JPH0412462A - Solid polymer electrolyte type fuel cell - Google Patents

Solid polymer electrolyte type fuel cell

Info

Publication number
JPH0412462A
JPH0412462A JP2113572A JP11357290A JPH0412462A JP H0412462 A JPH0412462 A JP H0412462A JP 2113572 A JP2113572 A JP 2113572A JP 11357290 A JP11357290 A JP 11357290A JP H0412462 A JPH0412462 A JP H0412462A
Authority
JP
Japan
Prior art keywords
water
base material
cathode
polymer electrolyte
solid polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2113572A
Other languages
Japanese (ja)
Inventor
Yoshinori Nishihara
啓徳 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2113572A priority Critical patent/JPH0412462A/en
Publication of JPH0412462A publication Critical patent/JPH0412462A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To improve reliability by providing substrate water absorption sections, substrate water repellence sections, water collection sections, wicks and traps on an electrode substrate, and properly feeding or discharging water to or from a solid polymer electrolyte film. CONSTITUTION:An ion exchange film 1 made of a solid polymer electrolyte film is a cation exchange film and saturatingly absorbs water to indicate proton conductivity, and an anode 2 and a cathode 3 are arranged on both sides of a principal plane. Flat faces of an electrode substrate are brought into contact with the anode 2 and the cathode 3 respectively, substrate water absorption sections 5 are formed at projections, substrate water repellence sections 6 are formed at the bottom sections of recesses, and gas passages 7 are formed at the recesses. Water collection sections 8 are brought into contact with the water absorption sections 5, and the excess water of a cell is sent to traps 10 via the wicks 9 and accumulated. High-temperature saturated humidified fuel gas and oxidizer gas are fed from the cell to electrodes through anode and cathode gas inlets 13, 11 via the passages 7 and water repellence sections 6. The passages 7 are not clogged, water is properly fed to or discharged from the film 1, and reliability can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は固体高分子電解質型燃料電池に係り、特に固
体高分子電解質型燃料電池において、水の供給、排出を
適正に行うための電池の構造に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a solid polymer electrolyte fuel cell, and in particular to a method for properly supplying and discharging water in a solid polymer electrolyte fuel cell. Regarding structure.

〔従来の技術〕[Conventional technology]

燃料電池はこれに用いる電解質の種類により、例えばア
ルカリ型、固体高分子電解質型1およびリン酸型などの
低温動作形の燃料電池と、溶融炭酸塩型、固体酸化物電
解質型などの高温動作形の燃料電池とに大別される。
Depending on the type of electrolyte used, fuel cells can be classified into low-temperature operating types such as alkaline type, solid polymer electrolyte type 1, and phosphoric acid type, and high-temperature operating types such as molten carbonate type and solid oxide electrolyte type. It is broadly divided into fuel cells and fuel cells.

固体高分子電解質型燃料電池は固体高分子電解質膜の2
つの主面にそれぞれアノードまたはカソード、および電
極基材を配して形成される。アノードまたはカソードの
各電極は固体高分子電解質膜と電極基材とによりサンド
ウィンチされる。固体高分子電解質膜はスルホン酸基を
持つポリスチレン系の陽イオン交換膜をカチオン導電性
膜として使用したもの、フロロカーボンスルホン酸とポ
リビニリデンフロライドの混合膜、あるいはフロロカー
ボンマトリックスにトリフロロエチレンをグラフト化し
たものなどが知られているが、最近ではパーフロロカー
ボンスルホンfiW4(米国、デュポン社製、商品名ナ
フィオン膜)を用いることにより燃料電池を長寿命化し
たものなどが知られている。固体高分子電解質膜は分子
中にプロトン(水素イオン)交換基を有し、飽和に含水
させることにより常温で20Ω・1以下の比抵抗を示し
、プロトン導電性電解質として機能する。v!和和水水
量温度によって可逆的に変化する。を種基材は多孔質体
で、燃料電池の反応ガス供給手段、集電体として機能す
る。アノードまたはカソードの電極においては3相界面
が形成され電気化学反応がおこる。
Solid polymer electrolyte fuel cells have two types of solid polymer electrolyte membranes:
It is formed by arranging an anode or a cathode and an electrode base material on each of the two main surfaces. Each electrode, an anode or a cathode, is sandwiched between a solid polymer electrolyte membrane and an electrode base material. Solid polymer electrolyte membranes include those that use a polystyrene-based cation exchange membrane with sulfonic acid groups as a cation conductive membrane, a mixed membrane of fluorocarbon sulfonic acid and polyvinylidene fluoride, or a fluorocarbon matrix grafted with trifluoroethylene. Recently, fuel cells have been made to have a longer life by using perfluorocarbon sulfone fiW4 (manufactured by DuPont, USA, trade name: Nafion Membrane). A solid polymer electrolyte membrane has a proton (hydrogen ion) exchange group in its molecule, exhibits a specific resistance of 20Ω·1 or less at room temperature when saturated with water, and functions as a proton conductive electrolyte. v! Hydration water amount Changes reversibly depending on temperature. The seed substrate is a porous material that functions as a reactant gas supply means and a current collector for the fuel cell. At the anode or cathode electrode, a three-phase interface is formed and an electrochemical reaction occurs.

アノードでは次式の反応がおこる。At the anode, the following reaction occurs.

Hl →2 H’ +  2 e  −−−−−−−−
−(1)カソードでは次式の反応がおこる。
Hl →2 H' + 2 e -----------
-(1) At the cathode, the following reaction occurs.

’AOt +2 H” +2 e−4H*O−−−−−
(21つまり、アノードにおいては、系の外部より供給
された水素がプロトンと電子を生成する。生成したプロ
トンはイオン交換膜中をカソードに向かって移動し、電
子は外部回路を通ってカソードに移動する。一方、カソ
ードにおいては、系の外部より供給された酸素と、イオ
ン交換膜中をアノードより移動してきたプロトンと、外
部回路より移動してきた電子が反応し、水を生成する。
'AOt +2 H'' +2 e-4H*O----
(21 In other words, at the anode, hydrogen supplied from outside the system generates protons and electrons. The generated protons move toward the cathode in the ion exchange membrane, and the electrons move to the cathode through an external circuit. On the other hand, at the cathode, oxygen supplied from outside the system, protons that have moved through the ion exchange membrane from the anode, and electrons that have moved from the external circuit react to produce water.

このような固体高分子電解質型燃料電池においてはプロ
トンがアノードよりカソードに向かってイオン交換膜中
を移動する際に水和の状態で移動するためにアノード近
傍では含水量が減少しイオン交換膜が乾いてくるという
現象がおこる。そのためにアノード近傍では水を供給し
ないとプロトンの移動が困難となる。一方力ソードにお
いては式(2)で示すように水を生成するが、−a的に
固体高分子電解質型燃料電池は100℃以下の温度で運
転されるために、カソード側において生成する水は液体
状態であると考えられる。そのためにカソードにおいて
は過剰の水が貯まり、電極基材の細孔を閉塞して反応ガ
スの拡散が阻害されるようになる。従って固体高分子電
解質型燃料電池を連続して効率良く運転するためにはア
ノードへの水の供給とカソードからの水の排出を適正に
行うことが必要になる。従来このようなイオン交換膜の
水量の最適制御を行うために、水を供給する場合にはセ
ルの運転温度よりも高い温度に維持された水の中に燃料
ガスをバブリングさせて加湿し、このガスをセルの7ノ
ード側に供給していた。また水の排出の場合には乾燥し
た大量の酸化剤ガスをセルのカソードに供給したり、あ
るいはカソードで蒸発した水蒸気を冷却して凝縮させ、
その後ウィック等で系外に排出するなどの方法が行われ
ていた。
In such a solid polymer electrolyte fuel cell, when protons move through the ion exchange membrane from the anode to the cathode, they move in a hydrated state, so the water content decreases near the anode and the ion exchange membrane A phenomenon of drying occurs. Therefore, unless water is supplied near the anode, it becomes difficult for protons to move. On the other hand, water is produced in the cathode as shown in equation (2), but since solid polymer electrolyte fuel cells are operated at temperatures below 100°C, the water produced on the cathode side is It is considered to be in a liquid state. Therefore, excessive water accumulates at the cathode, blocking the pores of the electrode base material and inhibiting the diffusion of the reaction gas. Therefore, in order to operate a solid polymer electrolyte fuel cell continuously and efficiently, it is necessary to properly supply water to the anode and discharge water from the cathode. Conventionally, in order to optimally control the amount of water in such an ion exchange membrane, when supplying water, fuel gas is bubbled into the water, which is maintained at a temperature higher than the operating temperature of the cell, to humidify the water. Gas was being supplied to the 7 node side of the cell. In addition, in the case of water discharge, a large amount of dry oxidant gas is supplied to the cathode of the cell, or water vapor evaporated at the cathode is cooled and condensed.
After that, methods such as discharging it out of the system using a wick or the like were used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら従来の水の供給方法においては、反応ガス
の加湿温度における飽和水蒸気圧とセルの温度における
飽和水蒸気圧の差に相当する量の水がイオン交換膜内部
で凝縮するのみならず、セルの他の部分、例えば電極基
材内部や反応ガス供給配管内部に凝縮し反応ガスの供給
が妨げられるという問題があった。
However, in the conventional water supply method, an amount of water corresponding to the difference between the saturated water vapor pressure at the humidification temperature of the reaction gas and the saturated water vapor pressure at the cell temperature not only condenses inside the ion exchange membrane, but also condenses in other parts of the cell. There is a problem in that the reactant gas condenses inside the electrode base material or the reactant gas supply piping, for example, and prevents the supply of the reactant gas.

乾燥した多量の乾燥ガスをセルのカソードに供給する場
合には、反応に必要なガスの量と比較して大過剰な量の
ガスを供給する必要があり経済的でなく、また条件によ
っては、イオン交換膜のカソード側までも乾燥させてし
まいセルの特性の低下をまねくことがあった。セルのカ
ソード側で蒸発した水蒸気を冷却し液体状態とした後に
ウィック等で系の外部に排出する場合は、水の蒸発量に
制限があるためにセルを高電流密度で運転するような場
合には、水の除去が不十分でセルの特性低下が起こると
いう問題があった。
When a large amount of dry gas is supplied to the cell cathode, it is not economical to supply a large amount of gas compared to the amount of gas required for the reaction, and depending on the conditions, In some cases, even the cathode side of the ion exchange membrane was dried, resulting in a decrease in cell characteristics. When water vapor evaporated on the cathode side of the cell is cooled to a liquid state and then discharged to the outside of the system using a wick, etc., there is a limit to the amount of water evaporation, so when the cell is operated at high current density. However, there was a problem that water removal was insufficient and the cell characteristics deteriorated.

この発明は上述の点に鑑みてなされ、その目的は固体高
分子電解質型燃料電池の固体高分子電解質膜に対する水
の供給、排出を適正に行うことにより信軒性に優れる固
体高分子電解質型燃料電池を徒供することにある。
The present invention has been made in view of the above-mentioned points, and its purpose is to provide a solid polymer electrolyte fuel cell with excellent reliability by properly supplying and discharging water to and from the solid polymer electrolyte membrane of a solid polymer electrolyte fuel cell. The purpose is to save batteries.

(!INを解決するための手段〕 上述の目的はこの発明によれば固体高分子電解質膜1と
、アノード2およびカソード3の両電極と、電極基材5
,6並びに集水部8からなるセルと、ウィック9と、ト
ラップ10とを有し、固体高分子電解質膜はカチオン交
換膜で、飽和に含水してプロトン導電性を示し、 アノードおよびカソードの両電極はそれぞれ固体高分子
電解質膜の主面の両側に配置され、電極基材は平坦な主
面と、凹凸のある主面を備えるとともに平坦な主面を介
してアノードとカソードに接してそれぞれ配置され、こ
のとき電極基材は凸部につき前記2つの主面間が基材吸
水部5となり、凹部につきその底部が基材撥水部6とな
り、凹部がガス通路7となるものであり、集水部は電極
基材の基材吸水部に接してアノード側とカソード側にそ
れぞれ設けられ、ウィックは集水部に接続し、セルの過
剰水をトラップに移送し、 トラップはセルからの水を貯溜するものであるとするこ
とにより達成される。
(Means for solving !IN) According to the present invention, the above-mentioned purpose is to provide a solid polymer electrolyte membrane 1, both electrodes of an anode 2 and a cathode 3, and an electrode base material 5.
, 6 and a water collection part 8, a wick 9, and a trap 10.The solid polymer electrolyte membrane is a cation exchange membrane, and exhibits proton conductivity when saturated with water, and has both an anode and a cathode. The electrodes are placed on both sides of the main surface of the solid polymer electrolyte membrane, and the electrode base material has a flat main surface and an uneven main surface, and is placed in contact with the anode and cathode through the flat main surface. At this time, the electrode base material has a convex portion between the two main surfaces as the base material water absorbing portion 5, a concave portion at the bottom thereof as the base material water repellent portion 6, and a concave portion as the gas passage 7. The water parts are provided on the anode side and the cathode side respectively in contact with the base material water absorption part of the electrode base material, and the wick is connected to the water collection part and transfers excess water from the cell to the trap, and the trap collects water from the cell. This can be achieved by assuming that it is something that can be stored.

セル温度より高い温度で飽和加湿された燃料ガス (ア
ノードガス)がセルに供給される。酸化剤ガス (カソ
ードガス)は乾燥状態である必要はなく、大過剰に流す
必要もない0反応ガスはガス通路7から電極基材の撥水
部を経由して電極に到達する。
Fuel gas (anode gas) that is saturated and humidified at a temperature higher than the cell temperature is supplied to the cell. The oxidizing gas (cathode gas) does not need to be in a dry state, nor does it need to flow in large excess.The reactive gas reaches the electrode from the gas passage 7 via the water-repellent portion of the electrode base material.

〔作用〕[Effect]

飽和加湿された燃料ガスはセル内部で凝縮し、電極基材
の吸水部または集水部に取りこまれ、イオン交換膜に所
要の量の水が供給される。過剰の水は集水部により集め
られウィックを経由してセル外部に排出され、トラップ
に貯まる。過剰の水の排出は、電極基材内部や反応ガス
供給配管内部に水が貯まるごとを防止する。
The saturated and humidified fuel gas condenses inside the cell and is taken into the water absorption part or water collection part of the electrode base material, and the required amount of water is supplied to the ion exchange membrane. Excess water is collected by a water collection section, drained outside the cell via a wick, and stored in a trap. Excess water discharge prevents water from accumulating inside the electrode base material or inside the reaction gas supply piping.

カソードにおける生成水の排出はセルの運転温度におけ
る飽和水蒸気圧相当分の水分についてはガス状態でセル
の外部に排出される。また、飽和水蒸気圧相当分以上の
水分についてはセルの内部で凝縮し、電極基材に設けら
れた吸水部を通って集水部に集められ、さらに集水部よ
りウィックを通じてセルの外部のトラップに集められる
Water produced at the cathode is discharged to the outside of the cell in a gaseous state corresponding to the saturated water vapor pressure at the operating temperature of the cell. In addition, water with an amount equal to or more than the saturated water vapor pressure condenses inside the cell, passes through the water absorption part provided on the electrode base material, is collected in the water collection part, and is then passed through the wick from the water collection part to a trap outside the cell. are collected in.

〔実施例〕〔Example〕

次にこの発明の実施例を図面に基って説明する。 Next, embodiments of the invention will be described based on the drawings.

第1図はこの発明の実施例に係る固体高分子電解質型燃
料電池を示す要部配置図である。第1図において1はイ
オン交換膜を、2はアノードを、3はカソードを示す、
また、5は基材吸水部を、6は基材1n水部を示す、8
は吸水性のある集水部を、9はウィックを、10はトラ
ップを示す0本実施例における電極基材の製造方法を以
下に示す、を種基材はクレハ化学製のグラファイトの多
孔質材料に機械加工を施こしガス通路7を設けた0次に
、イソプロピルアルコール中に浸漬し、超音波を3分間
印加した後に乾燥した。この後に電極基材の凹部分にテ
フロン(Dupont社商品名)30J (三井・デュ
ポン・フロロケミカル製)を水で4倍に希釈した溶液を
塗布し、室温において24h乾燥し次いで360℃で1
5分焼成した。電極基材の凹部分へのフッ素樹脂の付着
量は約8mg/dであった。基材吸水部については特に
処理を施さなかった。
FIG. 1 is a layout diagram of main parts showing a solid polymer electrolyte fuel cell according to an embodiment of the present invention. In FIG. 1, 1 indicates an ion exchange membrane, 2 indicates an anode, and 3 indicates a cathode.
In addition, 5 indicates the water absorption part of the base material, 6 indicates the water part of the base material 1n, and 8
9 indicates a water-absorbing water collection part, 9 indicates a wick, and 10 indicates a trap. 0 The manufacturing method of the electrode base material in this example is shown below. The seed base material is a porous graphite material manufactured by Kureha Chemical Co., Ltd. The material was machined to provide a gas passage 7. Next, it was immersed in isopropyl alcohol, and after applying ultrasonic waves for 3 minutes, it was dried. After this, a solution of Teflon (Dupont product name) 30J (manufactured by Mitsui DuPont Fluorochemicals) diluted 4 times with water was applied to the concave portion of the electrode base material, dried at room temperature for 24 hours, and then heated at 360°C for 1 hour.
Baked for 5 minutes. The amount of fluororesin adhered to the concave portion of the electrode base material was approximately 8 mg/d. No particular treatment was applied to the water-absorbing portion of the base material.

集水部8については、クレハ化学製のグラファイトの多
孔質材料 (厚さlm5)をイソプロピルアルコール中
に浸漬し3分間超音波をかけて洗浄した後に室温におい
て乾燥したものをそのまま用いた。
For the water collection part 8, a porous graphite material (thickness 1 m5) manufactured by Kureha Chemical Co., Ltd. was immersed in isopropyl alcohol, washed with ultrasonic waves for 3 minutes, and then dried at room temperature.

ウィック9については、木綿繊維をひも状にした材料を
用いた。
For the wick 9, a material made of string-like cotton fibers was used.

〔発明の効果〕〔Effect of the invention〕

この発明によれば固体高分子電解質膜と、アノードおよ
びカソードの両電極と、電極基材並びに集水部からなる
セルと、ウィックと、トラップとを有し、 固体高分子電解質膜はカチオン交換膜で、飽和に含水し
てプロトン導電性を示し、 アノードおよびカソードの両電極はそれぞれ固体高分子
電解質膜の主面の両側に配置され、電極基材は平坦な主
面と、凹凸のある主面を備えるとともに平坦な主面を介
してアノードとカソードに接してそれぞれ配置され、こ
のとき電極基材は凸部につき前記2つの主面間が基材吸
水部となり、凹部につきその底部が基材種水部となり、
凹部がガス通路となるものであり、 集水部は電極基材の基材吸水部に接してアノード側とカ
ソード側にそれぞれ設けられ、ウィックは集水部に接続
し、セルの過剰水をトラップに移送し、 トラップはセルからの水を貯溜するものであるので、飽
和加湿された燃料ガスはセル内部で凝縮し、電極基材の
基材吸水部や集水部に取りこまれ、アノードにおいてイ
オン交換膜に所要の量の水が供給される。過剰の水は、
集水部により集められウィックを経由してセル外部に排
出され、トラップに貯まる。過剰の水の排出は、電極基
材内部や反応ガス供給配管内部に水が貯まるごとを防止
する。またカソードにおける生成水の排出はセルの運転
温度における飽和水蒸気圧相当分の水分についてはガス
状態でセルの外部に排出される。また、飽和水蒸気圧相
当分以上の水分についてはセルの内部で凝縮し、電極基
材に設けられた吸水部を通って集水部に集められ、さら
に集水部よりウィックを通じてセルの外部のトラップに
集められる。
According to the present invention, the solid polymer electrolyte membrane includes a cell consisting of both anode and cathode electrodes, an electrode base material and a water collection part, a wick, and a trap, and the solid polymer electrolyte membrane is a cation exchange membrane. The anode and cathode electrodes are placed on both sides of the main surface of the solid polymer electrolyte membrane, and the electrode base material has a flat main surface and an uneven main surface. and are arranged in contact with the anode and the cathode through their flat main surfaces, and at this time, the electrode base material has a convex part and the area between the two main surfaces becomes the base material water absorption part, and the concave part and the bottom part thereof corresponds to the base material type. Becomes the water department,
The concave part serves as a gas passage, the water collection part is provided on the anode side and the cathode side respectively in contact with the water absorption part of the electrode base material, and the wick is connected to the water collection part and traps excess water in the cell. Since the trap stores water from the cell, the saturated and humidified fuel gas condenses inside the cell, is taken into the water absorption part and water collection part of the electrode base material, and is then collected at the anode. The required amount of water is supplied to the ion exchange membrane. Excess water is
It is collected by the water collection section, discharged outside the cell via the wick, and stored in the trap. Excess water discharge prevents water from accumulating inside the electrode base material or inside the reaction gas supply piping. Furthermore, water produced at the cathode is discharged to the outside of the cell in a gaseous state corresponding to the saturated water vapor pressure at the operating temperature of the cell. In addition, water with an amount equal to or more than the saturated water vapor pressure condenses inside the cell, passes through the water absorption part provided on the electrode base material, is collected in the water collection part, and is then passed through the wick from the water collection part to a trap outside the cell. are collected in.

このようにして反応ガス供給管が閉塞されるなどの悪影
響をセルにおよぼすことなく適正にイオン交換膜に対す
る水の供給、排出が行われ信転性に優れる固体高分子電
解質型燃料電池が得られる。
In this way, water is properly supplied to and discharged from the ion exchange membrane without causing any adverse effects on the cell such as blocking of the reactant gas supply pipe, and a solid polymer electrolyte fuel cell with excellent reliability can be obtained. .

【図面の簡単な説明】 第1図はこの発明の実施例に係る固体高分子電解質型燃
料電池を示す要部配置図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a layout diagram of main parts showing a solid polymer electrolyte fuel cell according to an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1)固体高分子電解質膜と、アノードおよびカソードの
両電極と、電極基材並びに集水部からなるセルと、ウイ
ックと、トラップとを有し、 固体高分子電解質膜はカチオン交換膜で、飽和に含水し
てプロトン導電性を示し、 アノードおよびカソードの両電極はそれぞれ固体高分子
電解質膜の主面の両側に配置され、電極基材は平坦な主
面と、凹凸のある主面を備えるとともに平坦な主面を介
してアノードとカソードに接してそれぞれ配置され、こ
のとき電極基材は凸部につき前記2つの主面間が基材吸
水部となり、凹部につきその底部が基材撥水部となり、
凹部がガス通路となるものであり、 集水部は電極基材の基材吸水部に接してアノード側とカ
ソード側にそれぞれ設けられ、 ウイックは集水部に接続し、セルの過剰水をトラップに
移送し、 トラップはセルからの水を貯溜するものであることを特
徴とする固体高分子電解質型燃料電池。
[Scope of Claims] 1) A solid polymer electrolyte membrane has a cell consisting of an anode and a cathode, an electrode base material and a water collection part, a wick, and a trap, the solid polymer electrolyte membrane having: It is a cation exchange membrane that exhibits proton conductivity when saturated with water. Both anode and cathode electrodes are placed on both sides of the main surface of the solid polymer electrolyte membrane, and the electrode base material has a flat main surface and an uneven surface. The electrode base material has a certain main surface and is arranged in contact with the anode and the cathode through the flat main surface, and at this time, the electrode base material has a convex part and the area between the two main surfaces becomes the base material water absorption part, and the concave part has a bottom part. It becomes the base material water repellent part,
The concave part serves as a gas passage, and the water collection part is provided on the anode and cathode sides, respectively, in contact with the water absorption part of the electrode base material.The wick is connected to the water collection part and traps excess water in the cell. A solid polymer electrolyte fuel cell characterized in that the trap stores water from the cell.
JP2113572A 1990-04-27 1990-04-27 Solid polymer electrolyte type fuel cell Pending JPH0412462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2113572A JPH0412462A (en) 1990-04-27 1990-04-27 Solid polymer electrolyte type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2113572A JPH0412462A (en) 1990-04-27 1990-04-27 Solid polymer electrolyte type fuel cell

Publications (1)

Publication Number Publication Date
JPH0412462A true JPH0412462A (en) 1992-01-17

Family

ID=14615642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2113572A Pending JPH0412462A (en) 1990-04-27 1990-04-27 Solid polymer electrolyte type fuel cell

Country Status (1)

Country Link
JP (1) JPH0412462A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0872907A1 (en) * 1997-04-11 1998-10-21 Sanyo Electric Co., Ltd. Fuel cell
US6117579A (en) * 1997-03-25 2000-09-12 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
JP2001332287A (en) * 2000-05-24 2001-11-30 Sony Corp Fitting method for electrical energy generating device and computer internally equipped with the electrical energy generating device
JP2001332274A (en) * 2000-05-24 2001-11-30 Sony Corp Device for generating electrical energy
JP2002298874A (en) * 2001-04-02 2002-10-11 Kemitsukusu:Kk Separator for flat fuel cell and flat fuel cell
KR20040000566A (en) * 2002-06-21 2004-01-07 엘지전자 주식회사 Humidification device for fuel cell
US6787254B2 (en) 2000-07-28 2004-09-07 Hydrogenics Corporation Method and apparatus for humidification and temperature control of incoming fuel cell process gas
US7052791B2 (en) 2000-07-28 2006-05-30 Hydrogenics Corporation Apparatus for humidification and temperature control of incoming fuel cell process gas
FR2898731A1 (en) * 2006-03-17 2007-09-21 Commissariat Energie Atomique Micro or press filter type fuel cell, has assembly comprising hydrophobic and hydrophilic layers and arranged on part of outer surface of cathode, where hydrophilic layer is in contact with one of zones of surface to form water storing zone
JP2008311166A (en) * 2007-06-18 2008-12-25 Panasonic Corp Fuel cell system

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6117579A (en) * 1997-03-25 2000-09-12 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
EP0867963A3 (en) * 1997-03-25 2002-09-04 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
EP1677379A1 (en) * 1997-03-25 2006-07-05 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
EP0872907A1 (en) * 1997-04-11 1998-10-21 Sanyo Electric Co., Ltd. Fuel cell
US6083638A (en) * 1997-04-11 2000-07-04 Sanyo Electric Co., Ltd. Fuel cell
JP2001332287A (en) * 2000-05-24 2001-11-30 Sony Corp Fitting method for electrical energy generating device and computer internally equipped with the electrical energy generating device
JP2001332274A (en) * 2000-05-24 2001-11-30 Sony Corp Device for generating electrical energy
US6787254B2 (en) 2000-07-28 2004-09-07 Hydrogenics Corporation Method and apparatus for humidification and temperature control of incoming fuel cell process gas
US7051801B1 (en) 2000-07-28 2006-05-30 Hydrogenics Corporation Method and apparatus for humidification and temperature control of incoming fuel cell process gas
US7052791B2 (en) 2000-07-28 2006-05-30 Hydrogenics Corporation Apparatus for humidification and temperature control of incoming fuel cell process gas
JP2002298874A (en) * 2001-04-02 2002-10-11 Kemitsukusu:Kk Separator for flat fuel cell and flat fuel cell
KR20040000566A (en) * 2002-06-21 2004-01-07 엘지전자 주식회사 Humidification device for fuel cell
FR2898731A1 (en) * 2006-03-17 2007-09-21 Commissariat Energie Atomique Micro or press filter type fuel cell, has assembly comprising hydrophobic and hydrophilic layers and arranged on part of outer surface of cathode, where hydrophilic layer is in contact with one of zones of surface to form water storing zone
WO2007118945A2 (en) * 2006-03-17 2007-10-25 Commissariat A L'energie Atomique Fuel cell comprising an assembly capable of managing the water generated by said cell
WO2007118945A3 (en) * 2006-03-17 2008-09-12 Commissariat Energie Atomique Fuel cell comprising an assembly capable of managing the water generated by said cell
US7993794B2 (en) 2006-03-17 2011-08-09 Commissariat à l'Energie Atomique Fuel cell comprising an assembly capable of managing the water generated by said cell
JP2008311166A (en) * 2007-06-18 2008-12-25 Panasonic Corp Fuel cell system

Similar Documents

Publication Publication Date Title
KR100513183B1 (en) Fuel cell
JP3352716B2 (en) Solid polymer electrolyte fuel cell device
JP4074061B2 (en) Polymer electrolyte fuel cell system
JP3382708B2 (en) Gas separator for solid polymer electrolyte fuel cells
JPH10125338A (en) Solid polymer electrolyte-type fuel cell
JPH07220742A (en) Solid high polymer electrolyte fuel cell and manufacture of electrode-ion exchange film connector for this fuel cell
JP4956870B2 (en) Fuel cell and fuel cell manufacturing method
US20050084731A1 (en) Fuel cell
JPH09180743A (en) Solid polymeric fuel cell
US6492054B1 (en) Polymer electrolyte fuel cell including a water-retaining layer on a ribbed plate
JPH0412462A (en) Solid polymer electrolyte type fuel cell
JPH08130025A (en) Fuel cell
JPH11135132A (en) Solid polymer electrolyte fuel cell
JP2001006708A (en) Solid high polymer fuel cell
JP3106554B2 (en) Solid polymer electrolyte fuel cell and method for supplying water and gas contained in the membrane
JP3111682B2 (en) Solid polymer electrolyte fuel cell system
JP3356465B2 (en) Method for manufacturing electrode for solid polymer electrolyte fuel cell
JP3354550B2 (en) Polymer electrolyte fuel cell and polymer electrolyte fuel cell stack
US7993794B2 (en) Fuel cell comprising an assembly capable of managing the water generated by said cell
JP2001102059A (en) Proton-exchange membrane fuel cell system
JPH0689730A (en) Fuel cell with high polymer solid electrolyte
JP2001236976A (en) Fuel cell
JP2814716B2 (en) Cell structure of solid polymer electrolyte fuel cell and method of supplying water and gas
JPWO2002103829A1 (en) Solid polymer fuel cell and solid polymer fuel cell power generation system
JP5029897B2 (en) Fuel cell