JPH0827908B2 - Magnetic head - Google Patents

Magnetic head

Info

Publication number
JPH0827908B2
JPH0827908B2 JP1029103A JP2910389A JPH0827908B2 JP H0827908 B2 JPH0827908 B2 JP H0827908B2 JP 1029103 A JP1029103 A JP 1029103A JP 2910389 A JP2910389 A JP 2910389A JP H0827908 B2 JPH0827908 B2 JP H0827908B2
Authority
JP
Japan
Prior art keywords
magnetic
alloy film
gap
head
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1029103A
Other languages
Japanese (ja)
Other versions
JPH02208811A (en
Inventor
博 ▲榊▼間
慶太 井原
浩一 小佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1029103A priority Critical patent/JPH0827908B2/en
Priority to US07/475,209 priority patent/US5084795A/en
Priority to DE69020000T priority patent/DE69020000T2/en
Priority to EP90102423A priority patent/EP0382195B1/en
Publication of JPH02208811A publication Critical patent/JPH02208811A/en
Publication of JPH0827908B2 publication Critical patent/JPH0827908B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はVTR等の磁気ヘッド及びその製造方法に関す
るものである。
TECHNICAL FIELD The present invention relates to a magnetic head such as a VTR and a method for manufacturing the same.

従来の技術 従来より磁気ギャップ近傍にFe−Si−Al(センダス
ト)合金やCo−Nb−Zr等の非晶質合金を用い、バックコ
アにMn−Znフェライトを用いたメタルインギャップ(MI
G)ヘッドが知られている。これは飽和磁束密度(4πM
s)の高い金属磁性合金膜を磁気ギャップ近傍に位置す
るような構成のヘッドとする事によりフェライト単体よ
りなる磁気ヘッドに比べて主に記録特性の改善をはかろ
うとするものである。第2図にこのようなMIGタイプヘ
ッドの1例を示す。図中1はフェライトバックコア、2
は金属磁性合金膜、3はSiO2等よりなる磁気ギャップ
部、4はコア接着用ガラス部である。
Conventional technology Conventionally, an amorphous alloy such as Fe-Si-Al (sendust) alloy or Co-Nb-Zr is used near the magnetic gap, and a metal-in-gap (MI) that uses Mn-Zn ferrite for the back core.
G) The head is known. This is the saturation magnetic flux density (4πM
By using a head having a structure in which a metal magnetic alloy film having a high s) is located in the vicinity of the magnetic gap, the recording characteristics are mainly improved as compared with a magnetic head made of a single ferrite. FIG. 2 shows an example of such a MIG type head. In the figure, 1 is a ferrite back core, 2
Is a metal magnetic alloy film, 3 is a magnetic gap part made of SiO 2 or the like, and 4 is a core bonding glass part.

発明が解決しようとうる課題 しかしながらこのような構成のヘッドの金属磁性膜と
してFe−Si−Al系合金やCo−Nb−Zr系非晶質合金等の従
来よりヘッドコア材として用いられているものを用いる
と、第1図に示された金属磁性膜部2とフェライトコア
部1との界面5にAlが偏析したり、Nb,Zr等がフェライ
トの酸素を奪ったりして変質層が生じ、疑似ギャップと
なってヘッドの特性を損なう問題点があった。又Fe−Si
−Al系合金膜は磁気異方性の制御が困難でヘッド化した
場合特性のばらつきが生じ易く、Co−Nb−Zr系非晶質合
金膜は磁界中熱処理により磁気異方性の制御が可能なも
のの全ての熱処理工程を磁界中で行なわないと異方性が
消えてしまうという問題点や飽和磁化の高いものは結晶
化温度が低く500℃近傍でのガラス接着工程が困難であ
るという問題点があった。
Problems to be Solved by the Invention However, as a magnetic metal film of a head having such a structure, a Fe--Si--Al-based alloy or Co--Nb--Zr-based amorphous alloy that has been conventionally used as a head core material is used. If used, Al segregates at the interface 5 between the metal magnetic film portion 2 and the ferrite core portion 1 shown in FIG. 1, or Nb, Zr, etc. deprive the ferrite of oxygen to form an altered layer, which causes pseudo There is a problem that it becomes a gap and impairs the characteristics of the head. Fe-Si
-Al-based alloy film is difficult to control the magnetic anisotropy, and variations in characteristics are likely to occur when made into a head. Co-Nb-Zr-based amorphous alloy film can control the magnetic anisotropy by heat treatment in a magnetic field. However, the anisotropy disappears unless all the heat treatment steps are performed in a magnetic field, and the one with high saturation magnetization has the problem that the crystallization temperature is low and the glass bonding step near 500 ° C is difficult. was there.

本発明は、このような従来技術の課題を解決すること
を目的とする。
The present invention aims to solve such problems of the conventional technology.

課題を解決するための手段 本発明にかかる磁気ヘッドは、金属合金膜部に次式で
しめされた組成を有する合金膜 TaMbXcNd、 ……(1) を用いて変質層の低減をはかる。
Means for Solving the Problems A magnetic head according to the present invention uses an alloy film T a M b X c N d having the composition expressed by the following formula in a metal alloy film portion, using an alteration layer (1). To reduce

ただしTはFe,Co,Niよりなる群から選択された少なく
とも1種の金属、MはNb,Zr,Ti,Ta,Hf,Cr,Mo,W,Mnより
なる群から選択された少なくとも1種の金属、XはB,S
i,Geよりなる群より選択された少なくとも1種の半金属
・半導体、Nは窒素であってa,b,c,dは原子パーセント
を表し、それぞれ 65≦a≦93 ……(2) 4≦b≦20 ……(3) 1≦c≦20 ……(4) 2≦d≦20 ……(5) a+b+c+d=100 ……(6) である。
However, T is at least one metal selected from the group consisting of Fe, Co, and Ni, and M is at least one metal selected from the group consisting of Nb, Zr, Ti, Ta, Hf, Cr, Mo, W, and Mn. Metal, X is B, S
At least one semi-metal / semiconductor selected from the group consisting of i and Ge, N is nitrogen and a, b, c and d are atomic percentages, and 65 ≦ a ≦ 93 (2) 4 ≦ b ≦ 20 (3) 1 ≦ c ≦ 20 (4) 2 ≦ d ≦ 20 (5) a + b + c + d = 100 (6)

また本発明は、ギャップ近傍が、次式 TaMbXcNd、 (ただしTはFe,Co,Niよりなる群から選択された少なく
とも1種の金属、MはNb,Zr,Ti,Ta,Hf,Cr,Mo,W,Mnより
なる群から選択された少なくとも1種の金属、XはB,
Si,Geよりなる群より選択された少なくとも1種の半金
属・半導体、NはN(窒素)であってa,b,c,dは原子パ
ーセントを表わし、それぞれ 65≦a≦93 4≦b≦20 1≦c≦20 2≦d≦20 a+b+c+d=100 である) で示された組成の磁性合金膜で、その他のコア部が主に
フェライトで構成されている磁気ヘッドの作成法におい
て、フェライト基板上に該合金膜をスパッタ法等により
蒸着し、該合金膜の磁気ギャップ面となるべき面にほぼ
平行に、かつ磁気ギャップの深さ方向にほぼ直角となる
方向に磁界を印加し、該フェライト基板のキュリー温度
以上で熱処理した後、通常のヘッド作製加工を行い、該
フェライト基板がバックコア、該合金膜部が磁気ギャッ
プ面を含むフロントコアとなるように磁気ヘッドを構成
する事を特徴とする磁気ヘッドの製造方法である。
Further, in the present invention, the vicinity of the gap is represented by the following formula T a M b X c N d , where T is at least one metal selected from the group consisting of F e , C o and N i , and M is N b , At least one metal selected from the group consisting of Z r , T i , T a , H f , C r , M o , W, M n , X is B,
At least one semi-metal / semiconductor selected from the group consisting of S i and G e , N is N (nitrogen), a, b, c and d represent atomic percentages, and 65 ≦ a ≦ 93 4 ≤ b ≤ 20 1 ≤ c ≤ 20 2 ≤ d ≤ 20 a + b + c + d = 100) in the method of producing a magnetic head in which the other core part is mainly composed of ferrite. , The alloy film is deposited on a ferrite substrate by a sputtering method or the like, and a magnetic field is applied in a direction substantially parallel to the surface of the alloy film to be the magnetic gap surface and at a direction substantially perpendicular to the depth direction of the magnetic gap. After the heat treatment at the Curie temperature or higher of the ferrite substrate, a usual head fabrication process is performed to configure a magnetic head so that the ferrite substrate serves as a back core and the alloy film portion serves as a front core including a magnetic gap surface. Of the magnetic head It is a production method.

また、本発明磁気ヘッドの製造方法ではMIGヘッドの
作製工程の特徴を活かし、反磁界係数の小さい状態で上
記の合金膜の磁気ギャップ面となるべき面にほぼ平行
に、かつ磁気ギャップの深さ方向にほぼ直角となる方向
に磁界を印加し、フェライト基板のキュリー温度以上で
熱処理を行なう。
Further, in the method of manufacturing the magnetic head of the present invention, the characteristics of the manufacturing process of the MIG head are utilized, and in a state where the demagnetizing field coefficient is small, the magnetic gap surface of the alloy film is approximately parallel to the magnetic gap surface, and the depth of the magnetic gap is substantially the same. A magnetic field is applied in a direction substantially perpendicular to the direction, and heat treatment is performed at the Curie temperature of the ferrite substrate or higher.

作用 上記の構成においては磁性合金膜部に特殊な窒化合金
膜を用いる事により、フェライトバックコア部との反応
が低減するため変質層が生じ難くなり疑似ギャップの問
題が改善される。更に上述の熱処理により磁気ヘッドの
高周波特性の向上と特性の均一化が可能となる。
Action In the above structure, by using a special nitride alloy film for the magnetic alloy film portion, the reaction with the ferrite back core portion is reduced, so that an altered layer is less likely to occur and the problem of pseudo gap is improved. Further, the above-mentioned heat treatment makes it possible to improve the high frequency characteristics of the magnetic head and make the characteristics uniform.

実施例 以下に、本発明の実施例を図面を参照して説明する。Embodiments Embodiments of the present invention will be described below with reference to the drawings.

(1)式において合金膜が軟磁性を示すには a≦94,5≦b+c ……(7) である事が必要であり、合金膜が高飽和磁化を有するに
は 65≦a,b≦20,c≦20 ……(8) である事が望ましい。又フェライトとの反応を防ぎ疑似
ギャップを低減するには 2≦d ……(9) である事が必要で、かつより望ましくは 3≦c+d ……(10) である事がわかった。更に熱処理により窒素が膜から解
離するのを防ぐためには 4≦b ……(11) である事が必要であり、合金膜の内部応力を抑えて膜が
基板より剥離しないためには d≦20 ……(12) である事が望ましい。以上(7)−(12)式より(2)
−(6)式の条件式が得られた。
In the formula (1), a ≦ 94,5 ≦ b + c (7) is necessary for the alloy film to exhibit soft magnetism, and 65 ≦ a, b ≦ for the alloy film to have a high saturation magnetization. 20, c ≦ 20 (8) is desirable. Further, it was found that 2 ≦ d 2 (9) is necessary to prevent the reaction with ferrite and the pseudo gap is reduced, and more preferably 3 ≦ c + d 3 (10). Further, in order to prevent nitrogen from being dissociated from the film by heat treatment, 4 ≦ b (11) is necessary. In order to suppress internal stress of the alloy film and prevent the film from peeling from the substrate, d ≦ 20 … (12) is desirable. From equations (7)-(12) above, (2)
The conditional expression of- (6) was obtained.

この窒化合金膜の軟磁気特性を更に改善するには、少
なくとも作製時において膜厚方向即ち成膜方向に組成変
調された窒化合金膜 Ta′Mb′Xc′Nd′、 ……(1′) を用いる事が望ましい。ただしT,M,X,Nは(1)式記載
のものと同じであり、a′,b′,c′,d′は膜厚方向に変
動するそれぞれの構成元素の平均組成で原子パーセント
で 65≦a′≦93 ……(2′) 4≦b′≦20 ……(3′) 1≦c′≦20 ……(4′) 2≦d′≦20 ……(5′) a′+b′+c′+d′=100 ……(6′) であり、限定理由は(2)−(6)の場合と同様であ
る。このような組成変調膜(広い意味で積層構造膜も含
む)は優れた軟磁性を示し、作製法としては周期的に窒
素ガスを混合した反応スパッタ法等により窒化層と非窒
化層を積層する事により積層構造のものが、又この膜を
熱処理する事により組成変調構造もしくは積層構造のも
のが得られる。従来の非晶質合金では活性なNb,Zr等が
界面でフェライトの酸素を奪って変質層を生じていた
が、これらの窒化合金膜ではNbやZr等が窒素と選択的に
結合しているため変質層が発生しにくくなっている。同
時に(1)もしくは(1′)式においてこれらのM元
素、即ちNb,Zr,Ti,Ta,Hf等が窒素との結合力が大である
ため、高温の熱処理においても窒素が膜から解離せず膜
質及び膜の諸特性の安定性に寄与している。(1)もし
くは(1′)式においてX元素はM元素のようにフェラ
イトの酸素を奪うことはなく窒素と結合してフェライト
と磁性合金膜との反応を押え疑似ギャップの低減に寄与
している。
In order to further improve the soft magnetic properties of this nitrided alloy film, the nitrided alloy film T a ′ M b ′ X c ′ N d ′, ... It is desirable to use 1 '). However, T, M, X, and N are the same as those described in formula (1), and a ′, b ′, c ′, and d ′ are the average compositions of the respective constituent elements that fluctuate in the film thickness direction and are expressed in atomic percent. 65 ≦ a ′ ≦ 93 (2 ′) 4 ≦ b ′ ≦ 20 (3 ′) 1 ≦ c ′ ≦ 20 (4 ′) 2 ≦ d ′ ≦ 20 (5 ′) a ′ + B '+ c' + d '= 100 (6'), and the reason for limitation is the same as in (2)-(6). Such a composition-modulated film (including a laminated structure film in a broad sense) exhibits excellent soft magnetism, and as a manufacturing method, a nitride layer and a non-nitride layer are laminated by a reactive sputtering method in which nitrogen gas is periodically mixed. By doing so, a laminated structure is obtained, and by heat treating this film, a composition-modulated structure or a laminated structure is obtained. In conventional amorphous alloys, active Nb, Zr, etc. deprived ferrite of oxygen at the interface to form an altered layer, but in these nitride alloy films, Nb, Zr, etc. are selectively bonded to nitrogen. Therefore, an altered layer is less likely to occur. At the same time, in the formula (1) or (1 '), these M elements, that is, Nb, Zr, Ti, Ta, Hf, etc. have a large binding force with nitrogen, so that nitrogen is dissociated from the film even at high temperature heat treatment. It contributes to the stability of the film quality and various properties of the film. In the formula (1) or (1 '), the X element does not deprive the ferrite of oxygen like the M element does, but combines with nitrogen to suppress the reaction between the ferrite and the magnetic alloy film and contribute to the reduction of the pseudo gap. .

これらの窒化合金膜は従来の非晶質合金と異なり熱的
に安定なため500℃以上での高温熱処理が可能である。
又この窒化合金膜はFe−Si−Alのような結晶質合金と異
なり磁界中熱処理による磁気異方性の制御が可能で、か
つ一度高温で磁界中熱処理して異方性をつけておけば無
磁界中でもそれより低温での熱処理ではこの磁気異方性
が消えにくいという特徴を有している。本発明ではこの
窒化合金膜の特徴とMIGヘッド作製工程が磁界中熱処理
に適している点に着目し高周波特性に優れ特性の均一な
磁気ヘッドの製造法を開発した。
Since these nitride alloy films are thermally stable unlike conventional amorphous alloys, high temperature heat treatment at 500 ° C or higher is possible.
Unlike crystalline alloys such as Fe-Si-Al, this nitrided alloy film can control magnetic anisotropy by heat treatment in a magnetic field, and once anisotropy is obtained by heat treatment in a magnetic field at high temperature. This magnetic anisotropy is difficult to disappear by heat treatment at a lower temperature than that even in a magnetic field. In the present invention, focusing on the characteristics of the nitrided alloy film and the fact that the MIG head manufacturing process is suitable for heat treatment in a magnetic field, a method of manufacturing a magnetic head having excellent high frequency characteristics and uniform characteristics was developed.

以下に本発明磁気ヘッドの製造法の一例を第1図を用
いて説明する。
An example of the method of manufacturing the magnetic head of the present invention will be described below with reference to FIG.

通常メタルインギャプと呼ばれる構造の磁気ヘッドは
同図に示したような加工工程を経て作製される。図中1
−4の記号に対応するものは第2図のものと同じであ
る。同図(c)において磁気ヘッドの磁路はこの場合、
巻線穴6の周りのX−Z面内を主に通って構成されY方
向に磁化容易軸を有する事が特性上望ましい。しかしな
がらこの形状でY方向に磁界を印加して熱処理してもこ
の方向に磁気異方性をつけるのは困難である。この理由
は磁性合金膜部2のX,Y,Z方向の寸法はほぼ同程度でY
方向に対する反磁界係数が極めて大きくこれに打ち勝つ
ためには数千Oeの磁界が必要で、これは実際の工程上困
難だからである。しかし同図(a)もしくは(b)の形
状の時、即ちフェライト基板1上にスパッタ法等により
窒化合金膜2を蒸着した状態(a)もしくはX−Y面を
ギャップ面とすべく研磨した状態(b)で図中のY方
向、即ちギャップ面3′に平行で、ギャップの深さ方向
Xと直角方向に磁界を印加してフェライト基板のキュリ
ー温度以上で熱処理すれば磁化容易軸をY方向につける
事が可能である。この時磁性合金膜部のY方向の反磁界
係数は小さく印加磁界は数百Oeで十分である。なおフェ
ライトのキュリー温度は300℃以下であるのでこれ以上
の温度で熱処理すればフェライト基板部の反磁界の寄与
はまったくない。又Y方向の磁気異方性の大きさはY方
向の固定磁界中熱処理と、X−Y面内、即ちギャップ面
内での回転磁界中熱処理を組み合わす等により任意に制
御する事が可能である。次に同図(b)に示したバーの
半分に同図(b′)に示したような巻線溝加工を施し、
ギャップ面3′にSiO2等のギャップ材3を形成した後、
ガラス4により(b)および(b′)に示した両コアを
接合して(c)に示したような磁気ヘッドが得られる。
通常このガラスボンディングは480℃近傍で行なわれる
ので、上述の磁界中熱処理をこの温度より高めに設定し
て500〜650℃で行なっておけばY方向につけられた磁気
異方性はこの無磁界中のガラスボンディング工程により
消失する事はない。従来の非晶質合金では500℃以上の
熱的安定性に難があったためこのような高温磁界中熱処
理工程は不可能であった。
A magnetic head having a structure usually called a metal ingap is manufactured through the processing steps shown in FIG. 1 in the figure
Those corresponding to the symbol -4 are the same as those in FIG. In this case, the magnetic path of the magnetic head in FIG.
It is desirable in terms of characteristics that it is configured to mainly pass through the XZ plane around the winding hole 6 and has an easy axis of magnetization in the Y direction. However, it is difficult to impart magnetic anisotropy in this direction even if a heat treatment is performed by applying a magnetic field in this direction in this shape. The reason for this is that the dimensions of the magnetic alloy film portion 2 in the X, Y and Z directions are almost the same.
The demagnetizing field coefficient with respect to the direction is extremely large, and a magnetic field of several thousand Oe is required to overcome this, which is difficult in the actual process. However, when the shape is as shown in FIG. 1A or 1B, that is, the state in which the nitride alloy film 2 is vapor-deposited on the ferrite substrate 1 by the sputtering method or the like, or the state in which the XY plane is polished to form the gap plane. In (b), the magnetic field is applied in the Y direction in the figure, that is, in the direction parallel to the gap surface 3'and perpendicular to the depth direction X of the gap, and heat treatment is performed at the Curie temperature of the ferrite substrate or higher. It is possible to attach it to. At this time, the diamagnetic field coefficient in the Y direction of the magnetic alloy film portion is small, and the applied magnetic field of several hundred Oe is sufficient. Since the Curie temperature of ferrite is 300 ° C or lower, if the heat treatment is performed at a temperature higher than this temperature, the demagnetizing field of the ferrite substrate will not contribute at all. The magnitude of magnetic anisotropy in the Y direction can be arbitrarily controlled by combining heat treatment in a fixed magnetic field in the Y direction with heat treatment in a rotating magnetic field in the XY plane, that is, in the gap plane. is there. Next, half of the bar shown in FIG. 7B is subjected to the winding groove processing as shown in FIG.
After forming the gap material 3 such as S i O 2 to the gap surface 3 ',
The glass 4 joins the cores shown in (b) and (b ') to obtain a magnetic head as shown in (c).
Since this glass bonding is usually performed near 480 ° C, if the above-mentioned heat treatment in a magnetic field is set to be higher than this temperature and performed at 500 to 650 ° C, the magnetic anisotropy applied in the Y direction will be in this non-magnetic field. It will not be lost by the glass bonding process. Since conventional amorphous alloys have difficulty in thermal stability at 500 ° C or higher, such a heat treatment process in a high temperature magnetic field is impossible.

このようにして作製した磁気ヘッドは優れた特性を示
す。これはギャップ近傍の磁性合金膜部に理想的な磁気
異方性を持たせる事が出来るからである。この磁気異方
性が大きすぎると高周波特性は良くなるものの合金膜の
透磁率が低下してヘッドの再生効率が悪くなるので磁界
中熱処理条件を調整して最適化する必要がある。これは
熱処理時間・温度の調整、及び固定磁界中と回転磁界中
熱処理の組合せ等により任意の大きさの磁気異方性に制
御する事が可能である。
The magnetic head manufactured in this manner exhibits excellent characteristics. This is because the magnetic alloy film portion near the gap can have ideal magnetic anisotropy. If this magnetic anisotropy is too large, the high frequency characteristics will be improved, but the magnetic permeability of the alloy film will decrease and the reproduction efficiency of the head will deteriorate, so it is necessary to optimize the heat treatment conditions in the magnetic field. It is possible to control the magnetic anisotropy to an arbitrary size by adjusting the heat treatment time / temperature and combining heat treatment in a fixed magnetic field and a rotating magnetic field.

以下更に具体的実施例により本発明の効果の説明を行
なう。
The effects of the present invention will be described below with reference to specific examples.

<実施例1> スパッタ法によりMn−Znフェライト基板上に厚さ8μ
mのFe−Si−Al合金膜及びCo−Nb−Zr非晶質合金膜を形
成し、第2図に示したようなMIGタイプの磁気ヘッドを
作製した。次にターゲットにCo−Mn−Nb−B及びFe−Nb
−Si−B合金板を用い、N2ガスをArガスに混合してスパ
ッタすることにより膜組成でCo70Mn6Nb7B15N2及びFe76N
b8Si2B12N2なる厚さ8μmの窒化合金膜を同様にMn−Zn
フェライト基板上に形成した。更に同上のターゲットを
用い、スパッタ中にArガス中にN2ガスを周期的に混合す
ることによりCo−Mn−Nb−B/Co−Mn−Nb−B−N及びFe
−Nb−Si−B/Fe−Nb−Si−B−Nなる非窒化層と窒化層
よりなる総厚8μm,1層の層厚が約100Aの組成変調膜をM
n−Znフェライト基板上に形成した。この時N2ガスの分
圧比を変えることにより平均膜組成として〈Co70Mn6Nb7
B15N2〉,〈Co66Mn6Nb6B14N8〉及び〈Co63Mn5Nb5B
13N14〉;〈Fe76Nb8Si2B12N2〉〈Fe72Nb7Si2B11N8〉及
び〈Fe68Nb6Si2B10N14〉を得た。このようにしてMn−Zn
フェライト基板上に形成した種々の窒化合金膜を用い、
第1図に示したような工程を経てMIGタイプの磁気ヘッ
ドを作製した。同図(a)の工程ではこの形状のものを
520℃で1時間熱処理し、この時外部より500Oeの磁界を
Y方向に固定して印加したもの、Y方向に30分固定した
後30分X−Y面内で回転したもの、及び磁界を印加しな
いで行なったものの3種類の熱処理をした。また同図
(c)のガラスボンディング工程は480℃無磁界中で行
なった。以上のように作製した種々の磁気ヘッドを通常
のVTRデッキに取り付け、メタルテープを用いてそれら
の特性比較を行なった。なお、どのヘッドも磁気ギャッ
プとトラック幅はそれぞれ0.25μm及び20μmに統一し
た。結果を表−1に示す。
<Example 1> A thickness of 8 µ was formed on a Mn-Zn ferrite substrate by a sputtering method.
An Fe-Si-Al alloy film and a Co-Nb-Zr amorphous alloy film having a thickness of m were formed to prepare a MIG type magnetic head as shown in FIG. Next, the target is Co-Mn-Nb-B and Fe-Nb.
-Si-B alloy plate was used, and N 2 gas was mixed with Ar gas and sputtered to form Co 70 Mn 6 Nb 7 B 15 N 2 and Fe 76 N.
b 8 Si 2 B 12 N 2 with a thickness of 8 μm as a nitride alloy film is similarly formed by Mn-Zn.
It was formed on a ferrite substrate. Further, by using the above target and periodically mixing N 2 gas into Ar gas during sputtering, Co-Mn-Nb-B / Co-Mn-Nb-BN and Fe
-Nb-Si-B / Fe-Nb-Si-B-N composed of a non-nitrided layer and a nitrided layer with a total thickness of 8 μm.
It was formed on an n-Zn ferrite substrate. At this time, the average film composition was changed to <Co 70 Mn 6 Nb 7 by changing the partial pressure ratio of N 2 gas.
B 15 N 2 >, <Co 66 Mn 6 Nb 6 B 14 N 8 >, and <Co 63 Mn 5 Nb 5 B
13 N 14>; to give the <Fe 76 Nb 8 Si 2 B 12 N 2><Fe 72 Nb 7 Si 2 B 11 N 8> and <Fe 68 Nb 6 Si 2 B 10 N 14>. In this way Mn-Zn
Using various nitride alloy films formed on the ferrite substrate,
A MIG type magnetic head was manufactured through the steps shown in FIG. In the process of FIG.
Heat treatment at 520 ° C for 1 hour, at this time a magnetic field of 500 Oe fixed from the outside and applied in the Y direction, fixed in the Y direction for 30 minutes and rotated in the XY plane for 30 minutes, and magnetic field applied Three types of heat treatments, which were performed without heat treatment, were performed. The glass bonding process shown in FIG. 3C was performed at 480 ° C. in a magnetic field. The various magnetic heads manufactured as described above were attached to an ordinary VTR deck, and their characteristics were compared using a metal tape. The magnetic gap and track width of all heads were unified to 0.25 μm and 20 μm, respectively. The results are shown in Table 1.

表−1に示した実験結果より本発明構成の磁気ヘッド
においては、疑似ギャップの影響により生ずる再生出力
のうねりが低減し、従来の問題点が大幅に改善されてい
る事がわかる。又単層の窒化合金膜を用いるよりも組成
変調窒化合金膜を用いた方が再生出力上有利である事が
わかる。更には本発明の磁界中熱処理工程を用いて作製
したヘッドは優れた特性を示すが、特に固定磁界中熱処
理をしたものは再生出力の周波数特性に優れ、又固定磁
界中熱処理と回転磁界中熱処理を組み合わせたものは高
い再生出力を示す事がわかる。
From the experimental results shown in Table-1, it can be seen that the magnetic head having the structure of the present invention reduces the waviness of the reproduction output caused by the influence of the pseudo gap, and the problems of the prior art are greatly improved. Further, it is found that the composition-modulated nitride alloy film is more advantageous in reproducing output than the single-layer nitride alloy film. Further, the head manufactured by using the heat treatment process in the magnetic field of the present invention exhibits excellent characteristics. Particularly, the head heat-treated in the fixed magnetic field is excellent in the frequency characteristic of reproduction output, and the heat treatment in the fixed magnetic field and the heat treatment in the rotating magnetic field are performed. It can be seen that the combination of the above shows a high reproduction output.

<実施例2> ターゲットに、Co−Nb−Zr−B,Co−Nb−Hf−B,Co−Ti
−Ta−B,Co−Mo−Cr−Zr−B,Co−Nb−B,Fe−Nb−Si,Fe
−Ni−W−Nb−Geを用い、実施例1と同様の方法で窒化
層と非窒化層よりなる組成変調窒化合金膜を反応スパッ
タ法によりMn−Znフェライト基板上に形成した。総膜厚
はすべて8μmとし、組成変調波長及び窒素含有量はN2
ガスの混合周期及び分圧比を制御することにより変化さ
せた。これらを用いて実施例1と同様の方法でMIGタイ
プの磁気ヘッドを作製しその諸特性を同様の方法で測定
した。ただし熱処理は600℃で前半30分を固定磁界中
で、後半15分を回転磁界中で行なった。結果を表−2に
示す。
<Example 2> As a target, Co-Nb-Zr-B, Co-Nb-Hf-B, Co-Ti
-Ta-B, Co-Mo-Cr-Zr-B, Co-Nb-B, Fe-Nb-Si, Fe
Using -Ni-W-Nb-Ge, a composition-modulated nitride alloy film consisting of a nitride layer and a non-nitride layer was formed on the Mn-Zn ferrite substrate by the reactive sputtering method in the same manner as in Example 1. The total film thickness is 8 μm, the composition modulation wavelength and the nitrogen content are N 2
It was changed by controlling the gas mixing period and the partial pressure ratio. Using these, a MIG type magnetic head was manufactured by the same method as in Example 1, and its various characteristics were measured by the same method. However, the heat treatment was performed at 600 ° C. for 30 minutes in the fixed magnetic field and for 15 minutes in the rotating magnetic field. Table 2 shows the results.

表中の相対再生出力比は表−1のFe−Si−Alヘッドを
0dbとして比較を行なった。
The relative reproduction output ratio in the table is that of the Fe-Si-Al head in Table-1.
The comparison was performed with 0db.

表−2に示した結果より窒化により疑似ギャップによ
る再生出力のうねりが低減しており、又合金膜の窒素含
有量が多いほどこの効果が大である事が表−1,表−2に
しめした結果よりわかる。更には組成変調波長(=窒化
層1層の層厚+非窒化層1層の層厚)があまり長くなる
とヘッドの再生出力が低下する傾向がある事がわかる。
From the results shown in Table-2, it is shown that the swelling of the reproduction output due to the pseudo-gap is reduced by nitriding, and that the greater the nitrogen content of the alloy film, the greater this effect is. You can see from the result. Further, it is understood that if the composition modulation wavelength (= layer thickness of one nitrided layer + layer thickness of one non-nitrided layer) becomes too long, the reproduction output of the head tends to decrease.

発明の効果 以上述べたように本発明は、MIGヘッド特有の疑似ギ
ャップの問題を低減し、かつ周波数特性に優れた磁気ヘ
ッドを可能にするものである。
EFFECTS OF THE INVENTION As described above, the present invention reduces the problem of the pseudo gap peculiar to the MIG head and enables a magnetic head having excellent frequency characteristics.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のMIGタイプヘッドの製造方法の1例を
示す工程図、第2図は従来の単純な構造のMIGタイプの
磁気ヘッドの1例を示す正面図である。 1……フェライト、2……磁性合金膜、3……磁気ギャ
ップ、4……ボンディングガラス、5……磁性合金膜部
とフェライトコア部との界面、6……巻線穴。
FIG. 1 is a process diagram showing an example of a method for manufacturing an MIG type head of the present invention, and FIG. 2 is a front view showing an example of a conventional MIG type magnetic head having a simple structure. 1 ... Ferrite, 2 ... Magnetic alloy film, 3 ... Magnetic gap, 4 ... Bonding glass, 5 ... Interface between magnetic alloy film and ferrite core, 6 ... Winding hole.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】バックコアがフェライト、磁気ギャップ近
傍が磁性合金膜よりなり、前記フェライトと前記磁性合
金膜との界面が前記磁気ギャップ面にほぼ平行なMIG
(メタルインギャップ)型磁気ヘッドにおいて、磁気ギ
ャップ近傍に次式 TaMbXcNd(ただしTはFe,Co,Niよりなる群から選択され
た少なくとも1種の金属、MはNb,Zr,Ti,Ta,Hf,Cr,Mo,
W,Mnよりなる群から選択された少なくとも1種の金属、
XはB,Si,Geよりなる群より選択された少なくとも1種
の半金属・半導体、Nは窒素であり、a,b,c,dは原子パ
ーセントを表し、それぞれ 65≦a≦93,4≦b≦20,1≦c≦20,2≦d≦20,a+b+c
+d=100である) で示された組成の磁性合金膜を用いて、疑似ギャップの
低減をはかることを特徴とする磁気ヘッド。
1. A MIG having a back core made of ferrite and a magnetic alloy film in the vicinity of a magnetic gap, and an interface between the ferrite and the magnetic alloy film being substantially parallel to the magnetic gap surface.
In a (metal-in-gap) type magnetic head, the following formula TaMbXcNd (where T is at least one metal selected from the group consisting of Fe, Co and Ni, M is Nb, Zr, Ti, Ta, Hf) , Cr, Mo,
At least one metal selected from the group consisting of W and Mn,
X is at least one semi-metal / semiconductor selected from the group consisting of B, Si and Ge, N is nitrogen, a, b, c and d represent atomic percentages, and 65 ≦ a ≦ 93,4 respectively. ≤ b ≤ 20, 1 ≤ c ≤ 20, 2 ≤ d ≤ 20, a + b + c
+ D = 100) The magnetic head is characterized by using a magnetic alloy film having a composition shown by (4).
【請求項2】磁気ギャップ近傍の磁性合金膜が成膜方向
に組成変調されており、次式 Ta′Mb′Xc′Nd′(ただしTはFe,Co,Niよりなる群から
選択された少なくとも1種の金属、MはNb,Zr,Ti,Ta,H
f,Cr,Mo,W,Mnよりなる群から選択された少なくとも1種
の金属、XはB,Si,Geよりなる群より選択された少なく
とも1種の半金属・半導体、Nは窒素であり、a′,
b′,c′,d′は原子パーセントを表し、それぞれ 65≦a′≦93,4≦b′≦20,1≦c′≦20,2≦d′≦20,
a′+b′+c′+d′=100である) で示された平均組成を有することを特徴とする請求項1
記載の磁気ヘッド。
2. A magnetic alloy film in the vicinity of a magnetic gap is composition-modulated in the film-forming direction and has the following formula Ta'Mb'Xc'Nd '(where T is at least selected from the group consisting of Fe, Co and Ni). One kind of metal, M is Nb, Zr, Ti, Ta, H
At least one metal selected from the group consisting of f, Cr, Mo, W and Mn, X is at least one semi-metal / semiconductor selected from the group consisting of B, Si and Ge, and N is nitrogen. , A ′,
b ', c', d'represent atomic percentages, and 65≤a'≤93, 4≤b'≤20, 1≤c'≤20, 2≤d'≤20,
a '+ b' + c '+ d' = 100).
The magnetic head described.
JP1029103A 1989-02-08 1989-02-08 Magnetic head Expired - Lifetime JPH0827908B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1029103A JPH0827908B2 (en) 1989-02-08 1989-02-08 Magnetic head
US07/475,209 US5084795A (en) 1989-02-08 1990-02-05 Magnetic head and method of manufacturing the same
DE69020000T DE69020000T2 (en) 1989-02-08 1990-02-07 Magnetic head and process for its manufacture.
EP90102423A EP0382195B1 (en) 1989-02-08 1990-02-07 Magnetic head and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1029103A JPH0827908B2 (en) 1989-02-08 1989-02-08 Magnetic head

Publications (2)

Publication Number Publication Date
JPH02208811A JPH02208811A (en) 1990-08-20
JPH0827908B2 true JPH0827908B2 (en) 1996-03-21

Family

ID=12267008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1029103A Expired - Lifetime JPH0827908B2 (en) 1989-02-08 1989-02-08 Magnetic head

Country Status (1)

Country Link
JP (1) JPH0827908B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2798315B2 (en) * 1990-07-13 1998-09-17 富士写真フイルム株式会社 Composite magnetic head
JPH04252406A (en) * 1991-01-28 1992-09-08 Matsushita Electric Ind Co Ltd Magnetic head
JP2579063B2 (en) * 1990-11-19 1997-02-05 松下電器産業株式会社 Magnetic head
JPH04141809A (en) * 1990-10-02 1992-05-15 Matsushita Electric Ind Co Ltd Magnetic head
WO2002072493A1 (en) 2001-03-08 2002-09-19 Matsushita Electric Industrial Co., Ltd. Magnetic head-use sealing glass, magnetic head and magnetic recording/reproducing device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62266709A (en) * 1986-05-13 1987-11-19 Sanyo Electric Co Ltd Production of magnetic head
JP2790451B2 (en) * 1987-04-10 1998-08-27 松下電器産業株式会社 Soft magnetic alloy film containing nitrogen

Also Published As

Publication number Publication date
JPH02208811A (en) 1990-08-20

Similar Documents

Publication Publication Date Title
EP0382195B1 (en) Magnetic head and method of manufacturing the same
US5439754A (en) Ferromagnetic film, method of manufacturing the same, and magnetic head
US5585984A (en) Magnetic head
JPH0827897B2 (en) Magnetic head
JPH0827908B2 (en) Magnetic head
JPH07116563B2 (en) Fe-based soft magnetic alloy
JP2523854B2 (en) Magnetic head
JP2635422B2 (en) Magnetic head
EP0442760A2 (en) Soft magnetic alloy films and magnetic heads using the same
JPS6129105A (en) Magnetic alloy thin film
US5786103A (en) Soft magnetic film and magnetic head employing same
JP2775770B2 (en) Method for manufacturing soft magnetic thin film
JPH0484403A (en) Soft magnetic thin film
JP3127075B2 (en) Soft magnetic alloy film, magnetic head, and method of adjusting thermal expansion coefficient of soft magnetic alloy film
JP2570337B2 (en) Soft magnetic laminated film
JP2513206B2 (en) Composite magnetic head for overwriting
JP3279591B2 (en) Ferromagnetic thin film and manufacturing method thereof
JP2519554B2 (en) MIG type magnetic head
JP2565173B2 (en) Composite magnetic head
KR0136419B1 (en) Soft magnetic alloy thin film substrate
JP2657710B2 (en) Method for manufacturing soft magnetic thin film
JP3452594B2 (en) Manufacturing method of magnetic head
JPH0555036A (en) Soft magnetic thin film and its manufacture, soft magnetic multilayer film and its manufacture as well as magnetic head
JP2584687B2 (en) Method for manufacturing soft magnetic thin film
JP2551008B2 (en) Soft magnetic thin film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080321

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090321

Year of fee payment: 13

EXPY Cancellation because of completion of term