JP2814716B2 - Cell structure of solid polymer electrolyte fuel cell and method of supplying water and gas - Google Patents

Cell structure of solid polymer electrolyte fuel cell and method of supplying water and gas

Info

Publication number
JP2814716B2
JP2814716B2 JP2202891A JP20289190A JP2814716B2 JP 2814716 B2 JP2814716 B2 JP 2814716B2 JP 2202891 A JP2202891 A JP 2202891A JP 20289190 A JP20289190 A JP 20289190A JP 2814716 B2 JP2814716 B2 JP 2814716B2
Authority
JP
Japan
Prior art keywords
cell
porous substrate
water
cathode
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2202891A
Other languages
Japanese (ja)
Other versions
JPH0495356A (en
Inventor
康孝 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2202891A priority Critical patent/JP2814716B2/en
Publication of JPH0495356A publication Critical patent/JPH0495356A/en
Application granted granted Critical
Publication of JP2814716B2 publication Critical patent/JP2814716B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は固体高分子電解質型燃料電池のセル構造お
よび水とガスの供給方法に係り、特に単セルアノードへ
の水と反応ガスの供給を効率良く行うセル構造と方法に
関する。
The present invention relates to a cell structure of a solid polymer electrolyte fuel cell and a method for supplying water and gas, and more particularly to a method for supplying water and a reaction gas to a single cell anode. The present invention relates to an efficient cell structure and method.

〔従来の技術〕[Conventional technology]

燃料電池はこれに用いる電解質の種類により、例えば
アルカリ型,固体高分子電解質型,およびリン酸型など
の低温動作形の燃料電池と、溶融炭酸塩型,固体酸化物
電解質型などの高温動作形の燃料電池とに大別される。
Depending on the type of electrolyte used for the fuel cell, there are two types of fuel cells: low-temperature type fuel cells such as alkaline type, solid polymer electrolyte type and phosphoric acid type, and high temperature type fuel cells such as molten carbonate type and solid oxide electrolyte type. Fuel cells.

固体高分子電解質型燃料電池は固体高分子電解質膜の
2つの主面にそれぞれアノードまたはカソード,および
電極基材を配して形成される。アノードまたはカソード
の各電極は固体高分子電解質膜と電極基材とによりサン
ドウィッチされる。固体高分子電解質膜はスルホン酸基
を持つポリスチレン系の陽イオン交換膜をカチオン導電
性膜として施用したもの,フロロカーボンスルホン酸と
ポリビニリデンフロライドの混合膜,あるいはフロロカ
ーボンマトリックスにトリフロロエチレンをグラフト化
したものなどが知られているが、最近ではパーフロロカ
ーボンスルホン酸膜(米国、デュポン社製、商品名ナフ
ィオン膜)を用いることにより燃料電池を長寿命化した
ものなどが知られている。固体高分子電解質膜は分子中
にプロトン(水素イオン)交換基を有し、飽和に含水さ
せることにより常温で20Ω・cm以下の比抵抗を示し、プ
ロトン導電性電解質として機能する。飽和含水量は温度
によって可逆的に変化する。電極基材は多孔質体で、燃
料電池の反応ガス供給手段,集電体として機能する。ア
ノードまたはカソードの電極においては3相界面が形成
され電気化学反応がおこる。
A solid polymer electrolyte fuel cell is formed by disposing an anode or a cathode and an electrode substrate on two main surfaces of a solid polymer electrolyte membrane, respectively. Each of the anode and cathode electrodes is sandwiched between the solid polymer electrolyte membrane and the electrode substrate. The solid polymer electrolyte membrane is a polystyrene-based cation exchange membrane with sulfonic acid groups applied as a cation conductive membrane, a mixed membrane of fluorocarbon sulfonic acid and polyvinylidene fluoride, or trifluoroethylene grafted to a fluorocarbon matrix. Although a fuel cell having a longer life is known recently, a perfluorocarbon sulfonic acid membrane (manufactured by DuPont, USA, trade name: Nafion membrane) is used. The solid polymer electrolyte membrane has a proton (hydrogen ion) exchange group in the molecule, exhibits a specific resistance of 20 Ω · cm or less at room temperature by being saturated with water, and functions as a proton conductive electrolyte. The saturated water content changes reversibly with temperature. The electrode substrate is a porous body and functions as a reactant gas supply unit and a current collector for the fuel cell. At the anode or cathode electrode, a three-phase interface is formed and an electrochemical reaction occurs.

アノードでは次式の反応がおこる。 The following reaction takes place at the anode.

H2→2H++2e ……(1) カソードでは次式の反応がおこる。H 2 → 2H + + 2e (1) At the cathode, the following reaction occurs.

1/2 O2+2H++2e→H2O ……(2) つまり、アノードにおいては、系の外部より供給され
た水素がプロトンと電子を生成する。生成したプロトン
はイオン交換膜中をカソードに向かって移動し、電子は
外部回路を通ってカソードに移動する。一方、カソード
においては、系の外部より供給された酸素と、イオン交
換膜中をアノードより移動してきたプロトンと、外部回
路より移動してきた電子が反応し、水を生成する。
1/2 O 2 + 2H + + 2e → H 2 O (2) That is, at the anode, hydrogen supplied from outside the system generates protons and electrons. The generated protons move toward the cathode in the ion exchange membrane, and the electrons move to the cathode through an external circuit. On the other hand, at the cathode, oxygen supplied from the outside of the system, protons moving from the anode through the ion exchange membrane, and electrons moving from the external circuit react to generate water.

このような固体高分子電解質型燃料電池においてはプ
ロトンがアノードよりカソードに向かってイオン交換膜
中を移動する際に水和の状態で移動するためにアノード
近傍では含水量が減少しイオン交換膜が乾いてくるとい
う現象がおこる。そのためにアノード近傍では水を供給
しないとプロトンの移動が困難となりセルの内部抵抗が
増加する。一方カソードにおいては式(2)で示すよう
に水を生成するが、一般的に固体高分子電解質型燃料電
池は100℃以下の温度で運転されるために、カソード側
において生成する水は液体状態であると考えられる。そ
のためにカソードにおいては過剰の水が貯まり、電極基
材の細孔を閉塞して反応ガスの拡散が阻害されるように
なる。従って固体高分子電解質型燃料電池を連続して効
率良く運転するためにはアノードへの水の供給とカソー
ドからの水の排出を適正に行うことが必要になる。
In such a solid polymer electrolyte fuel cell, when protons move from the anode to the cathode in the ion exchange membrane in a hydrated state, the water content decreases near the anode and the ion exchange membrane becomes The phenomenon of drying out occurs. Therefore, unless water is supplied near the anode, the movement of protons becomes difficult, and the internal resistance of the cell increases. On the other hand, water is generated at the cathode as shown in equation (2). However, since a solid polymer electrolyte fuel cell is generally operated at a temperature of 100 ° C. or less, the water generated at the cathode side is in a liquid state. It is considered to be. For this reason, excess water is accumulated in the cathode, which closes the pores of the electrode base material and inhibits the diffusion of the reaction gas. Therefore, in order to continuously and efficiently operate the solid polymer electrolyte fuel cell, it is necessary to appropriately supply water to the anode and discharge water from the cathode.

水の供給方法としては、従来セルの運転温度と同一
か、あるいはそれ以上の温度に維持された水の中に燃料
ガスをバブリングさせて加湿し、このガスをセルのアノ
ード側に供給する方法が知られている。また、第2図に
示すように、ウィックを通して親水性基材6Aに水を供給
し、外部からイオン交換膜を濡らす方法も知られてい
る。
As a method of supplying water, a method of bubbling a fuel gas in water maintained at a temperature equal to or higher than the operating temperature of a conventional cell to humidify the gas and supplying the gas to the anode side of the cell is known. Are known. Further, as shown in FIG. 2, a method is also known in which water is supplied to the hydrophilic substrate 6A through a wick to wet the ion exchange membrane from the outside.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら上述のような従来の水の供給方法におい
ては、親水性多孔質基材6A中において水が溜まり、その
結果反応ガスの拡散阻害を引きおこし、燃料電池の特性
が低下するという問題があった。
However, in the conventional water supply method as described above, there is a problem that water accumulates in the hydrophilic porous base material 6A, which causes diffusion inhibition of the reaction gas and lowers the characteristics of the fuel cell. .

この発明は上述の点に鑑みてなされ、その目的は電極
基材6Aに改良を加えることにより、アノードに効率良く
水とガスを供給できる固体高分子電解質型燃料電池のセ
ル構造および水とガスの供給方法を提供することにあ
る。
The present invention has been made in view of the above points, and its object is to improve the electrode base material 6A so that water and gas can be efficiently supplied to the anode. It is to provide a supply method.

〔課題を解決するための手段〕[Means for solving the problem]

上述の目的はこの発明によれば 1)単セルと、親水性多孔質基材6と、疎水性多孔質基
材5とを有し、 単セルはアノード2とフツ素樹脂系陽イオン交換膜1
とカソード3が積層されたものであり、 親水性多孔質基材は厚さ方向に貫通する通気孔を有
し、かつ水が含浸保持されるものであって単セルのアノ
ードに接し、 撥水性多孔質基材は単セルのカソードに接して親水性
多孔質基材とともに単セルを挾持するものであること、 2)第一工程と第二工程とを有し、 第一工程はアノード2とフツ素樹脂系陽イオン交換膜
1とカソード3が積層されてなる単セルのアノードに対
し、通気孔9を有する親水性多孔質基材6を介して水と
反応ガスを供給するものであり、 第二工程は、単セルのカソードに対し、撥水性多孔質
基材5を介してカソードガスを供給するとともにカソー
ドで生成した水を排出するものであること、または 3)上記1セル構造において、親水性多孔質基材の通気
孔は直径0.5〜3.0mmの貫通孔であること、とすることに
より達成される。
The above object is according to the present invention. 1) It has a single cell, a hydrophilic porous substrate 6, and a hydrophobic porous substrate 5, and the single cell is composed of the anode 2 and a fluorine resin-based cation exchange membrane. 1
And the cathode 3 are laminated. The hydrophilic porous base material has a ventilation hole penetrating in the thickness direction and is impregnated with water so as to be in contact with the anode of the single cell, The porous substrate contacts the cathode of the single cell and sandwiches the single cell together with the hydrophilic porous substrate. 2) It has a first step and a second step. Water and a reaction gas are supplied to the anode of a single cell in which the fluorinated resin-based cation exchange membrane 1 and the cathode 3 are laminated through a hydrophilic porous substrate 6 having ventilation holes 9; The second step is to supply a cathode gas to the cathode of the single cell via the water-repellent porous substrate 5 and to discharge water generated at the cathode, or 3) In the one-cell structure, Vent hole of hydrophilic porous substrate is 0.5-3.0mm in diameter It is through-holes, is achieved by a.

〔作用〕[Action]

親水性多孔質基材のポアの部分には水が含浸保持され
る。通気孔には反応ガスが通流したあとアノードに供給
される。
Water is impregnated and held in the pores of the hydrophilic porous substrate. After the reactant gas flows through the vent, it is supplied to the anode.

〔実施例〕〔Example〕

次にこの発明の実施例を図面に基いて説明する。第1
図はこの発明の実施例に係る固体高分子電解質型燃料電
池を示す要部配置図である。フツ素樹脂系陽イオン交換
膜1とアノード2とカソード3の積層されてなる単セル
のアノード2に通気孔9を有する親水性多孔質基材6が
配される。また単セルのカソード3には撥水性多孔質基
材5が配される。親水性多孔質基材6にはトラツプ14中
の水がウイツク7を介して供給される。供給された水は
親水性多孔質基材6のポアの部分に保持される。また通
気孔9を有する親水性多孔質基材6にはアノードガス入
口12よりアノードガスが供給され、アノードガス出口13
より排出される。撥水性多孔質基材5にはカソードガス
入口10よりカソードガスが供給され、カソードガス出口
11より排出される。通気孔9を通流したアノードガスは
アノードでプロトンH+となり陽イオン交換膜中を拡散し
てカソードに至る。カソードではH+はカソードガスの酸
素と反応し水を生成する。この水はカソードガスにより
系外に排出される。プロトンH+とともに陽イオン交換膜
内を移動する水は親水性多孔質基材に保持された水が補
給する。撥水性多孔質基材5はグラフアイトの多孔質材
料をテフロン(Dupont社の商品名)30J(三井・デコポ
ン・フロロケミカル社製)に浸漬し、24hに乾燥したの
ち、360℃で15min焼成した。親水性多孔質基材6にはグ
ラフアイトの多孔質材料に5〜15mmピッチで直径0.5〜
3.0mmの貫通孔を形成した。ウイツク7は木綿繊維をひ
も状にして用いた。
Next, an embodiment of the present invention will be described with reference to the drawings. First
FIG. 1 is a main part layout diagram showing a solid polymer electrolyte fuel cell according to an embodiment of the present invention. A hydrophilic porous substrate 6 having ventilation holes 9 is disposed on the anode 2 of a single cell in which the fluorine resin-based cation exchange membrane 1, the anode 2 and the cathode 3 are laminated. Further, a water-repellent porous base material 5 is disposed on the cathode 3 of the single cell. Water in the trap 14 is supplied to the hydrophilic porous substrate 6 through the wick 7. The supplied water is held in the pores of the hydrophilic porous substrate 6. An anode gas is supplied to the hydrophilic porous substrate 6 having the ventilation holes 9 from the anode gas inlet 12 and the anode gas outlet 13
Is more exhausted. Cathode gas is supplied to the water-repellent porous substrate 5 from the cathode gas inlet 10 and the cathode gas outlet
Emitted from 11. The anode gas flowing through the ventilation hole 9 becomes proton H + at the anode and diffuses through the cation exchange membrane to reach the cathode. At the cathode, H + reacts with oxygen in the cathode gas to produce water. This water is discharged out of the system by the cathode gas. The water moving in the cation exchange membrane together with the protons H + is supplemented by the water held by the hydrophilic porous substrate. The water-repellent porous substrate 5 was prepared by immersing a porous material of graphite in Teflon (trade name of Dupont) 30J (manufactured by Mitsui Decopon Fluorochemicals Co.), dried for 24 hours, and baked at 360 ° C. for 15 minutes. . The hydrophilic porous substrate 6 has a diameter of 0.5 to 15 mm at a pitch of 5 to 15 mm.
A 3.0 mm through hole was formed. Wick 7 was made from a cotton fiber string.

〔発明の効果〕〔The invention's effect〕

この発明によれば 1)単セルと、親水性多孔質基材と、疎水性多孔質基材
とを有し、 単セルはアノードとフツ素樹脂系陽イオン交換膜とカ
ソードが積層されたものであり、 親水性多孔質基材は厚さ方向に貫通する通気孔を有
し、かつ水が含浸保持されるものであって単セルのアノ
ードに接し、 撥水性多孔質基材は単セルのカソードに接して親水性
多孔質基材とともに単セルを挾持するものであること、 2)第一工程と第二工程とを有し、 第一工程はアノードとフッ素樹脂系陽イオン交換膜と
カソードが積層されてなる単セルのアノードに対し、通
気孔を有する親水性多孔質基材を介して水と反応ガスを
供給するものであり、 第二工程は、単セルのカソードに対し、撥水性多孔質
基材を介してカソードガスを供給するとともにカソード
で生成した水を排出するものであること、または 3)上記1のセル構造において、親水性多孔質基材の通
気孔は直径0.5〜3.0mmの貫通孔であること、とするの
で、親水性多孔質基材のポアの部分には水が保持され、
通気孔には反応ガスが通流するので、アノードには水と
反応ガスがそれぞれ効率良く供給され、その結果、分極
特性に優れる固体高分子電解質型燃料電池が得られる。
According to the present invention, 1) a single cell, a hydrophilic porous substrate, and a hydrophobic porous substrate, each of which has an anode, a fluorine resin-based cation exchange membrane, and a cathode laminated The hydrophilic porous substrate has an air hole penetrating in the thickness direction, and is impregnated with water and is in contact with the anode of the single cell, and the water-repellent porous substrate is a single cell A single cell is sandwiched together with the hydrophilic porous substrate in contact with the cathode; 2) a first step and a second step, wherein the first step is an anode, a fluororesin-based cation exchange membrane, and a cathode Is to supply water and a reaction gas to the anode of a single cell formed by laminating through a hydrophilic porous substrate having a vent, and the second step is to repel water to a cathode of the single cell. Supply cathode gas through a porous substrate and generate at the cathode 3) In the cell structure of 1 above, the vent hole of the hydrophilic porous substrate is a through hole having a diameter of 0.5 to 3.0 mm. Water is retained in the pores of the porous substrate,
Since the reaction gas flows through the vent, water and the reaction gas are efficiently supplied to the anode, respectively, and as a result, a solid polymer electrolyte fuel cell having excellent polarization characteristics is obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の実施例に係る固体高分子電解質型燃
料電池の要部配置図、第2図は従来の固体高分子電解質
型燃料電池の要部配置図である。 1:フツ素樹脂系陽イオン交換膜、2:アノード、3:カソー
ド、5:撥水性多孔質基材、6:親水性多孔質基材、9:通気
孔。
FIG. 1 is a layout view of a main part of a solid polymer electrolyte fuel cell according to an embodiment of the present invention, and FIG. 2 is a layout view of a main part of a conventional solid polymer electrolyte fuel cell. 1: fluorinated resin-based cation exchange membrane, 2: anode, 3: cathode, 5: water-repellent porous substrate, 6: hydrophilic porous substrate, 9: vent.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】単セルと、親水性多孔質基材と、疎水性多
孔質基材とを有し、 単セルはアノードとフツ素樹脂系陽イオン交換膜とカソ
ードが積層されたものであり、 親水性多孔質基材は厚さ方向に貫通する通気孔を有し、
かつ水が含浸保持されるものであって単セルのアノード
に接し、 撥水性多孔質基材は単セルのカソードに接して親水性多
孔質基材とともに単セルを挾持するものであることを特
徴とする固体高分子電解質型燃料電池のセル構造。
1. A unit cell comprising a single cell, a hydrophilic porous substrate, and a hydrophobic porous substrate, wherein the single cell has an anode, a fluorine resin-based cation exchange membrane, and a cathode laminated. The hydrophilic porous substrate has a ventilation hole penetrating in the thickness direction,
In addition, it is impregnated with water and is in contact with the anode of the single cell, and the water-repellent porous substrate is in contact with the cathode of the single cell and sandwiches the single cell with the hydrophilic porous substrate. Cell structure of a solid polymer electrolyte fuel cell.
【請求項2】第一工程と第二工程とを有し、 第一工程はアノードとフツ素樹脂系陽イオン交換膜とカ
ソードが積層されてなる単セルのアノードに対し、通気
孔を有する親水性多孔質基材を介して水と反応ガスを供
給するものであり、 第二工程は、単セルのカソードに対し、撥水性多孔質基
材を介してカソードガスを供給するとともにカソードで
生成した水を排出するものであることを特徴とする固体
高分子電解質型燃料電池の水とガスの供給方法。
2. A method according to claim 1, further comprising a first step and a second step, wherein the first step comprises a step of forming a hydrophilic cell having a vent hole with respect to a single-cell anode comprising an anode, a fluorine resin-based cation exchange membrane and a cathode laminated. The second step is to supply the cathode gas via the water-repellent porous substrate to the cathode of the single cell and to generate the reaction gas with the reaction gas through the porous porous substrate. A method for supplying water and gas for a solid polymer electrolyte fuel cell, characterized by discharging water.
【請求項3】請求項1記載のセル構造において、親水性
多孔質基材の通気孔は直径0.5〜3.0mmの貫通孔であるこ
とを特徴とする固体高分子電解質型燃料電池のセル構
造。
3. The cell structure of a solid polymer electrolyte fuel cell according to claim 1, wherein the air holes of the hydrophilic porous substrate are through holes having a diameter of 0.5 to 3.0 mm.
JP2202891A 1990-07-31 1990-07-31 Cell structure of solid polymer electrolyte fuel cell and method of supplying water and gas Expired - Fee Related JP2814716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2202891A JP2814716B2 (en) 1990-07-31 1990-07-31 Cell structure of solid polymer electrolyte fuel cell and method of supplying water and gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2202891A JP2814716B2 (en) 1990-07-31 1990-07-31 Cell structure of solid polymer electrolyte fuel cell and method of supplying water and gas

Publications (2)

Publication Number Publication Date
JPH0495356A JPH0495356A (en) 1992-03-27
JP2814716B2 true JP2814716B2 (en) 1998-10-27

Family

ID=16464915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2202891A Expired - Fee Related JP2814716B2 (en) 1990-07-31 1990-07-31 Cell structure of solid polymer electrolyte fuel cell and method of supplying water and gas

Country Status (1)

Country Link
JP (1) JP2814716B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59306256D1 (en) * 1992-11-05 1997-05-28 Siemens Ag Method and device for water and / or inert gas disposal of a fuel cell block
JP3573771B2 (en) * 1993-11-09 2004-10-06 株式会社豊田中央研究所 Fuel cell
DE19819324A1 (en) * 1998-04-30 1999-11-04 Emitec Emissionstechnologie Method for wetting at least one of the surfaces of an electrolyte in a fuel cell
US6555262B1 (en) * 2000-02-08 2003-04-29 Hybrid Power Generation Systems, Llc Wicking strands for a polymer electrolyte membrane
JP5223203B2 (en) * 2007-01-31 2013-06-26 トヨタ自動車株式会社 Fuel cell
JP5476694B2 (en) * 2008-09-19 2014-04-23 日産自動車株式会社 FUEL CELL, GAS DIFFUSION LAYER FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME

Also Published As

Publication number Publication date
JPH0495356A (en) 1992-03-27

Similar Documents

Publication Publication Date Title
KR100513183B1 (en) Fuel cell
JP6408562B2 (en) Self-humidifying membrane / electrode assembly and fuel cell equipped with the same
JP4956870B2 (en) Fuel cell and fuel cell manufacturing method
JP2001345106A (en) Electrode for fuel cell and manufacturing method
JP3778506B2 (en) Electrode for polymer electrolyte fuel cell
JP2002289230A (en) Polymer electrolyte fuel cell
JP3577402B2 (en) Polymer electrolyte fuel cell
JP5079195B2 (en) Gas diffusion electrode for fuel cell and manufacturing method thereof
US20070218337A1 (en) Cell Module and Fuel Cell
JP2001006708A (en) Solid high polymer fuel cell
JP2003178780A (en) Polymer electrolyte type fuel cell system and operating method of polymer electrolyte type fuel cell
JP3106554B2 (en) Solid polymer electrolyte fuel cell and method for supplying water and gas contained in the membrane
JPH11135133A (en) Solid polymer electrolyte fuel cell
JP3354550B2 (en) Polymer electrolyte fuel cell and polymer electrolyte fuel cell stack
JP2814716B2 (en) Cell structure of solid polymer electrolyte fuel cell and method of supplying water and gas
JP3356465B2 (en) Method for manufacturing electrode for solid polymer electrolyte fuel cell
JP3813406B2 (en) Fuel cell
JP2001102059A (en) Proton-exchange membrane fuel cell system
JPH0412462A (en) Solid polymer electrolyte type fuel cell
JP2001057217A (en) Polymer electrolyte type fuel cell
JP3500086B2 (en) Fuel cell and fuel cell using the same
JP4433552B2 (en) Composite catalyst and production method thereof
JP5029897B2 (en) Fuel cell
JP2001093544A (en) Electrode of fuel cell, method for manufacturing and fuel cell
JPH0684528A (en) Solid high polymer electrolyte type fuel cell

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees