JP3279591B2 - Ferromagnetic thin film and manufacturing method thereof - Google Patents

Ferromagnetic thin film and manufacturing method thereof

Info

Publication number
JP3279591B2
JP3279591B2 JP18084291A JP18084291A JP3279591B2 JP 3279591 B2 JP3279591 B2 JP 3279591B2 JP 18084291 A JP18084291 A JP 18084291A JP 18084291 A JP18084291 A JP 18084291A JP 3279591 B2 JP3279591 B2 JP 3279591B2
Authority
JP
Japan
Prior art keywords
content
thin film
ferromagnetic thin
film
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18084291A
Other languages
Japanese (ja)
Other versions
JPH0529140A (en
Inventor
俊幸 香月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP18084291A priority Critical patent/JP3279591B2/en
Publication of JPH0529140A publication Critical patent/JPH0529140A/en
Application granted granted Critical
Publication of JP3279591B2 publication Critical patent/JP3279591B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • H01F10/131Amorphous metallic alloys, e.g. glassy metals containing iron or nickel

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は磁気テープ、磁気ディス
ク等の高密度記録用に使用される磁気ヘッド等に好適な
強磁性薄膜及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferromagnetic thin film suitable for a magnetic head or the like used for high-density recording of a magnetic tape, a magnetic disk, and the like, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】近年、磁気テープ及び磁気ディスク等の
高密度記録化の向上に伴い、記録媒体の保磁力(Hc)
も上昇の一途をたどり金属薄膜媒体では保磁力(Hc)
1000Oe以上のものが実用化されるようになった。
一方、このような高保磁力を有する磁気記録媒体の特性
を十分に活かして良好な記録特性を得るためには、磁気
ヘッドとして高飽和磁束密度を有するとともに同一の磁
気ヘッドで再生を行う場合においても高透磁率、低保磁
力を合わせて有することが要求され、更に、耐蝕性、耐
熱性等も重要な要素となる。また、磁気記録媒体の長手
方向ではなく、厚さ方向に磁化して記録する垂直磁気記
録方式も実用化されようとしているが、この場合、磁気
ヘッドの主磁極の先端部の厚さを0.5μm以下にしな
ければならないので、比較的保磁力の低い磁気記録媒体
に記録するためにも高飽和磁束密度を持つ磁気ヘッドが
必要とされている。このような要請に応えるため、最
近、1パーマロイ(Ni−Fe合金)やセンダスト(F
eAlSi合金)や、非晶質、FeRuGaSi系合金
等が提案されている(特開昭64−8604号公報)。
また、高飽和磁束密度の高い材料としてFe−Si系合
金(特開昭59−78503号公報)やFe−C系合金
(応用磁気学会1990、vol.2, No.14)、Fe−
Pt−C系合金(特開平1−144603号公報)が開
示されている。
2. Description of the Related Art In recent years, the coercive force (Hc) of a recording medium has been increased with the improvement in recording density of magnetic tapes and magnetic disks.
Coercive force (Hc) in metal thin film media
Those with 1000 Oe or more have come into practical use.
On the other hand, in order to sufficiently utilize the characteristics of a magnetic recording medium having such a high coercive force to obtain good recording characteristics, even when reproducing with the same magnetic head while having a high saturation magnetic flux density as a magnetic head. It is required to have a high magnetic permeability and a low coercive force, and corrosion resistance and heat resistance are also important factors. Also, a perpendicular magnetic recording system in which recording is performed by magnetizing the magnetic recording medium not in the longitudinal direction but in the thickness direction is going to be put into practical use. In this case, the thickness of the tip of the main pole of the magnetic head is set to 0.1. Since the thickness must be 5 μm or less, a magnetic head having a high saturation magnetic flux density is required for recording on a magnetic recording medium having a relatively low coercive force. To respond to such demands, recently, 1 Permalloy (Ni-Fe alloy) and Sendust (F
eAlSi alloys), amorphous, FeRuGaSi-based alloys, and the like have been proposed (Japanese Patent Application Laid-Open No. 64-8604).
Further, as a material having a high saturation magnetic flux density, Fe-Si alloys (JP-A-59-78503), Fe-C alloys (Japan Society of Applied Magnetics, 1990, vol. 2, No. 14), Fe-
A Pt-C-based alloy (JP-A-1-144603) is disclosed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記従来
の構成では、パーマロイやセンダスト、非晶質、FeR
uGaSi系合金では、飽和磁束密度Msが低いという
問題があり、又、Fe−Si合金やFe−C系合金は耐
蝕性に難点が認められ、更にFe−Pt−C系合金は耐
熱性が低いという問題点を有していた。
However, in the above-mentioned conventional structure, permalloy, sendust, amorphous, FeR
The uGaSi-based alloy has a problem that the saturation magnetic flux density Ms is low, and the Fe-Si alloy and the Fe-C-based alloy have difficulty in corrosion resistance, and the Fe-Pt-C-based alloy has low heat resistance. There was a problem that.

【0004】本発明は上記従来の問題点を解決するもの
で、高い飽和磁束密度・初期透磁率等を有し、耐蝕性と
耐熱性に優れた強磁性薄膜及びその強磁性薄膜を高品質
で、かつ低原価で量産できる製造方法を提供することを
目的とする。
The present invention solves the above-mentioned conventional problems, and provides a ferromagnetic thin film having high saturation magnetic flux density, initial magnetic permeability, etc., excellent in corrosion resistance and heat resistance, and a high quality ferromagnetic thin film. Another object of the present invention is to provide a manufacturing method which can be mass-produced at low cost.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
に本発明の強磁性薄膜は、基板温度を20℃以下として
スパッタリング装置にて前記基板上に形成される強磁性
薄膜であって、合金中のFeの含有量が、96〜60at
%であり、Niの含有量が0.5〜10at%(アトミッ
クパーセント)であるFe+Ni又はFeの含有量が9
6〜60at%であり、Ni+Coの含有量が2〜17at
%であるFe+Ni+Coからなる主成分金属元素と、
Nと、C,Al,Siの少なくとも1種以上の元素と、
Ta,Zr,Rh,Hf,Ti,Nb,Crの少なくと
も1種以上の遷移金属元素とを含有し、C,Al,Si
の少なくとも1種以上の元素の含有量が1〜20at%で
あり、かつ、C,Al,Siの1種以上の元素とTa,
Zr,Rh,Hf,Ti,Nb,Crの1種以上の遷移
金属元素との含有量が2〜38at%の範囲である構成を
有している。本発明の強磁性薄膜の製造方法は、合金中
のFeの含有量が、96〜60at%であり、Niの含有
量が0.5〜10at%(アトミックパーセント)である
Fe+Ni又はFeの含有量が96〜60at%であり、
Ni+Coの含有量が2〜17at%であるFe+Ni+
Coからなる主成分金属元素と、Nと、C,Al,Si
の少なくとも1種以上の元素と、Ta,Zr,Rh,H
f,Ti,Nb,Crの少なくとも1種以上の遷移金属
元素とを含有し、C,Al,Siの少なくとも1種以上
の元素の含有量が1〜20at%であり、かつ、C,A
l,Siの1種以上の元素とTa,Zr,Rh,Hf,
Ti,Nb,Crの1種以上の遷移金属元素との含有量
が2〜38at%の範囲である強磁性薄膜の製造方法であ
って、基板を20℃以下としてArとN2の混合ガス雰
囲気下でスパッタリング装置にて成膜した後、200℃
〜800℃の温度範囲で熱処理を行うようにした構成を
有している。
In order to achieve this object, a ferromagnetic thin film according to the present invention is a ferromagnetic thin film formed on a substrate by a sputtering apparatus at a substrate temperature of 20 ° C. or less, comprising an alloy. Fe content of 96 to 60 at
%, And the content of Fe + Ni or Fe whose content of Ni is 0.5 to 10 at% (atomic percent) is 9%.
6 to 60 at%, and the content of Ni + Co is 2 to 17 at
% Of a main metal element composed of Fe + Ni + Co;
N, at least one or more elements of C, Al, and Si;
Containing at least one or more transition metal elements of Ta, Zr, Rh, Hf, Ti, Nb, and Cr ;
The content of at least one or more of the elements is 1 to 20 at%.
And at least one element of C, Al, Si and Ta,
One or more transitions of Zr, Rh, Hf, Ti, Nb, Cr
It has a configuration in which the content with the metal element is in the range of 2 to 38 at% . In the method for producing a ferromagnetic thin film of the present invention, the content of Fe + Ni or Fe in which the content of Fe in the alloy is 96 to 60 at% and the content of Ni is 0.5 to 10 at% (atomic percent) Is 96 to 60 at%,
Fe + Ni + having a Ni + Co content of 2 to 17 at%
A main metal element composed of Co, N, C, Al, Si
And at least one element of Ta, Zr, Rh, H
f, containing at least one or more transition metal elements of Ti, Nb, and Cr , and at least one or more of C, Al, and Si
Is 1 to 20 at%, and C, A
l, one or more elements of Si and Ta, Zr, Rh, Hf,
Content of Ti, Nb, Cr with at least one transition metal element
Is a method for producing a ferromagnetic thin film in the range of 2 to 38 at% , wherein the substrate is formed at a temperature of 20 ° C. or less by a sputtering apparatus in a mixed gas atmosphere of Ar and N 2 ,
The heat treatment is performed in a temperature range of up to 800 ° C.

【0006】ここで、スパッタリング装置としては、
周波スパッタリング法、マグネトロンスパッタリング
法、イオンビームスパッタリング法等をもちいた装置が
好適に用いられる。
Here, as a sputtering apparatus, an apparatus using a high frequency sputtering method, a magnetron sputtering method, an ion beam sputtering method, or the like is used.
It is preferably used.

【0007】[0007]

【作用】この構成によって、飽和磁束密度(Ms)が
1.5T(テスラ)以上、初透磁率1000以上、保磁
力1.0Oe以下の強磁性薄膜が得られ、更に種々の熱
処理をともなう製造条件下においても耐蝕性、耐熱性に
優れた強磁性薄膜を低原価で量産性よく製造することが
できる。
According to this configuration, a ferromagnetic thin film having a saturation magnetic flux density (Ms) of 1.5 T (tesla) or more, an initial magnetic permeability of 1000 or more, and a coercive force of 1.0 Oe or less can be obtained, and further, manufacturing conditions involving various heat treatments Even below, a ferromagnetic thin film excellent in corrosion resistance and heat resistance can be manufactured at low cost and with good mass productivity.

【0008】[0008]

【実施例】(実施例1)以下本発明の一実施例につい
て、図面を参照しながら説明する。
(Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings.

【0009】図1は強磁性薄膜の製造方法に好適な高周
波スパッタリング装置の概略構成図である。
FIG. 1 is a schematic configuration diagram of a high-frequency sputtering apparatus suitable for a method of manufacturing a ferromagnetic thin film.

【0010】1は高周波電源、2はArガス供給管、3
はN2ガス供給管、4は流量計、5は排気口、6は冷却
水、7はチャンバー、8は基板、9はシャッター、10
はFe円板、11は磁石、12は電極間距離、13は所
定の合金組成を得るための添加物元素ペレットである。
1 is a high frequency power supply, 2 is an Ar gas supply pipe, 3
Is a N 2 gas supply pipe, 4 is a flow meter, 5 is an exhaust port, 6 is cooling water, 7 is a chamber, 8 is a substrate, 9 is a shutter, 10
Denotes an Fe disk, 11 denotes a magnet, 12 denotes a distance between electrodes, and 13 denotes an additive element pellet for obtaining a predetermined alloy composition.

【0011】成膜条件は次の条件で行った。高周波電力
密度は0.36w/cm2 、Ar流量は1.5SCCM、
2流量は0.08SCCM、基板温度は20℃以下と
し、電極間距離は86mmとした。基板はコーニング社製
のFC105基板を用い、膜厚は2.0μmと一定にし
た。
The film formation conditions were as follows. High frequency power density is 0.36 w / cm 2 , Ar flow rate is 1.5 SCCM,
The N 2 flow rate was 0.08 SCCM, the substrate temperature was 20 ° C. or less, and the distance between the electrodes was 86 mm. The substrate used was an FC105 substrate manufactured by Corning Incorporated, and the film thickness was kept constant at 2.0 μm.

【0012】成膜後のアニーリング条件は、200℃〜
800℃で行った。初期透磁率は、1MHzの値とし、保
磁力は、B−Hループトレーサーを用いて測定した。ま
た、腐蝕率は耐蝕試験前の飽和磁束密度をMs、耐蝕試
験後の飽和磁束密度をM1とし式(Ms−M1)×10
0/Msを計算して求めた。耐蝕試験の条件は温度65
℃、耐蝕相対湿度95%の雰囲気中に240時間放置し
て行った。
Annealing conditions after film formation are 200 ° C.
Performed at 800 ° C. The initial magnetic permeability was a value of 1 MHz, and the coercive force was measured using a BH loop tracer. Further, the corrosion rate is represented by the equation (Ms−M1) × 10, where Ms is the saturation magnetic flux density before the corrosion resistance test, and M1 is the saturation magnetic flux density after the corrosion resistance test.
0 / Ms was calculated and found. The conditions of the corrosion test are temperature 65
The test was left for 240 hours in an atmosphere at a temperature of 95 ° C. and a relative humidity of 95%.

【0013】上記製造条件下で、Fe+Niを主成分と
し、Hf,Ta,Cの各ペレット13を用いて複合ター
ゲットを作成し、Ar+N2混合ガスをチャンバー7内
に供給し、種々の組成を有する強磁性薄膜を成膜した。
次に、得られた強磁性薄膜の飽和磁束密度(Ms)、保
磁力(Hc)、腐蝕率(Ms−M1)×100/Msを
測定した。その結果を(表1)に示す。
Under the above manufacturing conditions, a composite target containing Fe + Ni as a main component, Hf, Ta, and C pellets 13 is prepared, and an Ar + N 2 mixed gas is supplied into the chamber 7 to have various compositions. A ferromagnetic thin film was formed.
Next, the saturation magnetic flux density (Ms), coercive force (Hc), and corrosion rate (Ms−M1) × 100 / Ms of the obtained ferromagnetic thin film were measured. The results are shown in (Table 1).

【0014】[0014]

【表1】 [Table 1]

【0015】この(表1)から明らかなように、添加物
の量が略39at%を越えると、飽和磁束密度(Ms)が
0.6Tとなり、従来の実用材料であるパーマロイ(N
i−19wt%Fe)合金膜の0.8Tを下まわることか
ら、添加物の添加量は39at%以下にする必要があるこ
とがわかった。
As is apparent from Table 1, when the amount of the additive exceeds approximately 39 at%, the saturation magnetic flux density (Ms) becomes 0.6 T, and the conventional practical material, permalloy (N
Since it is less than 0.8 T of the i-19 wt% Fe) alloy film, it has been found that the amount of the additive must be 39 at% or less.

【0016】次に腐蝕率について検討をする。パーマロ
イ(Ni−19wt%Fe)合金の諸特性は、(表2)に
示すとおりである。
Next, the corrosion rate will be examined. Various properties of the permalloy (Ni-19 wt% Fe) alloy are as shown in (Table 2).

【0017】[0017]

【表2】 [Table 2]

【0018】腐蝕率の限界は、実用材料であるセンダス
ト(Fe73.2−Al10.8−Si16at%)合金
を基準として検討した。センダスト合金の腐蝕率は、
(表2)に示すように10%であることから、本発明に
よる腐蝕率は、(表1)からもわかるように、添加物の
添加量が略2at%のとき、腐蝕率が0.625%である
ので、本発明によるFe+Niを主成分とした強磁性薄
膜の添加物の添加量は、2から39at%にする必要があ
る。さらに初期透磁率μiについて検討する。(表2)
により従来材料であるFe94.5−Si5.5at%、
Fe99−Clat%が800であるのを考慮すると、1
000以上あれば磁気ヘッド用強磁性薄膜として問題な
く使用できることがわかる。よって、図2から明らかな
ように、C量を2から20at%の範囲にする必要があ
る。
The limit of the corrosion rate was examined on the basis of Sendust (Fe73.2-Al10.8-Si16at%) alloy, which is a practical material. The corrosion rate of Sendust alloy is
Since it is 10% as shown in (Table 2), the corrosion rate according to the present invention is, as can be seen from (Table 1), when the additive amount of the additive is approximately 2 at%, the corrosion rate is 0.625. %, The additive amount of the ferromagnetic thin film containing Fe + Ni as a main component according to the present invention needs to be 2 to 39 at%. Further, the initial magnetic permeability μi will be examined. (Table 2)
Thus, the conventional material Fe 94.5-Si 5.5 at%,
Considering that Fe99-Clat% is 800, 1
It can be seen that if it is 000 or more, it can be used as a ferromagnetic thin film for a magnetic head without any problem. Therefore, as is apparent from FIG. 2, the C content needs to be in the range of 2 to 20 at%.

【0019】(実施例2)Fe+Ni+Coを主成分と
し、実施例1と同一条件下で、実施例1と同様にHf,
Ta,Cの各ペレットを用い、種々の組成を有する強磁
性薄膜を成膜した。
(Embodiment 2) Hf, Fe + Ni + Co was used as a main component under the same conditions as in Embodiment 1 in the same manner as in Embodiment 1.
Using each of Ta and C pellets, ferromagnetic thin films having various compositions were formed.

【0020】次に、得られた強磁性薄膜の飽和磁束密度
(Ms)、保磁力(Hc)、腐蝕率(Ms−M1)×1
00/Msを測定した。その結果を(表3)に示す。
Next, the saturation magnetic flux density (Ms), coercive force (Hc), corrosion rate (Ms-M1) × 1 of the obtained ferromagnetic thin film
00 / Ms was measured. The results are shown in (Table 3).

【0021】[0021]

【表3】 [Table 3]

【0022】この(表3)から明らかなように、本実施
例による添加物の量が略38at%を越えると、飽和磁束
密度(Ms)が0.6Tとなり、従来の実用材料である
パーマロイ(Ni−19wt%Fe)合金膜の0.8Tを
下まわることから、添加物の添加量は37at%以下にす
る必要があることがわかった。
As is evident from Table 3, when the amount of the additive according to the present embodiment exceeds about 38 at%, the saturation magnetic flux density (Ms) becomes 0.6 T, and the conventional practical material, Permalloy ( Since it is less than 0.8 T of the Ni-19 wt% Fe) alloy film, it was found that the amount of the additive must be 37 at% or less.

【0023】次に腐蝕率について検討する。パーマロイ
(Ni−19wt%Fe)合金の諸特性は、先の(表2)
に示すとおりである。センダスト合金の腐蝕率は、(表
2)に示すように10%なので、本発明による腐蝕率
は、(表3)からもわかるように、添加物の添加量が2
at%のとき、腐蝕率が0.625%であるので、本発明
によるFeCoNiを主成分とした強磁性薄膜の添加物
の添加量は、2から38at%にする必要がある。さらに
初期透磁率μiについて検討する。先の(表2)により
従来材料であるFe94.5−Si5.5at%、Fe9
9−C1at%が800であるのを考慮すると、1000
以上あれば磁気ヘッド用強磁性薄膜として問題なく使用
できることから、図3から明らかなように、C量を2か
ら20at%の範囲にする必要がある。
Next, the corrosion rate will be examined. Various properties of the permalloy (Ni-19wt% Fe) alloy are shown in Table 2 above.
As shown in FIG. Since the corrosion rate of the Sendust alloy is 10% as shown in (Table 2), the corrosion rate according to the present invention is, as can be seen from (Table 3), the amount of the additive added is 2%.
Since the corrosion rate is 0.625% at%, the additive amount of the ferromagnetic thin film based on FeCoNi according to the present invention needs to be 2 to 38 at%. Further, the initial magnetic permeability μi will be examined. According to the above (Table 2), the conventional materials of Fe 94.5-Si 5.5 at% and Fe 9
Considering that 9-C1at% is 800, 1000
Since the above can be used without any problem as a ferromagnetic thin film for a magnetic head, it is necessary to set the C content in the range of 2 to 20 at% as is clear from FIG.

【0024】(実施例3)スパッタリングガス(成膜ガ
ス)として、Arガスのみを用いた場合とAr+N2混
合ガスを用いた場合で、種々の組成を有する強磁性薄膜
を作成した。まずFe+Niを主成分とし、Zr,T
a,Rh,Cを種々の割合で含む複合ターゲットを作成
し、実施例1と同一の製造条件下で成膜し、飽和磁束、
保磁力、初期透磁率、腐蝕率、アニール温度を測定し
た。その結果を(表4)に示す。
(Example 3) Ferromagnetic thin films having various compositions were prepared by using only Ar gas and using a mixed gas of Ar and N2 as a sputtering gas (film forming gas). First, Fe + Ni is the main component, and Zr, T
A composite target containing a, Rh, and C at various ratios was prepared, and a film was formed under the same manufacturing conditions as in Example 1.
The coercive force, initial magnetic permeability, corrosion rate, and annealing temperature were measured. The results are shown in (Table 4).

【0025】[0025]

【表4】 [Table 4]

【0026】この(表4)から明らかなように、成膜ガ
スにAr+N2の混合ガスを用いた場合、耐蝕性は飛躍
的に向上する。さらに、添加物の種類によって、耐蝕性
の順位は、FeNiTaRhC−N膜が最も良く、次に
FeNiZrTaC−N膜であり、FeNiZrC−N
膜は、Ar+N2の混合ガスを用いても腐蝕率が0%の
ものはなかった。しかし、(表2)による実用材料のセ
ンダスト合金を基準にするといずれも実用上問題ない範
囲であるといえる。
As is evident from Table 4, when a mixed gas of Ar + N 2 is used as the film forming gas, the corrosion resistance is dramatically improved. Further, depending on the type of the additive, the FeNiTaRhC-N film is the best in the order of the corrosion resistance, followed by the FeNiZrTaC-N film, and the FeNiZrC-N film.
No film had a corrosion rate of 0% even when a mixed gas of Ar + N 2 was used. However, it can be said that any of them is within a range in which there is no practical problem based on the Sendust alloy as a practical material according to (Table 2).

【0027】(実施例4)Fe+Ni+Coを主成分と
したものを用いた他は、実施例3と同様にして成膜し、
飽和磁束、保磁力、初期透磁率、腐蝕率、アニール温度
を測定した。
(Embodiment 4) A film was formed in the same manner as in Embodiment 3, except that the main component was Fe + Ni + Co.
The saturation magnetic flux, coercive force, initial magnetic permeability, corrosion rate, and annealing temperature were measured.

【0028】その結果を(表5)に示した。The results are shown in (Table 5).

【0029】[0029]

【表5】 [Table 5]

【0030】この(表5)から明らかなように、成膜ガ
スにAr+N2の混合ガスを用いた場合、耐蝕性は飛躍
的に向上する。さらに、添加物の種類によって、耐蝕性
の順位は、FeCoNiTaRhC−N膜が最も良く、
次にFeCoNiTaC−N膜であり、FeTaC−N
膜は、Ar+N2の混合ガスを用いても腐蝕率が0%の
ものはなかった。しかし、(表3)による実用材料のセ
ンダスト合金を基準にするといずれも実用上問題ない範
囲であるといえる。
As is clear from Table 5, when a mixed gas of Ar + N 2 is used as a film forming gas, the corrosion resistance is dramatically improved. Further, depending on the type of the additive, the order of corrosion resistance is best for the FeCoNiTaRhC-N film,
Next, a FeCoNiTaC-N film is formed.
No film had a corrosion rate of 0% even when a mixed gas of Ar + N 2 was used. However, based on the Sendust alloy as a practical material according to (Table 3), it can be said that any of these ranges is practically acceptable.

【0031】(実施例5)各種の強磁性薄膜について、
成膜後の耐熱性を比較した。
(Embodiment 5) For various ferromagnetic thin films,
The heat resistance after film formation was compared.

【0032】図4にFe+Niを主成分とした強磁性薄
膜、図5にFe+Ni+Coを主成分とした強磁性薄膜
の保磁力のアニール温度依存性を示す。
FIG. 4 shows the annealing temperature dependence of the coercive force of the ferromagnetic thin film containing Fe + Ni as the main component, and FIG. 5 shows the ferromagnetic thin film containing Fe + Ni + Co as the main component.

【0033】この図4から明らかなように、本実施例に
よる強磁性薄膜FeNiZrTaC−Nは、200℃か
ら800℃において保磁力は低いことがわかる。しか
し、FeNiZrTaC膜は、800℃において保磁力
が1.5Oeと高く問題があることがわかった。
As is clear from FIG. 4, the ferromagnetic thin film FeNiZrTaC-N according to the present embodiment has a low coercive force from 200 ° C. to 800 ° C. However, it was found that the FeNiZrTaC film had a problem that the coercive force was as high as 1.5 Oe at 800 ° C.

【0034】また、図5から明らかなように、本実施例
による強磁性薄膜FeCoNiTaC−Nは、200℃
から800℃において保磁力は低いことがわかる。しか
し、FeCoNiTaC膜は、800℃において保磁力
が1.5Oeと高く問題がある。また。従来材料である
FePtC,FeAlSi,FeNiは、400℃にお
いては、低保磁力を示すが、それ以外の温度では高い保
磁力を示し、FeSiは、最小値1.4Oeであり問題
がある。従って、磁気ヘッド用強磁性薄膜としては、耐
熱温度の高いFeNiZrTaC−N膜等やFeCoN
iTaC−N膜等が好ましいといえる。
As is clear from FIG. 5, the ferromagnetic thin film FeCoNiTaC-N according to the present embodiment has a temperature of 200 ° C.
It can be seen that the coercive force at 800 ° C. is low. However, the FeCoNiTaC film has a problem that the coercive force is as high as 1.5 Oe at 800 ° C. Also. The conventional materials FePtC, FeAlSi, and FeNi exhibit low coercive force at 400 ° C., but exhibit high coercive force at other temperatures, and FeSi has a minimum value of 1.4 Oe, which is problematic. Therefore, as a ferromagnetic thin film for a magnetic head, an FeNiZrTaC-N film or the like having a high heat resistance temperature or a FeCoN
It can be said that an iTaC-N film or the like is preferable.

【0035】[0035]

【発明の効果】以上のように本発明の強磁性薄膜は、基
板温度を20℃以下としてスパッタリング装置にて前記
基板上に形成される強磁性薄膜であって、合金中のFe
の含有量が、96〜60at%であり、Niの含有量が
0.5〜10at%(アトミックパーセント)であるFe
+Ni又はFeの含有量が96〜60at%であり、Ni
+Coの含有量が2〜17at%であるFe+Ni+Co
からなる主成分金属元素と、Nと、C,Al,Siの少
なくとも1種以上の元素と、Ta,Zr,Rh,Hf,
Ti,Nb,Crの少なくとも1種以上の遷移金属元素
とを含有し、C,Al,Siの少なくとも1種以上の元
素の含有量が1〜20at%であり、かつ、C,Al,S
iの1種以上の元素とTa,Zr,Rh,Hf,Ti,
Nb,Crの1種以上の遷移金属元素との含有量が2〜
38at%の範囲であることにより、高い飽和磁束密度、
高い初期透磁率、低い保磁力、さらに耐蝕性と耐熱性に
優れた強磁性薄膜が実現でき、更に、合金中のFeの含
有量が、96〜60at%であり、Niの含有量が0.5
〜10at%(アトミックパーセント)であるFe+Ni
又はFeの含有量が96〜60at%であり、Ni+Co
の含有量が2〜17at%であるFe+Ni+Coからな
る主成分金属元素と、Nと、C,Al,Siの少なくと
も1種以上の元素と、Ta,Zr,Rh,Hf,Ti,
Nb,Crの少なくとも1種以上の遷移金属元素とを含
し、C,Al,Siの少なくとも1種以上の元素の含
有量が1〜20at%であり、かつ、C,Al,Siの1
種以上の元素とTa,Zr,Rh,Hf,Ti,Nb,
Crの1種以上の遷移金属元素との含有量が2〜38at
%の範囲である強磁性薄膜の製造方法であって、基板を
20℃以下としてArとN2の混合ガス雰囲気下でスパ
ッタリング装置にて成膜した後、200℃〜800℃の
温度範囲で熱処理を行うようにしたことにより上記高性
能を有する強磁性薄膜を高収率で得る製造方法を実現で
きるものである。この強磁性薄膜を使用することにより
高い保磁力をもつ磁気記録媒体への記録再生を良好に行
える高密度記録に適した磁気ヘッドを得ることができ
る。
As described above, the ferromagnetic thin film of the present invention is a ferromagnetic thin film formed on the substrate by a sputtering apparatus at a substrate temperature of 20 ° C. or less, and the Fe in the alloy
Fe is 96 to 60 at% and the Ni content is 0.5 to 10 at% (atomic percent).
+ Ni or Fe content of 96 to 60 at%;
Fe + Ni + Co having a content of + Co of 2 to 17 at%
And N, at least one or more elements of C, Al, Si, and Ta, Zr, Rh, Hf,
It contains at least one or more transition metal elements of Ti, Nb and Cr , and contains at least one or more elements of C, Al and Si.
Element content is 1 to 20 at% and C, Al, S
i, at least one element and Ta, Zr, Rh, Hf, Ti,
The content of Nb and Cr with one or more transition metal elements is 2 to
High saturation magnetic flux density by being in the range of 38 at% ,
A ferromagnetic thin film having high initial magnetic permeability, low coercive force, and excellent corrosion resistance and heat resistance can be realized. Further, the content of Fe in the alloy is 96 to 60 at%, and the content of Ni is 0.1 to 0.6 at%. 5
Fe + Ni at 〜1010 at% (atomic percent)
Alternatively, the content of Fe is 96 to 60 at%, and Ni + Co
, A main component metal element of Fe + Ni + Co having a content of 2 to 17 at%, N, at least one element of C, Al, Si, and Ta, Zr, Rh, Hf, Ti,
At least one transition metal element of Nb and Cr ; and at least one element of C, Al and Si.
The amount is 1 to 20 at%, and 1 of C, Al and Si
Ta, Zr, Rh, Hf, Ti, Nb,
The content of Cr with one or more transition metal elements is 2 to 38 at.
%, Wherein the substrate is formed at a temperature of 200 ° C. or less by a sputtering apparatus in a mixed gas atmosphere of Ar and N 2 , and then heat-treated at a temperature of 200 ° C. to 800 ° C. By doing so, it is possible to realize a production method of obtaining a ferromagnetic thin film having the above high performance in a high yield. By using this ferromagnetic thin film, it is possible to obtain a magnetic head suitable for high-density recording capable of satisfactorily performing recording and reproduction on a magnetic recording medium having a high coercive force.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例における製造方法に好適な高
周波スパッタリング装置の概略構成図
FIG. 1 is a schematic configuration diagram of a high-frequency sputtering apparatus suitable for a manufacturing method according to an embodiment of the present invention.

【図2】本発明の(Fe+NiTaZrC)N膜の初期
透磁率を示す状態図
FIG. 2 is a phase diagram showing the initial magnetic permeability of the (Fe + NiTaZrC) N film of the present invention.

【図3】本発明の(Fe+Co+NiTaC)N膜の初
期透磁率を示す状態図
FIG. 3 is a state diagram showing the initial magnetic permeability of the (Fe + Co + NiTaC) N film of the present invention.

【図4】(Fe+NiTaZrC)N強磁性薄膜の保磁
力のアニール温度依存性を示す図
FIG. 4 is a diagram showing the annealing temperature dependence of the coercive force of a (Fe + NiTaZrC) N ferromagnetic thin film.

【図5】(Fe+Ni+CoTaC)N強磁性薄膜の保
磁力のアニール温度依存性を示す図
FIG. 5 is a diagram showing the annealing temperature dependence of the coercive force of a (Fe + Ni + CoTaC) N ferromagnetic thin film.

【符号の説明】[Explanation of symbols]

1 高周波電源 2,3 ガス供給管 4 流量計 5 排気口 6 冷却水 7 チャンバー 8 基板 9 シャッター 10 鉄円板 11 マグネット 12 電極間距離 13 添加物元素ペレット DESCRIPTION OF SYMBOLS 1 High frequency power supply 2, 3 Gas supply pipe 4 Flow meter 5 Exhaust port 6 Cooling water 7 Chamber 8 Substrate 9 Shutter 10 Iron disk 11 Magnet 12 Electrode distance 13 Additive element pellet

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−218006(JP,A) 特開 平4−242907(JP,A) 特開 平3−131006(JP,A) 特開 昭63−311613(JP,A) 特開 昭63−64313(JP,A) 特開 昭61−269302(JP,A) 特開 昭62−158306(JP,A) ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-2-218006 (JP, A) JP-A-4-242907 (JP, A) JP-A-3-131006 (JP, A) JP-A-63- 311613 (JP, A) JP-A-63-64313 (JP, A) JP-A-61-269302 (JP, A) JP-A-62-158306 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板温度を20℃以下としてスパッタリン
グ装置にて前記基板上に形成される強磁性薄膜であっ
て、合金中のFeの含有量が、96〜60at%であり、
Niの含有量が0.5〜10at%(アトミックパーセン
ト)であるFe+Ni又はFeの含有量が96〜60at
%であり、Ni+Coの含有量が2〜17at%であるF
e+Ni+Coからなる主成分金属元素と、Nと、C,
Al,Siの少なくとも1種以上の元素と、Ta,Z
r,Rh,Hf,Ti,Nb,Crの少なくとも1種以
上の遷移金属元素とを含有し、C,Al,Siの少なく
とも1種以上の元素の含有量が1〜20at%であり、か
つ、C,Al,Siの1種以上の元素とTa,Zr,R
h,Hf,Ti,Nb,Crの1種以上の遷移金属元素
との含有量が2〜38at%の範囲であることを特徴とす
る強磁性薄膜。
1. A ferromagnetic thin film formed on a substrate by a sputtering apparatus at a substrate temperature of 20 ° C. or lower, wherein the content of Fe in the alloy is 96 to 60 at%,
Fe + Ni or Fe having a Ni content of 0.5 to 10 at% (atomic percent) of 96 to 60 at
%, And the content of Ni + Co is 2 to 17 at%.
e + Ni + Co as main component metal element, N, C,
At least one or more elements of Al and Si ;
It contains at least one or more transition metal elements of r, Rh, Hf, Ti, Nb, and Cr , and contains less C, Al, and Si.
The content of at least one element is 1 to 20 at%,
One or more elements of C, Al, Si and Ta, Zr, R
one or more transition metal elements of h, Hf, Ti, Nb, Cr
A ferromagnetic thin film having a content of 2 to 38 at% .
【請求項2】合金中のFeの含有量が、96〜60at%
であり、Niの含有量が0.5〜10at%(アトミック
パーセント)であるFe+Ni又はFeの含有量が96
〜60at%であり、Ni+Coの含有量が2〜17at%
であるFe+Ni+Coからなる主成分金属元素と、N
と、C,Al,Siの少なくとも1種以上の元素と、
a,Zr,Rh,Hf,Ti,Nb,Crの少なくとも
1種以上の遷移金属元素とを含有し、C,Al,Siの
少なくとも1種以上の元素の含有量が1〜20at%であ
り、かつ、C,Al,Siの1種以上の元素とTa,Z
r,Rh,Hf,Ti,Nb,Crの1種以上の遷移金
属元素との含有量が2〜38at%の範囲である強磁性薄
膜の製造方法であって、基板を20℃以下としてArと
2の混合ガス雰囲気下でスパッタリング装置にて成膜
した後、200℃〜800℃の温度範囲で熱処理を行う
ことを特徴とする強磁性薄膜の製造方法。
2. The alloy according to claim 1, wherein the content of Fe in the alloy is 96 to 60 at%.
And the content of Fe + Ni or Fe whose Ni content is 0.5 to 10 at% (atomic percent) is 96
6060 at%, and the content of Ni + Co is 21717 at%
And a main component metal element composed of Fe + Ni + Co
When, C, Al, and at least one element of Si, T
a, Zr, Rh, Hf, Ti, Nb, and at least one transition metal element .
The content of at least one element is 1 to 20 at%.
And one or more elements of C, Al, Si and Ta, Z
at least one transition gold of r, Rh, Hf, Ti, Nb, Cr
A method for producing a ferromagnetic thin film having a content of a group element in the range of 2 to 38 at%, comprising forming a film by a sputtering apparatus in a mixed gas atmosphere of Ar and N 2 at a substrate temperature of 20 ° C. or lower. A method for producing a ferromagnetic thin film, wherein heat treatment is performed in a temperature range of 200 to 800C.
JP18084291A 1991-07-22 1991-07-22 Ferromagnetic thin film and manufacturing method thereof Expired - Fee Related JP3279591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18084291A JP3279591B2 (en) 1991-07-22 1991-07-22 Ferromagnetic thin film and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18084291A JP3279591B2 (en) 1991-07-22 1991-07-22 Ferromagnetic thin film and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0529140A JPH0529140A (en) 1993-02-05
JP3279591B2 true JP3279591B2 (en) 2002-04-30

Family

ID=16090312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18084291A Expired - Fee Related JP3279591B2 (en) 1991-07-22 1991-07-22 Ferromagnetic thin film and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3279591B2 (en)

Also Published As

Publication number Publication date
JPH0529140A (en) 1993-02-05

Similar Documents

Publication Publication Date Title
JP2963003B2 (en) Soft magnetic alloy thin film and method of manufacturing the same
US5244627A (en) Ferromagnetic thin film and method for its manufacture
JPH0652684B2 (en) Magnetic alloy thin film
JP3279591B2 (en) Ferromagnetic thin film and manufacturing method thereof
JPH0653039A (en) Corrosion-resistant magnetic film and magnetic head using the same
JPH03131006A (en) Magnetic head
JPH0827908B2 (en) Magnetic head
JP3127075B2 (en) Soft magnetic alloy film, magnetic head, and method of adjusting thermal expansion coefficient of soft magnetic alloy film
JP2979557B2 (en) Soft magnetic film
JP3386270B2 (en) Magnetic head and magnetic recording device
JP2707213B2 (en) Iron-based soft magnetic thin film alloy for magnetic head and method of manufacturing the same
JP2657710B2 (en) Method for manufacturing soft magnetic thin film
JP2727274B2 (en) Soft magnetic thin film
JPH03132004A (en) Fe-ta-c magnetic film and magnetic head
JPH04252006A (en) Corrosion-resistant magnetically soft film and magnetic head using the same
JPH0513223A (en) Magnetic head
JPH08107036A (en) Soft magnetic thin film magnetic recording equipment using that film
JPH0617244A (en) Target for corrosion resistant magnetic film and magnetic head using the same
JPH05290330A (en) Target for corrosion resistant magnetic film and magnetic head formed by using this target
JPH046809A (en) Fe group soft magnetic thin film and magnetic head using it
JP2003017354A (en) Method of manufacturing soft magnetic film
JPH05234751A (en) Soft magnetic alloy film and magnetic head having high saturation magnetic flux density for thin film magnetic head
JPH03181008A (en) Magnetic head
JPH0789526B2 (en) Crystalline soft magnetic thin film
JPH0529139A (en) Corrosion-proof magnetic film and magnetic head utilizing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees