JPH08285763A - Near infrared spectroscopic analyzer - Google Patents

Near infrared spectroscopic analyzer

Info

Publication number
JPH08285763A
JPH08285763A JP11639695A JP11639695A JPH08285763A JP H08285763 A JPH08285763 A JP H08285763A JP 11639695 A JP11639695 A JP 11639695A JP 11639695 A JP11639695 A JP 11639695A JP H08285763 A JPH08285763 A JP H08285763A
Authority
JP
Japan
Prior art keywords
sample
movable wall
shutter
case
spectroscopic analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11639695A
Other languages
Japanese (ja)
Inventor
Sadakazu Fujioka
定和 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP11639695A priority Critical patent/JPH08285763A/en
Publication of JPH08285763A publication Critical patent/JPH08285763A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE: To enhance the analytic accuracy of a near infrared spectroscopic analyzer by stabilizing the filling density of powder or powdery sample. CONSTITUTION: The spectroscopic analyzer 1 comprises a spectrometer 2, an analyzer 3, and a sample part 4 and the sample part 4 comprises a shoot 13, a sample case 14, and a collection box 15 which are communicated through a closing shutter 16. The shutter 16 is fixed with a solenoid 17 and a spring 18. The sample case 14 has a movable wall 19 on the side opposite to the light projection face and an air cylinder 20 is provided as means for moving the movable wall. When a sample is analyzed with such constitution, a sample is set in the shoot 13 at first and then the solenoid 17 is turned ON to open the shutter 16 thus throwing the sample into the sample case 14. After throwing the sample into the sample case 14, the solenoid 17 is turned OFF to close the shutter 16 through the spring 18. Finally, the movable wall 19 is shifted to the projection face side by means of the air cylinder 20 and to reduce the width of the sample case 14 thus compacting the sample in the case.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、近赤外吸収スペクトル
を利用して試料の成分組成を分析する分光分析機の改良
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a spectroscopic analyzer for analyzing a component composition of a sample by utilizing a near infrared absorption spectrum.

【0002】[0002]

【従来の技術】近赤外吸収スペクトルの測定では、測定
試料が籾や小麦などの粒状物や穀物粉末の場合に試料密
度が測定精度に影響する。試料は近赤外線分光分析機の
透明な試料容器に充填して測定するのであるが、従来は
奥行の違う試料容器を数種類用意して試料の種類に応じ
て使い分けていた。
2. Description of the Related Art In the measurement of near-infrared absorption spectrum, when the measurement sample is granular material such as paddy or wheat or grain powder, the sample density affects the measurement accuracy. Samples are filled in a transparent sample container of a near infrared spectrophotometer for measurement, but conventionally, several sample containers with different depths were prepared and used according to the type of sample.

【0003】[0003]

【発明が解決しようとする課題】しかしこの方法では、
単に試料容器の選択が煩わしいばかりでなく、安定した
充填密度を実現することが難しかった。特に、生籾や生
麦は水分量が多いため、充填密度が不安定になりやす
い。
However, in this method,
Not only was the selection of the sample container cumbersome, but it was difficult to achieve a stable packing density. In particular, since raw rice and raw wheat have a large amount of water, the packing density tends to be unstable.

【0004】本発明は、このような問題に鑑み、試料の
充填密度を安定させ、分光分析機の分析精度を向上する
ことを目的とする。
In view of such a problem, the present invention aims to stabilize the packing density of the sample and improve the analysis accuracy of the spectroscopic analyzer.

【0005】[0005]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明は以下のように構成した。
In order to achieve the above object, the present invention has the following constitution.

【0006】すなわち、可動可能に設けた試料容器の可
動壁に可動壁移動手段を連結し、試料容器中の試料に近
赤外線を照射し、その吸収スペクトルより試料の成分組
成を分析する構成である。
That is, the movable wall moving means is connected to the movable wall of the movably provided sample container, the sample in the sample container is irradiated with near infrared rays, and the component composition of the sample is analyzed from its absorption spectrum. .

【0007】[0007]

【作用】試料容器に試料を投入したら、可動壁移動手段
により試料容器の一側面を成す可動壁を一定の力で押し
て移動させ、これにより試料容器中の試料を圧迫して一
定の充填密度にする。
When the sample is put into the sample container, the movable wall moving means pushes the movable wall forming one side of the sample container with a constant force to move the sample, thereby compressing the sample in the sample container to a constant packing density. To do.

【0008】[0008]

【実施例】以下に図面を参照して本発明の第1実施例に
ついて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to the drawings.

【0009】図1に本発明の実施例の分光分析装置の構
成図を示す。分光分析装置1は分光器2と、分析器3
と、試料部4から構成される。分光器2は光源5と、レ
ンズ6と、チョッパホイール7と、光学フィルタ8から
構成され、光源5の光軸に沿ってレンズ6と、チョッパ
ホイール7と、光学フィルタ8を配列する。チョッパホ
イール7はチョッパホイール7の円周端部が光源5の光
軸を遮断する位置に配置する。
FIG. 1 is a block diagram of a spectroscopic analyzer according to an embodiment of the present invention. The spectroscopic analyzer 1 includes a spectroscope 2 and an analyzer 3.
And the sample unit 4. The spectroscope 2 includes a light source 5, a lens 6, a chopper wheel 7, and an optical filter 8. The lens 6, the chopper wheel 7, and the optical filter 8 are arranged along the optical axis of the light source 5. The chopper wheel 7 is arranged at a position where the circumferential end of the chopper wheel 7 blocks the optical axis of the light source 5.

【0010】分析器3は光電センサ9と、増幅器10
と、A/D変換器11と、CPU12から構成され、そ
れぞれを電気的に接続する。光電センサ9は分光器2か
ら試料部4に照射した光の反射光を受ける位置に1対の
光電センサ9a、9bと、透過光を受ける位置に光電セ
ンサ9cの計3個を配置する。
The analyzer 3 includes a photoelectric sensor 9 and an amplifier 10.
And an A / D converter 11 and a CPU 12, which are electrically connected to each other. The photoelectric sensor 9 includes a pair of photoelectric sensors 9a and 9b at a position for receiving the reflected light of the light emitted from the spectroscope 2 to the sample portion 4, and a total of three photoelectric sensors 9c at the positions for receiving the transmitted light.

【0011】試料部4はシュート13と、試料容器14
と、収集箱15から構成され、各々を開閉自在のシャッ
タ16を介して連通する。シャッタ16にはソレノイド
17とスプリング18を取付ける。試料容器14の投光
面の対向側面を可動壁19とし、可動壁移動手段として
エアシリンダ20を取付ける。
The sample unit 4 includes a chute 13 and a sample container 14
And a collection box 15, which are communicated with each other via a shutter 16 which can be opened and closed. A solenoid 17 and a spring 18 are attached to the shutter 16. The side opposite to the light projecting surface of the sample container 14 is a movable wall 19, and an air cylinder 20 is attached as a movable wall moving means.

【0012】本発明の実施例は以上のような構成で、試
料を分析するときは、まず試料をシュート13に入れ、
ソレノイド17をオンにしてシャッタ16を開き、試料
を試料容器14に投入する。試料を試料容器14に投入
したら、ソレノイド17をオフにしてスプリング18に
よりシャッタ16を閉じる。次に、エアシリンダ20を
駆動して一定の圧力で可動壁19を投光面側に移動さ
せ、試料容器14の容積を縮小して内部の試料を圧迫す
る。
The embodiment of the present invention is constructed as described above, and when the sample is analyzed, the sample is first put in the chute 13 and
The solenoid 17 is turned on to open the shutter 16, and the sample is put into the sample container 14. After the sample is put into the sample container 14, the solenoid 17 is turned off and the shutter 16 is closed by the spring 18. Next, the air cylinder 20 is driven to move the movable wall 19 to the light projecting surface side with a constant pressure, the volume of the sample container 14 is reduced, and the sample inside is pressed.

【0013】この状態で以下のようにして試料の分析を
行う。まず、分光器2において光源5から発せられた光
をレンズ6により平行光線にし、この平行光線をチョッ
パホイール7の回転により周期的に分断した後、光学フ
ィルタ8により純度の高い単色光にする。
In this state, the sample is analyzed as follows. First, the light emitted from the light source 5 in the spectroscope 2 is made into a parallel light beam by the lens 6, the parallel light beam is periodically divided by the rotation of the chopper wheel 7, and then is made into a highly pure monochromatic light by the optical filter 8.

【0014】この単色光を試料容器14の投光面に照射
して、各々の波長における試料からの拡散反射光を光電
センサ9に受光する。光電センサ9が受光した拡散反射
光は、増幅器10により増幅し、A/D変換器11によ
りデジタル信号に変換し、CPU12により吸光度を算
出して測定試料の成分濃度を計算する。
The projection surface of the sample container 14 is irradiated with this monochromatic light so that the photoelectric sensor 9 receives the diffusely reflected light from the sample at each wavelength. The diffuse reflection light received by the photoelectric sensor 9 is amplified by the amplifier 10, converted into a digital signal by the A / D converter 11, and the CPU 12 calculates the absorbance to calculate the component concentration of the measurement sample.

【0015】以上のようにして試料を分析した後、ソレ
ノイド17をオンにしてシャッタ16を開き、試料を収
集箱15に排出する。
After the sample is analyzed as described above, the solenoid 17 is turned on to open the shutter 16 and the sample is discharged to the collection box 15.

【0016】次に、本発明の第2実施例について説明す
る。本実施例では、充填密度の状態を分光器2から試料
部4に照射した光の透過光量で検出し、透過光量の多寡
に応じて試料を圧迫する力を調整する構成とする。本実
施例によれば、CPU12は光電センサ9cが受けた透
過光量と基準量の差を求め、その差によってエアシリン
ダ20の作動量を調節する。すなわち、透過光量が基準
量に比べて大きければ可動壁19の移動量を大きくして
試料を圧迫する力を強くする。また、透過光量が大きす
ぎる場合は分析不能とし、その旨をモニタに表示するこ
とも行う。
Next, a second embodiment of the present invention will be described. In this embodiment, the state of the packing density is detected by the amount of transmitted light of the light irradiated from the spectroscope 2 to the sample portion 4, and the force for pressing the sample is adjusted according to the amount of transmitted light. According to the present embodiment, the CPU 12 obtains the difference between the amount of transmitted light received by the photoelectric sensor 9c and the reference amount, and adjusts the operation amount of the air cylinder 20 based on the difference. That is, if the amount of transmitted light is larger than the reference amount, the amount of movement of the movable wall 19 is increased to increase the force of pressing the sample. In addition, if the amount of transmitted light is too large, analysis is not possible, and that effect is displayed on the monitor.

【0017】次に、図2に示す本発明の第3実施例を説
明する。本実施例では、可動壁移動手段として振動モー
タ21を取付け、可動壁19を往復移動させる構成とす
る。本実施例によれば、試料を試料容器14に投入した
ら、振動モータ21をオンにして可動壁19を往復移動
させ試料容器14内の試料に振動を与えて充填密度を安
定させる。
Next, a third embodiment of the present invention shown in FIG. 2 will be described. In this embodiment, a vibration motor 21 is attached as the movable wall moving means, and the movable wall 19 is reciprocated. According to this embodiment, after the sample is put into the sample container 14, the vibration motor 21 is turned on to reciprocate the movable wall 19 to vibrate the sample in the sample container 14 to stabilize the packing density.

【0018】次に、本発明に関連して近赤外分光法によ
る米の品質評価方法について説明する。この場合、図3
に示す米の品質評価表を作成して米の品質評価を行う。
図3の表は、近赤外分光法により、米の食味の評価要素
としてウエイトの大きいたんぱく質とアミロースの化学
的含有量を計測し、計算によって食味の評価値を求める
方法で、ある特定集団における米の食味値の計算結果お
よびたんぱく質とアミロースの計測結果を集団平均値と
個別値を対比して年次別に並べたものである。また、図
4のグラフは、図3に示す米の食味値の年次変化を集団
平均値と個別値別にグラフ化したものである。このグラ
フからAとBの比較においてBのH5年の冷夏対応は効
果的であったことが判明する。
Next, the quality evaluation method of rice by near infrared spectroscopy will be explained in relation to the present invention. In this case,
The quality evaluation table of rice shown in is prepared and the quality of rice is evaluated.
The table of FIG. 3 is a method of measuring the chemical content of protein and amylose having a large weight as an evaluation element of the taste of rice by near infrared spectroscopy, and calculating the taste evaluation value by calculation. The results of the calculation of the eating quality of rice and the results of measurement of protein and amylose are shown by year by year, comparing the population mean and individual values. In addition, the graph of FIG. 4 is a graph in which the annual change in the taste value of rice shown in FIG. 3 is graphed by the population average value and the individual value. From this graph, it can be seen that in the comparison between A and B, B's H5 cold summer response was effective.

【0019】従来、官能による米の食味評価は、その年
の米の食味を相対的に評価するもので、個々の農家にと
って、近年の米の情勢変化に対応する品種変更や栽培方
法の改良などの指針としては使えなかった。この方法に
よれば、例えば農協内の複数農家を対象に近赤外分光法
による米の品質測定を行い、結果を統計的に整理して母
集団の平均評価値と標本の個別評価値を年次別に比較す
る。従って、個別農家の対応状況が相対的、時系列的に
分かるので、改良実績や改良の必要性などに関する営農
指導の指針とすることができる。
[0019] Conventionally, sensory evaluation of rice taste is to relatively evaluate the rice taste of the year, and for individual farmers, changes in varieties and improvement of cultivation methods in response to recent changes in rice conditions, etc. Could not be used as a guideline. According to this method, for example, the quality of rice is measured by near-infrared spectroscopy targeting multiple farmers within the agricultural cooperative, and the results are statistically arranged to calculate the average evaluation value of the population and the individual evaluation value of the sample annually. Compare next. Therefore, since the response status of individual farmers can be known in relative and time series, it can be used as a guide for farming guidance regarding the improvement record and the necessity of improvement.

【0020】[0020]

【発明の効果】本発明の分光分析装置は以上のような構
成で、試料容器に試料を投入したら、可動壁移動手段に
より試料容器の一側面を成す可動壁を移動させて試料容
器に投入した試料の充填密度を安定させる。従って、本
発明によれば、試料の密度むらをなくし、充填密度を安
定させるので分光分析装置の分析精度が向上するという
効果を奏する。
EFFECT OF THE INVENTION The spectroscopic analyzer of the present invention is constructed as described above, and when a sample is put into the sample container, the movable wall moving means moves the movable wall forming one side surface of the sample container to put the sample into the sample container. Stabilize the packing density of the sample. Therefore, according to the present invention, the density unevenness of the sample is eliminated, and the packing density is stabilized, so that the analysis accuracy of the spectroscopic analyzer is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の分光分析装置の構成図で
ある。
FIG. 1 is a configuration diagram of a spectroscopic analyzer according to a first embodiment of the present invention.

【図2】本発明の第3実施例の分光分析装置の構成図で
ある。
FIG. 2 is a configuration diagram of a spectroscopic analyzer according to a third embodiment of the present invention.

【図3】本発明に関連した米の品質評価表である。FIG. 3 is a rice quality evaluation table related to the present invention.

【図4】本発明に関連した米の品質評価グラフである。FIG. 4 is a quality evaluation graph of rice related to the present invention.

【符号の説明】[Explanation of symbols]

1 分光分析装置 2 分光器 3 分析器 4 試料部 5 光源 6 レンズ 7 チョッパホイール 8 光学フィルタ 9 光電センサ 10 増幅器 11 A/D変換器 12 CPU 13 シュート 14 試料容器 15 収集箱 16 シャッタ 17 ソレノイド 18 スプリング 19 可動壁 20 エアシリンダ 21 振動モータ 1 spectroscopic analyzer 2 spectroscope 3 analyzer 4 sample part 5 light source 6 lens 7 chopper wheel 8 optical filter 9 photoelectric sensor 10 amplifier 11 A / D converter 12 CPU 13 chute 14 sample container 15 collection box 16 shutter 17 solenoid 18 spring 19 Movable wall 20 Air cylinder 21 Vibration motor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 可動可能に設けた試料容器の可動壁に可
動壁移動手段を連結し、試料容器中の試料に近赤外線を
照射し、その吸収スペクトルより試料の成分組成を分析
する構成の近赤外線分光分析装置。
1. A structure having a structure in which a movable wall moving means is connected to a movable wall of a movably provided sample container, the sample in the sample container is irradiated with near-infrared light, and the component composition of the sample is analyzed from its absorption spectrum. Infrared spectroscopic analyzer.
JP11639695A 1995-04-18 1995-04-18 Near infrared spectroscopic analyzer Withdrawn JPH08285763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11639695A JPH08285763A (en) 1995-04-18 1995-04-18 Near infrared spectroscopic analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11639695A JPH08285763A (en) 1995-04-18 1995-04-18 Near infrared spectroscopic analyzer

Publications (1)

Publication Number Publication Date
JPH08285763A true JPH08285763A (en) 1996-11-01

Family

ID=14686012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11639695A Withdrawn JPH08285763A (en) 1995-04-18 1995-04-18 Near infrared spectroscopic analyzer

Country Status (1)

Country Link
JP (1) JPH08285763A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998045678A1 (en) * 1997-04-05 1998-10-15 Bran + Luebbe Gmbh Device and method for optically detecting the presence of ingredients of a pourable product
JP2002346483A (en) * 2001-05-29 2002-12-03 Shizuoka Seiki Co Ltd Grain component analyzer
EP1707945A1 (en) * 2004-01-16 2006-10-04 Vladimir Aleksandrovich Zubkov Method for measuring spectroscopic properties of bulk products and device for carrying out said method
WO2007096518A1 (en) * 2006-02-24 2007-08-30 Chopin Technologies Device and method for measuring spectroscopic properties of product samples particularly of cereal products
EP1381850B1 (en) * 2001-04-23 2009-12-23 Hans Joachim Bruins Method and device for analysing cereals
CN102305725A (en) * 2011-05-18 2012-01-04 中国科学院长春光学精密机械与物理研究所 Device for sampling solid particle samples
JP2017015720A (en) * 2016-08-30 2017-01-19 静岡製機株式会社 Quality measuring apparatus for grain
JP2017037078A (en) * 2016-08-30 2017-02-16 静岡製機株式会社 Apparatus for measuring quality of grain
GB2563861A (en) * 2017-06-27 2019-01-02 Res Center Pharmaceutical Engineering Gmbh Device and method for measuring a density of provided granular matter
ES2948924A1 (en) * 2023-03-09 2023-09-21 Univ Cartagena Politecnica EQUIPMENT AND PROCEDURE FOR PERFORMING SPECTROPHOTOMETRY AND MOLECULAR FLUORIMETRY USING LED TECHNOLOGY (Machine-translation by Google Translate, not legally binding)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998045678A1 (en) * 1997-04-05 1998-10-15 Bran + Luebbe Gmbh Device and method for optically detecting the presence of ingredients of a pourable product
US6271521B1 (en) * 1997-04-05 2001-08-07 Bran + Luebbe Gmbh Device and method for optically detecting the presence of ingredients of a pourable product
EP1381850B1 (en) * 2001-04-23 2009-12-23 Hans Joachim Bruins Method and device for analysing cereals
JP2002346483A (en) * 2001-05-29 2002-12-03 Shizuoka Seiki Co Ltd Grain component analyzer
EP1707945A4 (en) * 2004-01-16 2008-06-25 Vladimir Aleksandrovich Zubkov Method for measuring spectroscopic properties of bulk products and device for carrying out said method
EP1707945A1 (en) * 2004-01-16 2006-10-04 Vladimir Aleksandrovich Zubkov Method for measuring spectroscopic properties of bulk products and device for carrying out said method
FR2897939A1 (en) * 2006-02-24 2007-08-31 Tripette & Renaud Chopin Soc P Spectroscopic property measuring device for e.g. rye, has sample holder, placed in guide, with partitions to form cells with different thickness, where holder and guide are respectively made of aluminum and synthetic material and vice versa
WO2007096518A1 (en) * 2006-02-24 2007-08-30 Chopin Technologies Device and method for measuring spectroscopic properties of product samples particularly of cereal products
CN102305725A (en) * 2011-05-18 2012-01-04 中国科学院长春光学精密机械与物理研究所 Device for sampling solid particle samples
JP2017015720A (en) * 2016-08-30 2017-01-19 静岡製機株式会社 Quality measuring apparatus for grain
JP2017037078A (en) * 2016-08-30 2017-02-16 静岡製機株式会社 Apparatus for measuring quality of grain
WO2018043403A1 (en) * 2016-08-30 2018-03-08 静岡製機株式会社 Device for measuring the quality of grains
WO2018043402A1 (en) * 2016-08-30 2018-03-08 静岡製機株式会社 Device for measuring the quality of grains
GB2563861A (en) * 2017-06-27 2019-01-02 Res Center Pharmaceutical Engineering Gmbh Device and method for measuring a density of provided granular matter
ES2948924A1 (en) * 2023-03-09 2023-09-21 Univ Cartagena Politecnica EQUIPMENT AND PROCEDURE FOR PERFORMING SPECTROPHOTOMETRY AND MOLECULAR FLUORIMETRY USING LED TECHNOLOGY (Machine-translation by Google Translate, not legally binding)

Similar Documents

Publication Publication Date Title
US5991025A (en) Near infrared spectrometer used in combination with an agricultural implement for real time grain and forage analysis
US6483583B1 (en) Near infrared spectrometry for real time analysis of substances
RU2383881C2 (en) Spectrometric measuring head for harvesting and other agricultural machines
Pasikatan et al. Near infrared reflectance spectroscopy for online particle size analysis of powders and ground materials
RU2492453C2 (en) Method and device for analysis and separation of grain
McClure et al. Rapid spectrophotometric analysis of the chemical composition of tobacco: Part 1: Total reducing sugars
CN100458405C (en) Spectroscopic fluid analyzer
US5258825A (en) Optical compositional analyzer apparatus and method for detection of ash in wheat and milled wheat products
Isaksson et al. On-line, proximate analysis of ground beef directly at a meat grinder outlet
CA2930511C (en) Optical analyzer, optical analyzing method and sample preparation device
CA2334400C (en) Near infrared spectrometer used in combination with a combine for real time grain analysis
AU2013349336B2 (en) An optical sampling apparatus and method for utilizing the sampling apparatus
GB2292798A (en) Determining the homogeneity of a mixture
JPH0149890B2 (en)
JPH08285763A (en) Near infrared spectroscopic analyzer
US8183548B2 (en) System for detecting one or more predetermined optically derivable characteristics of a sample
KR100441801B1 (en) Method and apparatus for estimating quality of grains
McQueen et al. Near and mid-infrared photoacoustic analysis of principal components of foodstuffs
Sudduth et al. Near-infrared spectrophotometry for soil property sensing
EP0823970A1 (en) Method and apparatus for qualifying an object
WO2004044558A2 (en) A method and apparatus for determining a property of a sample
JP2904796B2 (en) Method and apparatus for mixing coffee beans based on taste management
RU2031406C1 (en) Infrared analyzer for determination of guality of grain and of products of its processing
Yeboah et al. Quantitative diffuse reflectance Fourier transform infrared (FTIR) spectrometry of pharmaceutical tablets
JP3235619B2 (en) Rice taste evaluation method and apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020702