過能が低いという欠点を有してい
た。またセパレータに多孔質材料によるリブを設けると
電極へのガス供給は同様に均一化される。しかし、特公
昭63−22421号公報では撥水処理した多孔質カー
ボンペーパーを数枚積み重ねて接着したものをスリッタ
ーによって切断、また特開平6−231773号公報で
は多孔質構造を設けるためにスパッタリングや粉末の焼
結を行うなど複雑な工程を要していた。さらに、特開平
6−231773号公報ではガス流路溝を形成する多孔
質材料が撥水性を有しないため水による目詰まりが起こ
り、ガス供給能が低下するという欠点を有していた。
However, in the conventional method using the ribbed separator 9 described above, since the separator is gas impermeable, it is difficult to supply gas to the portion of the electrode 2 or 3 that contacts the rib of the current collecting portion. However, it has a drawback that the gas supply to the electrodes becomes non-uniform. When a ribbed porous carbon plate that also serves as a gas diffusion layer, which is generally known as a structure of a phosphoric acid fuel cell, is used, the reaction gas is also supplied to the current collector as compared with a ribbed separator. . However, compared with the case where carbon paper is used for the gas diffusion layer, the gas diffusion layer has a drawback that the gas diffusion layer has a low gas permeability because the thickness of the gas diffusion layer is increased in terms of strength. If the separator is provided with ribs made of a porous material, the gas supply to the electrodes is similarly made uniform. However, in Japanese Patent Publication No. Sho 63-22421, several sheets of water-repellent porous carbon paper which are stacked and adhered are cut by a slitter, and in Japanese Patent Laid-Open No. 6-231773, sputtering or powder is used to provide a porous structure. A complicated process such as sintering was required. Further, in JP-A-6-231773, since the porous material forming the gas flow channel has no water repellency, it has a drawback that it is clogged with water and the gas supply ability is lowered.

【0009】本発明は上記従来の課題を解決するもの
で、高い撥水性を有し、複雑な加工を要さないリブ付き
多孔質炭素板を配流板に用いることにより、より高性能
で経済性の高い固体高分子型燃料電池を提供することを
目的とする。
The present invention solves the above-mentioned problems of the prior art. By using a ribbed porous carbon plate having high water repellency and requiring no complicated processing as a distribution plate, higher performance and economic efficiency are achieved. It is an object of the present invention to provide a high polymer electrolyte fuel cell.

【0010】[0010]

【課題を解決するための手段】この目的を達成するため
に、固体高分子電解質膜と、この固体高分子電解質膜の
両面に正極および負極を配置した単位セルと、上記単位
セルの両側に配置された一対の配流板と、上記配流板の
外側にセパレータとを有する燃料電池において、少なく
とも一方の配流板が、単位セルと接する面にリブを有し
かつフッ素樹脂で撥水処理されたポリアクリロニトリル
系炭素繊維(以下PAN系炭素繊維とする)からなる多
孔質炭素板からなる構成とした。また、上記配流板のフ
ッ素樹脂添加率が10〜60重量%である多孔質炭素板
からなる構成とした。さらに上記配流板の空隙率が30
〜70%である多孔質炭素板からなる構成とした。
To achieve this object, a solid polymer electrolyte membrane, a unit cell in which a positive electrode and a negative electrode are arranged on both sides of the solid polymer electrolyte membrane, and a unit cell arranged on both sides of the unit cell In a fuel cell having a pair of flow distribution plates and a separator outside the flow distribution plate, at least one of the flow distribution plates has a rib on the surface in contact with the unit cell and is polyacrylonitrile treated with a water-repellent fluorocarbon resin. A porous carbon plate made of carbon fiber (hereinafter referred to as PAN carbon fiber) was used. Further, the flow distribution plate is made of a porous carbon plate having a fluororesin addition rate of 10 to 60% by weight. Furthermore, the porosity of the distribution plate is 30.
It was made up of a porous carbon plate of 70% to 70%.

【0011】[0011]

【作用】この構成では、過剰の加湿水および生成水によ
る目詰まりがなく、電極への均一でかつ高いガス供給能
を実現して高出力な燃料電池を提供することができる。
さらに配流板が複雑な加工を要さない固体高分子型燃料
電池を提供できる。
With this configuration, it is possible to provide a high-output fuel cell that does not cause clogging due to excess humidifying water and generated water, realizes uniform and high gas supply ability to the electrodes.
Further, it is possible to provide a polymer electrolyte fuel cell in which the distribution plate does not require complicated processing.

【0012】[0012]

【実施例】以下、本発明の実施例について、図面を参照
しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】(実施例1)図1は本発明の実施例の単電
池の断面図を示したものである。固体高分子電解質膜で
あるイオン交換膜(米国Du Pont社製、Nafi
on117)1の両側に正極2及び負極3を接合した単
位セル4の外側に4フッ化エチレン6フッ化プロピレン
の共重合体(以下FEPとする)を25wt%添加する
ことによって撥水処理を行ったPAN系炭素繊維からな
るリブ付き多孔質炭素板からである配流板8を配置し、
ガス不透性のガラス状カーボンからなるセパレータ5で
挟み込んで単電池Aを作製した。この単電池Aの放電試
験を、燃料に水素、酸化剤に酸素を用いて大気圧、セル
温度50℃で行った。
(Embodiment 1) FIG. 1 is a sectional view of a unit cell according to an embodiment of the present invention. Ion exchange membrane, which is a solid polymer electrolyte membrane (manufactured by Du Pont, USA, Nafi
on 117) Water repellent treatment is performed by adding 25 wt% of a copolymer of tetrafluoroethylene hexafluoropropylene (hereinafter referred to as FEP) to the outside of the unit cell 4 in which the positive electrode 2 and the negative electrode 3 are joined to both sides of A distribution plate 8 made of a porous carbon plate with ribs made of PAN-based carbon fiber,
A unit cell A was produced by sandwiching the separator 5 made of gas-impermeable glassy carbon. The discharge test of the unit cell A was performed at a atmospheric pressure and a cell temperature of 50 ° C. using hydrogen as a fuel and oxygen as an oxidant.

【0014】(実施例2)配流板に実施例1と同様の配
流板を80℃の水中に100日間浸漬したものを用いた
以外は実施例1と全く同じであり、これを単電池A′と
し、実施例1と同様の放電試験を行った。
(Example 2) This is exactly the same as Example 1 except that the same distribution plate as in Example 1 was immersed in water at 80 ° C for 100 days. Then, the same discharge test as in Example 1 was performed.

【0015】(比較例1)図2は本発明の比較例の単電
池の断面図を示したものである。配流板とセパレータに
ガス不透性のガラス状カーボンからなるリブ付きセパレ
ータ9を用いた以外は実施例1と全く同じであり、これ
を単電池Bとし、実施例1と同様の放電試験を行った。
(Comparative Example 1) FIG. 2 is a sectional view of a unit cell of a comparative example of the present invention. Except that the separator 9 with ribs made of gas-impermeable glassy carbon was used for the flow distribution plate and the separator, this was exactly the same as Example 1, and this was used as the unit cell B, and the same discharge test as in Example 1 was performed. It was

【0016】(比較例2)配流板に撥水処理を行わない
リブ付き多孔質板を用いた以外は実施例1と全く同じで
あり、これを単電池Cとし、実施例1と同様の放電試験
を行った。
(Comparative Example 2) The same operation as in Example 1 was carried out except that the porous plate with ribs which was not subjected to the water repellent treatment was used for the distribution plate, and this was used as a single cell C, and the same discharge as in Example 1 was performed. The test was conducted.

【0017】(比較例3)配流板に撥水処理を行ったピ
ッチ系リブ付き多孔質板を用いた以外は実施例1と全く
同じであり、これを単電池Dとし、実施例1と同様の放
電試験を行った。
(Comparative Example 3) Except for using a water-repellent-treated pitch-based ribbed porous plate for the distribution plate, this is exactly the same as Example 1, and this was used as unit cell D and was the same as Example 1. Discharge test was performed.

【0018】(比較例4)配流板に撥水処理を行ったセ
ルロース系リブ付き多孔質板を用いた以外は実施例1と
全く同じであり、これを単電池Eとし、実施例1と同様
の放電試験を行った。
(Comparative Example 4) The same as Example 1 except that a water-repellent treated porous plate with cellulose ribs was used for the distribution plate, which was used as a unit cell E and was similar to Example 1. Discharge test was performed.

【0019】(比較例5)配流板に比較例3と同様の配
流板を80℃の水中に100日間浸漬したものを用いた
以外は実施例1と全く同じであり、これを単電池D′と
し、実施例1と同様の放電試験を行った。
(Comparative Example 5) This is exactly the same as Example 1 except that the same distribution plate as Comparative Example 3 was immersed in water at 80 ° C for 100 days. Then, the same discharge test as in Example 1 was performed.

【0020】(比較例6)配流板に比較例4と同様の配
流板を80℃の水中に100日間浸漬したものを用いた
以外は比較例4と全く同じであり、これを単電池E′と
し、実施例1と同様の放電試験を行った。
(Comparative Example 6) This is exactly the same as Comparative Example 4 except that the same distribution plate as Comparative Example 4 was immersed in water at 80 ° C for 100 days, and this was used as a unit cell E '. Then, the same discharge test as in Example 1 was performed.

【0021】図3に本発明の実施例の単電池A及び比較
例の単電池B及びCの電流−電圧曲線を示した。1.0
A/cm2における電池電圧が比較例の電池B及びCが
0.44V及び0Vであるのに対し、本実施例の電池A
は0.55Vと高い値を示した。さらに限界電流密度は
比較例の電池B及びCが1.2A/cm2及び1.0A
/cm2であるのに対し、本発明の実施例の単電池Aは
1.5A/cm2と大きい値を示した。なお比較例の単
電池D及びEは実施例の単電池Aと同等の特性を示し
た。
FIG. 3 shows current-voltage curves of the unit cell A of the example of the present invention and the unit cells B and C of the comparative example. 1.0
The battery voltage at A / cm 2 is 0.44 V and 0 V for the batteries B and C of the comparative example, whereas the battery A of the present example is
Showed a high value of 0.55V. Furthermore, the limiting current densities were 1.2 A / cm 2 and 1.0 A for the batteries B and C of the comparative example.
/ Cm 2 , whereas the unit cell A of the example of the present invention showed a large value of 1.5 A / cm 2 . Note that the unit cells D and E of the comparative example exhibited the same characteristics as the unit cell A of the example.

【0022】本実施例の単電池Aは配流板が多孔質であ
るため、電極のリブと接する部分にもガス供給が行われ
る。その結果比較例の単電池Bと比較して電極に均一に
反応ガスを供給できたため、より優れた分極特性を示し
たといえる。
In the unit cell A of this embodiment, since the flow distribution plate is porous, gas is also supplied to the portion in contact with the rib of the electrode. As a result, the reaction gas could be supplied uniformly to the electrodes as compared with the unit cell B of the comparative example, and therefore it can be said that the polarization characteristics were more excellent.

【0023】また本実施例の単電池Aに用いた多孔質炭
素板の空隙率は42%であるのに対し、比較例の単電池
Cに用いた多孔質炭素板の空隙率は80%であった。本
実施例の単電池Aの多孔質炭素板が比較例の電池Cより
も空隙率が小さくなったのは撥水処理を行ったためであ
る。しかし単電池Aの方が優れた分極特性を示したの
は、撥水処理によって多孔質炭素板の細孔が過剰な加湿
水及び生成水による目詰まりが起こりにくくなり、反応
ガスの供給がより円滑に行われたためである。
The porosity of the porous carbon plate used in the unit cell A of this example was 42%, while the porosity of the porous carbon plate used in the unit cell C of the comparative example was 80%. there were. The porosity of the porous carbon plate of the single battery A of this example was smaller than that of the battery C of the comparative example because the water repellent treatment was performed. However, the unit cell A exhibited superior polarization characteristics because the water-repellent treatment makes it difficult for the pores of the porous carbon plate to be clogged with excessive humidifying water and generated water, and the reaction gas is supplied more efficiently. It was done smoothly.

【0024】また、本実施例の単電池A、比較例の単電
池B及びCの内部抵抗はそれぞれ、8mΩ、9mΩ及び
8.2mΩとほぼ同じ値を示し、撥水処理による内部抵
抗の増大は見られなかった。
Further, the internal resistances of the unit cell A of this example and the unit cells B and C of the comparative example are almost the same values of 8 mΩ, 9 mΩ and 8.2 mΩ, respectively, and the internal resistance increases due to the water repellent treatment. I couldn't see it.

【0025】図4に本実施例の単電池A′と比較例の単
電池D′及びE′の電流−電圧曲線を示した。1.0A
/cm2における電池電圧が比較例の電池D′及びE′
が0.28V及び0.395Vで、限界電流密度はそれ
ぞれ1.1A/cm2及び1.2A/cm2と初期の単電
池D及びCと比較して劣化した。これに対し、本実施例
の電池Aは1.0A/cm2における電池電圧が0.5
45Vで、限界電流密度は1.45A/cm2と初期の
単電池Aとほぼ同程度の特性を示した。
FIG. 4 shows the current-voltage curves of the unit cell A'of this embodiment and the unit cells D'and E'of the comparative examples. 1.0A
The battery voltage at / cm 2 is the battery of Comparative Examples D'and E '
Was 0.28 V and 0.395 V, the limiting current densities were 1.1 A / cm 2 and 1.2 A / cm 2 , respectively, which were deteriorated as compared with the initial cells D and C. On the other hand, the battery A of this example has a battery voltage of 0.5 at 1.0 A / cm 2 .
At 45 V, the limiting current density was 1.45 A / cm 2, which was about the same level as the initial unit cell A.

【0026】限界電流密度が小さくなったことから、比
較例の電池D′及びE′に用いた配流板は撥水性が低下
したためにガス供給能が低下し、特性が劣化したと考え
られる。一方、単電池A′に用いた配流板は撥水性が保
たれたため、初期の特性が維持されたといえる。
Since the limiting current density became small, it is considered that the flow distribution plates used in the batteries D'and E'of the comparative example had deteriorated water repellency and hence gas supply ability and deteriorated characteristics. On the other hand, it can be said that the flow distribution plate used for the unit cell A ′ retained the water repellency and thus maintained the initial characteristics.

【0027】なお本実施例では撥水材としてFEPを用
いたが、他のフッ素樹脂、例えばポリテトラフルオロエ
チレン、パーフルオロアルキルビニルエーテルなど撥水
性を有するフッ素樹脂であれば同様の効果が得られた。
さらに本実施例ではフッ素樹脂の添加率を25重量%と
したが、10〜60重量%で同様の効果が得られた。ま
た本実施例では空隙率が42%の多孔質炭素板を用いた
が、空隙率が30〜70%のものでは同様の効果が得ら
れた。
Although FEP was used as the water repellent material in this embodiment, the same effect can be obtained with other fluororesins such as polytetrafluoroethylene and perfluoroalkyl vinyl ether. .
Further, in this example, the addition rate of the fluororesin was set to 25% by weight, but the same effect was obtained at 10 to 60% by weight. Further, in this example, a porous carbon plate having a porosity of 42% was used, but the same effect was obtained when the porosity was 30 to 70%.

【0028】さらに本実施例では燃料電池の一例として
電解質として固体高分子電解質膜を用いた水素−酸素燃
料電池を取り上げたが、メタノール、天然ガス、ナフサ
などを燃料とする改質水素を用いた固体高分子型燃料電
池、又は酸化剤として空気を用いた固体高分子型燃料電
池に適用することも可能である。
Further, in this example, a hydrogen-oxygen fuel cell using a solid polymer electrolyte membrane as an electrolyte was taken up as an example of a fuel cell, but reformed hydrogen using methanol, natural gas, naphtha, etc. as a fuel was used. It is also possible to apply to a polymer electrolyte fuel cell or a polymer electrolyte fuel cell using air as an oxidant.

【0029】[0029]

【発明の効果】以上のように本発明は、固体高分子型燃
料電池において配流板に撥水処理したポリアクリロニト
リル系炭素繊維からなるリブ付き多孔質炭素板を用いる
ことによって生成水による目詰まりがなく電極への均一
でかつ高いガス供給能を実現し、高出力な固体高分子型
燃料電池を提供することができる。さらに配流板が複雑
な加工を要さない固体高分子型燃料電池を提供できる。
INDUSTRIAL APPLICABILITY As described above, the present invention uses a ribbed porous carbon plate made of water-repellent polyacrylonitrile-based carbon fiber for a distribution plate in a polymer electrolyte fuel cell to prevent clogging by generated water. It is possible to provide a high output solid polymer fuel cell, which realizes a uniform and high gas supply ability to the electrode without using the fuel cell. Further, it is possible to provide a polymer electrolyte fuel cell in which the distribution plate does not require complicated processing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の単電池Aの断面図FIG. 1 is a sectional view of a unit cell A according to an embodiment of the present invention.

【図2】本発明の比較例の単電池Bの断面図FIG. 2 is a sectional view of a unit cell B of a comparative example of the present invention.

【図3】本発明の実施例の単電池A、比較例の単電池B
及びCの電流−電圧曲線を示す図
FIG. 3 is a cell A of an example of the present invention and a cell B of a comparative example.
And C showing current-voltage curves

【図4】本発明の実施例の単電池A′、比較例の単電池
D′及びE′の電流−電圧曲線を示す図
FIG. 4 is a diagram showing current-voltage curves of a unit cell A ′ of an example of the present invention and unit cells D ′ and E ′ of a comparative example.

【符号の説明】[Explanation of symbols]

1 固体高分子電解質膜 2 正極 3 負極 4 単位セル 5 セパレータ 7 ガスケット 8 リブ付き多孔質炭素板(撥水処理有り)である配流
板 9 リブ付きセパレータ 10 流路溝
1 Solid Polymer Electrolyte Membrane 2 Positive Electrode 3 Negative Electrode 4 Unit Cell 5 Separator 7 Gasket 8 Distribution Plate that is a Porous Carbon Plate with Ribs (with Water Repellent Treatment) 9 Separator with Ribs 10 Channel Grooves

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】固体高分子電解質膜の両側に正極および負
極を配置した単位セルと、上記単位セルに接して両側に
配置した配流板と、上記配流板に接して両側に配置した
セパレータとを有する固体高分子型燃料電池において、
配流板の少なくとも一方が単位セルに接する面にリブを
有し、かつフッ素樹脂で撥水処理されたポリアクリロニ
トリル系炭素繊維からなる多孔質炭素板であることを特
徴とする固体高分子型燃料電池。
1. A unit cell in which a positive electrode and a negative electrode are arranged on both sides of a solid polymer electrolyte membrane, a distribution plate arranged on both sides in contact with the unit cell, and a separator arranged on both sides in contact with the distribution plate. In the polymer electrolyte fuel cell having
A polymer electrolyte fuel cell, characterized in that at least one of the flow distribution plates has a rib on the surface in contact with the unit cell, and is a porous carbon plate made of polyacrylonitrile-based carbon fiber which is water-repellent treated with a fluororesin. .
【請求項2】上記多孔質炭素板のフッ素樹脂添加率が1
0〜60重量%である請求項1記載の固体高分子型燃料
電池。
2. A fluororesin addition rate of the porous carbon plate is 1
The polymer electrolyte fuel cell according to claim 1, which is 0 to 60% by weight.
【請求項3】上記多孔質炭素板の空隙率が30〜70%
である請求項1記載の固体高分子型燃料電池。
3. The porosity of the porous carbon plate is 30 to 70%.
The polymer electrolyte fuel cell according to claim 1.
JP7082234A 1995-04-07 1995-04-07 Solid high polymer fuel cell Pending JPH08287924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7082234A JPH08287924A (en) 1995-04-07 1995-04-07 Solid high polymer fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7082234A JPH08287924A (en) 1995-04-07 1995-04-07 Solid high polymer fuel cell

Publications (1)

Publication Number Publication Date
JPH08287924A true JPH08287924A (en) 1996-11-01

Family

ID=13768725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7082234A Pending JPH08287924A (en) 1995-04-07 1995-04-07 Solid high polymer fuel cell

Country Status (1)

Country Link
JP (1) JPH08287924A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000215902A (en) * 1999-01-27 2000-08-04 Toyota Motor Corp Gas separator for fuel cell, fuel cell and manufacture of gas separator for fuel cell
WO2002047190A1 (en) * 2000-12-05 2002-06-13 Matsushita Electric Industrial Co., Ltd. Polyelectrolyte type fuel cell, and operation method therefor
KR20020076653A (en) * 2001-03-29 2002-10-11 홍병선 A PEMFC(Proton Exchange Membrane Fuel Cells) having efficient water-balance properties

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000215902A (en) * 1999-01-27 2000-08-04 Toyota Motor Corp Gas separator for fuel cell, fuel cell and manufacture of gas separator for fuel cell
WO2002047190A1 (en) * 2000-12-05 2002-06-13 Matsushita Electric Industrial Co., Ltd. Polyelectrolyte type fuel cell, and operation method therefor
EP1349224A1 (en) * 2000-12-05 2003-10-01 Matsushita Electric Industrial Co., Ltd. Polyelectrolyte type fuel cell, and operation method therefor
CN1293661C (en) * 2000-12-05 2007-01-03 松下电器产业株式会社 Polyelectrolyte type fuel cell and operation method therefor
EP1349224A4 (en) * 2000-12-05 2007-05-16 Matsushita Electric Ind Co Ltd Polyelectrolyte type fuel cell, and operation method therefor
KR20020076653A (en) * 2001-03-29 2002-10-11 홍병선 A PEMFC(Proton Exchange Membrane Fuel Cells) having efficient water-balance properties

Similar Documents

Publication Publication Date Title
US7745063B2 (en) Fuel cell stack
JP3342726B2 (en) Solid polymer electrolyte fuel cell and method of manufacturing the same
JP4956870B2 (en) Fuel cell and fuel cell manufacturing method
JP2002289230A (en) Polymer electrolyte fuel cell
JP2002100372A (en) Gas diffusion electrode for fuel cell and its manufacturing method
JP2001057218A (en) Solid polymer type fuel cell and manufacture thereof
JP2778767B2 (en) Porous electrode and method of using the same
KR100548118B1 (en) Electrode for fuel cell and fuel cell
JPH08255619A (en) Fuel cell
JP4493954B2 (en) Polymer electrolyte membrane-electrode assembly and polymer electrolyte fuel cell using the same
JP2005228755A (en) Polymer electrolyte fuel cell
JPH07326363A (en) Ion conductivity imparting electrode and jointing material for electrode and electrolyte and cell using the ion conductivity imparting electrode
JP2005108770A (en) Manufacturing method of electrolyte membrane electrode joint body
JP3547013B2 (en) Electrode for polymer electrolyte fuel cell and fuel cell using the same
JP4880131B2 (en) Gas diffusion electrode and fuel cell using the same
JPH0412462A (en) Solid polymer electrolyte type fuel cell
JP2001057217A (en) Polymer electrolyte type fuel cell
JPH08287924A (en) Solid high polymer fuel cell
JP2000251901A (en) Cell for fuel cell and fuel cell using it
JP2814716B2 (en) Cell structure of solid polymer electrolyte fuel cell and method of supplying water and gas
JP2005267902A (en) Polymer electrolyte fuel cell
JP2009043688A (en) Fuel cell
JP2000277130A (en) Method for producing solid polymer type fuel cell and electrolyte film
JP2004349180A (en) Membrane electrode assembly
JP2000228205A (en) High polymer electrolyte fuel cell