JPH0827427A - Heat-resistant film adhesive and its production - Google Patents

Heat-resistant film adhesive and its production

Info

Publication number
JPH0827427A
JPH0827427A JP16145594A JP16145594A JPH0827427A JP H0827427 A JPH0827427 A JP H0827427A JP 16145594 A JP16145594 A JP 16145594A JP 16145594 A JP16145594 A JP 16145594A JP H0827427 A JPH0827427 A JP H0827427A
Authority
JP
Japan
Prior art keywords
heat
film adhesive
resistant film
weight
polyimide resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16145594A
Other languages
Japanese (ja)
Inventor
Shiyuusaku Okaake
周作 岡明
Tatsuhiro Yoshida
達弘 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP16145594A priority Critical patent/JPH0827427A/en
Publication of JPH0827427A publication Critical patent/JPH0827427A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector

Abstract

PURPOSE:To obtain a heat-resistant film adhesive, excellent in low-temperature processabillty, bonding operation efficiency and reliability and useful for electron ics, etc., by flow-casting a solution of a specific heat-resistant resin composition onto the surface of a support. CONSTITUTION:This heat-resistant film adhesive contains (A) 100 pts.wt. polyimide resin, soluble in organic solvents, having <=350 deg.C glass transition temperature and comprising a siloxane compound of the formula [R1 and R2 are each a bivalent 1-4C aliphatic or aromatic group; R3 to R5 are each a monovalent aliphatic or aromatic group; (k) is 1-20] such as alpha,omega-bis(3-aminopropyl) polydimethylsiloxane in an amount of 5-50mol% based on the total amount of the amine component, (B) 5-100 pts.wt. epoxy compound having >=2 epoxy groups in one molecule such as a bisphenol A type epoxy resin and (C) 0.1-50 pts.wt. coupling agent such as a silane coupling agent as principal components. Furthermore, the method for producing the heat-resistant film adhesive is to flow-cast a solution of a heat-resistant resin composition containing the components (A), (B) and (C) onto one or both surfaces of a support.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は耐熱性と低温加工性を併
せもち、エレクトロニクス用途、特に半導体実装材料と
して適したシリコン基板や金属に対する接着力に優れた
フィルム接着剤と、その製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film adhesive which has both heat resistance and low-temperature processability and is suitable for electronics, especially as a semiconductor mounting material, and has excellent adhesiveness to silicon substrates and metals, and a method for producing the same. Is.

【0002】[0002]

【従来の技術】近年、半導体チップが高機能大容量化に
よって大型化する一方、パッケージの大きさはプリント
回路設計上の制約、電子機器小型化の要求などから従来
と変わらない、あるいはむしろ小さな外形を要求されて
いる。この傾向に対応して、半導体チップの高密度化と
高密度実装に対応した新しい実装方式が幾つか提案され
ている。一つはメモリー素子に提案されているダイ・パ
ッドのないリードフレームの上にチップを載せるCOL
(チップ・オン・リード)構造と、その発展形であるチ
ップの上にリードを載せるLOC(リード・オン・チッ
プ)構造である。一方、論理素子には電源、グランドを
別フレームにし、さらに放熱のための金属プレートを多
層化した多層リードフレーム構造がある。これらによる
とチップ内配線やワイヤー・ボンディングの合理化、配
線短縮による信号高速化、消費電力の増大に伴って発生
する熱の放散等と素子サイズの小型化を図ることができ
る。
2. Description of the Related Art In recent years, while semiconductor chips have become larger due to higher functionality and larger capacity, the size of the package has not changed from the conventional one due to restrictions on printed circuit design, demand for miniaturization of electronic equipment, or a rather small external shape. Is being requested. In response to this tendency, some new mounting methods have been proposed for high density and high density mounting of semiconductor chips. One is a COL that mounts a chip on a lead frame without a die pad proposed for memory devices.
(Chip-on-lead) structure and LOC (lead-on-chip) structure in which leads are mounted on a chip, which is a development of the structure. On the other hand, the logic element has a multi-layered lead frame structure in which a power source and a ground are provided in different frames and a metal plate for heat dissipation is multi-layered. According to these, it is possible to rationalize the wiring in the chip and wire bonding, to speed up the signal by shortening the wiring, to dissipate heat generated due to the increase in power consumption, and to reduce the element size.

【0003】この新しい実装形態では、半導体チップと
リードフレーム、リードフレームとプレート、リードフ
レーム同士など同種異種材質の接着界面が存在し、その
接着信頼性が素子の信頼性に非常に大きな影響を与え
る。素子組立作業時の工程温度に耐える信頼性は勿論の
こと、吸湿時、湿熱時などの接着信頼性である。さらに
接着作業性も重要な項目である。
In this new mounting mode, there are bonding interfaces of the same kind and different materials such as a semiconductor chip and a lead frame, a lead frame and a plate, and lead frames, and the bonding reliability greatly affects the reliability of the device. . Not only the reliability of withstanding the process temperature at the time of assembling the element, but also the bonding reliability at the time of moisture absorption, heat and humidity. Further, the workability of bonding is also an important item.

【0004】従来、これらの接着にはペースト状の接着
剤や耐熱性基材に接着剤を塗布したものが使用されてい
た。エポキシ樹脂系、アクリル樹脂系、ゴム−フェノー
ル樹脂系の熱硬化性樹脂が接着剤として使用されている
が、イオン性不純物が多い、加熱硬化に高温長時間を必
要とし生産性が悪い、加熱硬化時に多量の揮発分が発生
しリードを汚染する、吸湿性が高い、など高信頼性接着
剤としての要求を満たしているとは言い難く、満足でき
る材料が見当らない。新しい実装形態に適した接着剤の
開発が求められている。その一つの方法としてポリイミ
ド樹脂を用いたホットメルト型のフィルム接着剤が挙げ
られる(特開平5-105850,112760,112761号 公報参
照)。ホットメルトタイプの接着剤であれば、短時間に
被着体に熱圧着することが可能であり、接着後の加熱硬
化工程が必要ではなくなり、生産性、信頼性の向上に大
きく寄与すると考えられる。しかしながら、ホットメル
ト型であるがため接着剤樹脂のガラス転移温度が高いと
加工に非常に高温を要し、被着材に熱損傷を与える恐れ
が大きい。一方、低温加工性を付与するためガラス転移
温度を下げると耐熱性が下がり、よって信頼性が低下す
るという問題点があった。
Conventionally, a paste-like adhesive or a heat-resistant base material coated with an adhesive has been used for these adhesions. Epoxy resin-based, acrylic resin-based, and rubber-phenol resin-based thermosetting resins are used as adhesives, but there are many ionic impurities, heat curing requires high temperature and long time, and productivity is poor, heat curing It is hard to say that the requirements for a highly reliable adhesive such as a large amount of volatile components that contaminate leads and high hygroscopicity are satisfied, and no satisfactory material is found. There is a demand for the development of adhesives suitable for new mounting forms. One of such methods is a hot-melt type film adhesive using a polyimide resin (see JP-A-5-105850, 112760, 112761). A hot-melt type adhesive can be thermocompression-bonded to an adherend in a short time, and a heat-curing step after adhesion is not required, which is considered to greatly contribute to improvement in productivity and reliability. . However, since it is a hot-melt type, if the glass transition temperature of the adhesive resin is high, it takes a very high temperature for processing, and there is a great possibility that the adherend is thermally damaged. On the other hand, if the glass transition temperature is lowered in order to impart low-temperature processability, there is a problem that the heat resistance is lowered, and thus the reliability is lowered.

【0005】[0005]

【発明が解決しようとする課題】本発明は、低温短時間
で接着可能でかつ耐熱性に優れたフィルム接着剤を得る
べく鋭意研究を重ねた結果、特定構造のポリイミド樹脂
にエポキシ化合物及びカップリング剤を添加すると、上
記課題を解決することができることを見出し、本発明に
到達したものである。
DISCLOSURE OF THE INVENTION The present invention has been earnestly studied to obtain a film adhesive which can be bonded at a low temperature in a short time and is excellent in heat resistance. As a result, an epoxy compound and a coupling agent are added to a polyimide resin having a specific structure. The inventors have found that the above-mentioned problems can be solved by adding an agent, and arrived at the present invention.

【0006】[0006]

【課題を解決するための手段】本発明は、ガラス転移温
度が350℃以下の、有機溶剤に可溶なポリイミド樹脂100
重量部と、1分子中に少なくとも2個のエポキシ基を有
するエポキシ化合物5〜100重量部と、カップリング剤0.
1〜50重量部とを主たる接着剤樹脂成分とする耐熱性フ
ィルム接着剤及びその製造法に関する。
The present invention provides a polyimide resin 100 having a glass transition temperature of 350 ° C. or lower and soluble in an organic solvent.
Parts by weight, 5 to 100 parts by weight of an epoxy compound having at least two epoxy groups in one molecule, and a coupling agent.
The present invention relates to a heat-resistant film adhesive containing 1 to 50 parts by weight as a main adhesive resin component and a method for producing the same.

【0007】本発明の接着剤樹脂の必須成分である成分
(A)ポリイミド樹脂は、3,3',4,4'-ビフェニルテトラ
カルボン酸二無水物、3,3',4,4'-ベンゾフェノンテトラ
カルボン酸二無水物、4,4'-オキシジフタル酸二無水物
及びエチレングリコールビストリメリット酸二無水物か
らなる群より選ばれた1種又は2種以上のテトラカルボ
ン酸二無水物と芳香族ジアミンとを重合させることによ
り得られたものであることが好ましい。
The component (A) polyimide resin which is an essential component of the adhesive resin of the present invention is 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 3,3', 4,4'- One or more tetracarboxylic dianhydrides and aromatics selected from the group consisting of benzophenone tetracarboxylic dianhydride, 4,4'-oxydiphthalic dianhydride and ethylene glycol bistrimellitic dianhydride It is preferably obtained by polymerizing with a diamine.

【0008】前記ポリイミドの製造に用いられる芳香族
ジアミンとして、例えば、2,2-ビス(4-(4-アミノフェノ
キシ)フェニル)プロパン、1,3-ビス(3-アミノフェノキ
シ)ベンゼン、2,2-ビス(4-(4-アミノフェノキシ)フェニ
ル)ヘキサフルオロプロパン、2,2-ビス(4-アミノフェノ
キシ)ヘキサフルオロプロパン、ビス-4-(4-アミノフェ
ノキシ)フェニルスルフォン、ビス-4-(3-アミノフェノ
キシ)フェニルスルフォンなどを挙げることができ、そ
れらを単独、あるいは併用して使用することができる。
Examples of the aromatic diamine used for producing the polyimide include, for example, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, 1,3-bis (3-aminophenoxy) benzene, 2, 2-bis (4- (4-aminophenoxy) phenyl) hexafluoropropane, 2,2-bis (4-aminophenoxy) hexafluoropropane, bis-4- (4-aminophenoxy) phenyl sulfone, bis-4- Examples thereof include (3-aminophenoxy) phenyl sulfone, and these can be used alone or in combination.

【0009】また前記ポリイミドのジアミン成分の一成
分として式(1)で表されるシロキサン化合物をジアミ
ン成分総量の5〜50モル%用いることがより好ましい。
It is more preferable to use the siloxane compound represented by the formula (1) as one component of the diamine component of the polyimide in an amount of 5 to 50 mol% of the total amount of the diamine component.

【0010】[0010]

【化1】 (式中、R1、R2:二価の炭素数1〜4の脂肪族基又は
芳香族基 R3、R4、R5、R6:一価の脂肪族基又は芳香族基 k:1〜20の整数)
Embedded image (In the formula, R 1 and R 2 : a divalent aliphatic group having 1 to 4 carbon atoms or an aromatic group R 3 , R 4 , R 5 , and R 6 : a monovalent aliphatic group or an aromatic group k: (An integer from 1 to 20)

【0011】式(1)で表されるシロキサン化合物が、
ジアミン成分の総量の5モル%より少ないと得られるポ
リイミドの有機溶剤への溶解性が低下し、50モル%を越
えるとガラス転移温度が著しく低下し耐熱性に問題が生
じる。さらに、一般式(1)で表されるシロキサン化合
物として具体的には、下記一般式(2)で表されるα,
ω-ビス(3-アミノプロピル)ポリジメチルシロキサン
(APPS)が好ましく、特にkの値が4〜10の範囲
が、ガラス転移温度、接着性、耐熱性の点から好まし
い。これらのシロキサン化合物は単独で用いることは勿
論、2種類以上を併用することもできる。特にk=1
と、上記k=4〜10のものをブレンドして用いること
は、接着性を重視する用途では好ましい。
The siloxane compound represented by the formula (1) is
If it is less than 5 mol% of the total amount of the diamine component, the solubility of the obtained polyimide in an organic solvent will be lowered, and if it exceeds 50 mol%, the glass transition temperature will be remarkably lowered and heat resistance will be a problem. Further, as the siloxane compound represented by the general formula (1), specifically, α represented by the following general formula (2),
ω-bis (3-aminopropyl) polydimethylsiloxane (APPS) is preferable, and a value of k in the range of 4 to 10 is particularly preferable from the viewpoint of glass transition temperature, adhesiveness and heat resistance. These siloxane compounds may be used alone or in combination of two or more. Especially k = 1
It is preferable to blend and use the above k = 4 to 10 in applications where importance is attached to adhesiveness.

【0012】[0012]

【化2】 (式中、k:1〜20の整数)Embedded image (In the formula, k: an integer of 1 to 20)

【0013】重縮合反応における酸成分とアミン成分の
当量比は、得られるポリアミック酸の分子量を決定する
重要な因子である。ポリマの分子量と物性、特に数平均
分子量と機械的性質の間に相関があることは良く知られ
ている。数平均分子量が大きいほど機械的性質が優れて
いる。従って、実用的に優れた強度を得るためには、あ
る程度高分子量であることが必要である。本発明では、
酸成分とアミン成分の当量比rが 0.900 ≦ r ≦ 1.060 より好ましくは 0.975 ≦ r ≦ 1.025 の範囲にあることが好ましい。ただし、r=[全酸成分
の当量数]/[全アミン成分の当量数]である。rが0.
900未満では、分子量が低くて脆くなるため接着力が弱
くなる。また1.06を越えると、未反応のカルボン酸が加
熱時に脱炭酸してガス発生、発泡の原因となり好ましく
ないことがある。
The equivalent ratio of the acid component and the amine component in the polycondensation reaction is an important factor that determines the molecular weight of the polyamic acid obtained. It is well known that there is a correlation between polymer molecular weight and physical properties, especially number average molecular weight and mechanical properties. The larger the number average molecular weight, the better the mechanical properties. Therefore, in order to obtain practically excellent strength, it is necessary that the polymer has a high molecular weight to some extent. In the present invention,
The equivalent ratio r of the acid component and the amine component is preferably in the range of 0.900 ≤ r ≤ 1.060, more preferably 0.975 ≤ r ≤ 1.025. However, r = [equivalent number of all acid components] / [equivalent number of all amine components]. r is 0.
If it is less than 900, the molecular weight is low and it becomes brittle, so the adhesive strength becomes weak. On the other hand, if it exceeds 1.06, unreacted carboxylic acid may be decarboxylated during heating to cause gas generation and foaming, which is not preferable.

【0014】本発明のポリイミド樹脂の分子量制御のた
め、ジカルボン酸無水物あるいはモノアミンを添加する
ことは、上述の酸/アミン モル比の範囲であれば特に
これを妨げない。
Addition of dicarboxylic acid anhydride or monoamine for controlling the molecular weight of the polyimide resin of the present invention is not particularly hindered if the acid / amine molar ratio is within the above range.

【0015】テトラカルボン酸二無水物とジアミンとの
反応は、非プロトン性極性溶媒中で公知の方法で行われ
る。非プロトン性極性溶媒は、N,N-ジメチルホルムアミ
ド(DMF)、N,N-ジメチルアセトアミド(DMA
C)、N-メチル-2-ピロリドン(NMP)、テトラヒド
ロフラン(THF)、ジグライム、シクロヘキサノン、
1,4-ジオキサン(1,4-DO)などである。非プロトン性極
性溶媒は、一種類のみ用いてもよいし、二種類以上を混
合して用いてもよい。この時、上記非プロトン性極性溶
媒と相溶性がある非極性溶媒を混合して使用しても良
い。トルエン、キシレン、ソルベントナフサなどの芳香
族炭化水素が良く使用される。混合溶媒における非極性
溶媒の割合は、30重量%以下であることが好ましい。こ
れは非極性溶媒が30重量%以上では溶媒の溶解力が低下
しポリアミック酸が析出する恐れがあるためである。テ
トラカルボン酸二無水物とジアミンとの反応は、良く乾
燥したジアミン成分を脱水精製した前述反応溶媒に溶解
し、これに閉環率98%、より好ましくは99%以上の良く
乾燥したテトラカルボン酸二無水物を添加して反応を進
める。
The reaction between the tetracarboxylic dianhydride and the diamine is carried out by a known method in an aprotic polar solvent. The aprotic polar solvent is N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMA
C), N-methyl-2-pyrrolidone (NMP), tetrahydrofuran (THF), diglyme, cyclohexanone,
1,4-dioxane (1,4-DO) and the like. The aprotic polar solvent may be used alone or in combination of two or more. At this time, a non-polar solvent compatible with the aprotic polar solvent may be mixed and used. Aromatic hydrocarbons such as toluene, xylene and solvent naphtha are often used. The proportion of the non-polar solvent in the mixed solvent is preferably 30% by weight or less. This is because if the amount of the nonpolar solvent is 30% by weight or more, the solubility of the solvent may decrease and polyamic acid may precipitate. The reaction of the tetracarboxylic acid dianhydride and the diamine is carried out by dissolving the well-dried diamine component in the dehydrated and purified reaction solvent described above, and the ring closure rate of 98%, more preferably 99% or more of the well-dried tetracarboxylic acid dianhydride. Anhydrous is added to drive the reaction.

【0016】このようにして得たポリアミック酸溶液
を、続いて有機溶剤中で加熱脱水環化してイミド化しポ
リイミドにする。イミド化反応によって生じた水は閉環
反応を妨害するため、水と相溶しない有機溶剤を系中に
加えて共沸させてディーン・スターク(Dean-Stark)管
などの装置を使用して系外に排出する。水と相溶しない
有機溶剤としてはジクロルベンゼンが知られているが、
エレクトロニクス用としては塩素成分が混入する恐れが
あるので、好ましくは前記芳香族炭化水素を使用する。
また、イミド化反応の触媒として無水酢酸、β-ピコリ
ン、ピリジンなどの化合物を使用することは妨げない。
The polyamic acid solution thus obtained is subsequently heated to dehydration and cyclization in an organic solvent to form an imidized polyimide. Since the water generated by the imidization reaction interferes with the ring-closing reaction, an organic solvent that is not compatible with water is added to the system to azeotropically evaporate it and use a device such as a Dean-Stark tube to remove it from the system. To discharge. Dichlorobenzene is known as an organic solvent that is incompatible with water,
For electronics use, the above-mentioned aromatic hydrocarbons are preferably used because chlorine components may be mixed therein.
Further, the use of compounds such as acetic anhydride, β-picoline and pyridine as a catalyst for the imidization reaction is not hindered.

【0017】本発明において、イミド閉環は程度が高い
ほど良く、イミド化率が低いと使用時の熱でイミド化が
起こり水が発生して好ましくないため、95%以上、より
好ましくは98%以上のイミド化率が達成されていること
が望ましい。
In the present invention, the higher the degree of imide ring closure, the better, and if the imidization ratio is low, imidization occurs due to heat during use and water is not generated, which is not preferable. Therefore, 95% or more, more preferably 98% or more. It is desirable that the imidization ratio of is achieved.

【0018】本発明では、得られたポリイミド溶液にそ
のままエポキシ化合物やカップリング剤を添加し、樹脂
ワニスを調整し支持体に塗布しても良いが、該ポリイミ
ド溶液を貧溶媒中に投入してポリイミド樹脂を再沈析出
させて未反応モノマを取り除いて精製することが好まし
い。精製、乾燥したポリイミド樹脂及びエポキシ化合物
やカップリング剤を有機溶剤に溶解して塗布ワニスとす
る。この時使用する溶剤は反応溶媒と同じでも良いが、
塗布乾燥工程の作業性を考え沸点の低い、好ましくは沸
点が200℃以下の溶剤を選択することが好ましい。200℃
以下の溶剤として、本発明ではケトン系溶剤として、ア
セトン、メチルエチルケトン、メチルイソブチルケト
ン、シクロペンタノン、シクロヘキサノンを、エーテル
系溶剤として、1,4-ジオキサン、テトラヒドロフラン、
ジグライムを、アミド系溶剤として、N,N-ジメチルホル
ムアミド、N,N-ジメチルアセトアミドを挙げることがで
きる。これらの溶剤は単独で使用しても良いし、2種以
上を混合して用いることもできる。
In the present invention, an epoxy compound or a coupling agent may be added to the obtained polyimide solution as it is, and a resin varnish may be prepared and coated on a support, but the polyimide solution is put into a poor solvent. The polyimide resin is preferably reprecipitated to remove unreacted monomers for purification. The purified and dried polyimide resin, epoxy compound and coupling agent are dissolved in an organic solvent to prepare a coating varnish. The solvent used at this time may be the same as the reaction solvent,
Considering workability in the coating and drying step, it is preferable to select a solvent having a low boiling point, preferably a boiling point of 200 ° C. or less. 200 ° C
As the following solvent, in the present invention, as a ketone solvent, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, as an ether solvent, 1,4-dioxane, tetrahydrofuran,
Examples of amide solvents containing diglyme include N, N-dimethylformamide and N, N-dimethylacetamide. These solvents may be used alone or in combination of two or more.

【0019】本発明の接着剤樹脂において使用する成分
(B)エポキシ化合物は、少なくとも1分子中に2個の
エポキシ基を有するものであれば特に限定されるもので
はないが、ポリイミド樹脂の溶媒への溶解性が良好なも
のが好ましい。例えば、ビスフェノールA型のジグリシ
ジルエーテル、ビスフェノールF型のジグリシジルエー
テル、フェノールノボラック型エポキシ樹脂、ビフェニ
ル型エポキシ樹脂等が挙げられる。
The component (B) epoxy compound used in the adhesive resin of the present invention is not particularly limited as long as it has at least two epoxy groups in one molecule, but it may be used as a solvent for the polyimide resin. Those having good solubility are preferred. Examples thereof include bisphenol A type diglycidyl ether, bisphenol F type diglycidyl ether, phenol novolac type epoxy resin, and biphenyl type epoxy resin.

【0020】前記エポキシ化合物の配合量は成分(A)
ポリイミド樹脂100重量部に対して5〜100重量部、
特に10〜70重量部の範囲にあることが好ましい。5重量
部未満では、未硬化のエポキシ化合物を添加し、樹脂組
成物の軟化温度を下げ低温加工性をあげるという効果が
現れにくく、100重量部をこえるとポリイミド樹脂の耐
熱性を損なうこととなり好ましくない。
The compounding amount of the epoxy compound is the component (A).
5-100 parts by weight to 100 parts by weight of polyimide resin,
In particular, it is preferably in the range of 10 to 70 parts by weight. If it is less than 5 parts by weight, the effect of adding an uncured epoxy compound and lowering the softening temperature of the resin composition to improve low-temperature processability is unlikely to appear, and if it exceeds 100 parts by weight, the heat resistance of the polyimide resin is impaired, which is preferable. Absent.

【0021】本発明の接着剤樹脂において使用する成分
(C)カップリング剤は、成分(A)のポリイミド樹脂
や成分(B)のエポキシ樹脂との相溶性、ポリイミド樹
脂の溶媒への溶解性が良好なものが好ましい。例えばシ
ラン系のカップリング剤やチタン系、ジルコン系のカッ
プリング剤等が挙げられる。特にシラン系カップリング
剤が相溶性や溶解性の点で好ましい。カップリング剤の
配合割合は成分(A)のポリイミド樹脂100重量部に対
して0.1〜50重量部、より好ましくは0.5〜30重量部であ
る。0.1重量部未満では、高温時の樹脂の弾性率が低下
している時の樹脂フローの制御が困難であり、また当該
樹脂組成物を接着用途に用いる場合、被着材との密着性
を向上させる効果が現れない。50重量部をこえると樹脂
組成物の耐熱性を損ない、好ましくない。
The component (C) coupling agent used in the adhesive resin of the present invention has compatibility with the component (A) polyimide resin and the component (B) epoxy resin, and the solubility of the polyimide resin in a solvent. Good ones are preferred. For example, a silane-based coupling agent, a titanium-based coupling agent, a zircon-based coupling agent, or the like may be used. Particularly, a silane coupling agent is preferable in terms of compatibility and solubility. The mixing ratio of the coupling agent is 0.1 to 50 parts by weight, more preferably 0.5 to 30 parts by weight, based on 100 parts by weight of the component (A) polyimide resin. If it is less than 0.1 parts by weight, it is difficult to control the resin flow when the elastic modulus of the resin at high temperature is lowered, and when the resin composition is used for bonding, the adhesion with the adherend is improved. The effect that causes it does not appear. If it exceeds 50 parts by weight, the heat resistance of the resin composition is impaired, which is not preferable.

【0022】本発明の耐熱性樹脂組成物にはその加工
性、耐熱性を損なわない範囲で微細な無機充填材が配合
されていても良い。
The heat-resistant resin composition of the present invention may contain a fine inorganic filler as long as the processability and heat resistance thereof are not impaired.

【0023】樹脂ワニスには表面平滑性を出すための平
滑剤、レベリング剤、脱泡剤などの各種添加剤を必要に
応じて添加することができる。また、溶剤の蒸発速度を
調節するために均一に溶解する範囲で芳香族炭化水素系
溶剤を使用することもできる。
Various additives such as a leveling agent, a leveling agent and a defoaming agent for providing surface smoothness can be added to the resin varnish as required. Further, an aromatic hydrocarbon solvent can be used within a range in which the solvent is uniformly dissolved in order to control the evaporation rate of the solvent.

【0024】本発明において樹脂ワニスをフィルム接着
剤とするには、樹脂ワニスを流延あるいは塗布して得ら
れ、例えば耐熱性フィルム基材を支持体として用い、そ
の片面又は両面に同様にフィルム層を形成させ、支持体
と共にフィルム接着剤としたり、ロール、金属シート、
ポリエステルシートなどの離型シートの上にフローコー
ター、ロールコーターなどによりフィルムを形成させ、
加熱・乾燥後剥離してフィルム接着剤とするなどの方法
で得ることができる。
In the present invention, the resin varnish is used as a film adhesive, which is obtained by casting or coating a resin varnish. For example, a heat-resistant film base material is used as a support, and a film layer is similarly formed on one side or both sides thereof. To form a film adhesive with the support, rolls, metal sheets,
Form a film on a release sheet such as a polyester sheet with a flow coater, roll coater, etc.,
It can be obtained by a method such as heating, drying and peeling to obtain a film adhesive.

【0025】本発明において使用する耐熱性フィルム基
材は、ポリイミド樹脂フィルムが熱膨張係数が小さく温
度変化に対する寸法安定性に優れていること、可撓性に
富み取り扱い易いこと、本発明の樹脂との密着力が優れ
ている点で好ましい。特にガラス転移温度 350℃以上の
ポリイミド樹脂は、塗布ワニスを乾燥する工程での作業
性、安定性の点で優れている。
The heat-resistant film base material used in the present invention is that the polyimide resin film has a small coefficient of thermal expansion and is excellent in dimensional stability with respect to temperature changes, is flexible and easy to handle, and is the resin of the present invention. Is preferable because it has excellent adhesion. In particular, a polyimide resin having a glass transition temperature of 350 ° C or higher is excellent in workability and stability in the step of drying the coating varnish.

【0026】樹脂ワニスの塗布・乾燥は、フローコータ
ー、ロールコーターなどの塗布設備と熱風乾燥炉を組み
合わせた装置などを用いることができる。樹脂ワニスを
支持体に塗工後、熱風乾燥炉に導きワニスの溶剤を揮散
させるに十分な温度と風量でもって乾燥する。
The coating and drying of the resin varnish can be carried out by using an apparatus in which coating equipment such as a flow coater or roll coater and a hot air drying oven are combined. After coating the resin varnish on the support, the resin varnish is introduced into a hot air drying oven and dried at a temperature and an air volume sufficient to vaporize the solvent of the varnish.

【0027】本発明のフィルム接着剤の使用方法は特に
限定されるものではないが、所定の形状に切断して加熱
したヒートブロックで熱圧着して接着するなど、接着テ
ープとして使用することができる。
The method of using the film adhesive of the present invention is not particularly limited, but it can be used as an adhesive tape, such as by thermocompression bonding with a heat block that is cut into a predetermined shape and heated. .

【0028】[0028]

【作用】本発明のフィルム接着剤は、有機溶剤に可溶
な、ガラス転移温度が350℃以下のポリイミド樹脂 100
重量部に対して、1分子中に少なくとも2個のエポキシ
基を有するエポキシ化合物5〜100重量部と、カップリン
グ剤0.1〜50重量部とを主たる樹脂成分として含有して
いることを特徴とする。この樹脂の見かけ上のガラス転
移温度は、主成分のポリイミド樹脂のガラス転移温度よ
り低下し低温加工性が向上する。一方、ガラス転移温度
より高温域での接着力は該ポリイミド樹脂より向上し、
IRリフローなどの熱衝撃を与えても剥離が認められな
いなどの、高温域での物性が向上する。この特異な現象
に対する詳細な機構は未だ明らかではない部分もある
が、エポキシ化合物とカップリング剤が反応した低分子
量の生成物は、特定構造のポリイミド樹脂に対して可塑
剤として作用し、該ポリイミド樹脂のガラス転移温度よ
り低温域での弾性率を低下せしめ、よって接着性、加工
性など低温での作業性の向上をもたらす。一方、ガラス
転移温度より高温域では、その与えられた熱によって三
次元網目構造が形成され、ポリイミド樹脂の流動性を低
下せしめ、よって該ポリイミド樹脂の耐熱性を維持ある
いは向上せしめると考えられる。以上の機構によって低
温加工性と高温時の耐熱信頼性の両立がはかられる。ま
た、化学反応を伴う熱硬化性接着剤に比べると極めて短
時間に接着可能である。テープ状に加工することによ
り、接着作業性、接着部の寸法精度を優れたものにする
ことができる。以下実施例により本発明を詳細に説明す
るが、これらの実施例に限定されるものではない。
The film adhesive of the present invention is a polyimide resin which is soluble in an organic solvent and has a glass transition temperature of 350 ° C or lower.
It is characterized by containing 5 to 100 parts by weight of an epoxy compound having at least two epoxy groups in one molecule and 0.1 to 50 parts by weight of a coupling agent as a main resin component with respect to parts by weight. . The apparent glass transition temperature of this resin is lower than the glass transition temperature of the main component polyimide resin, and the low temperature processability is improved. On the other hand, the adhesive strength in the temperature range higher than the glass transition temperature is higher than that of the polyimide resin,
Improves physical properties in a high temperature range, such as no peeling observed even when subjected to thermal shock such as IR reflow. Although the detailed mechanism for this peculiar phenomenon is not yet clear, the low molecular weight product obtained by reacting the epoxy compound and the coupling agent acts as a plasticizer on the polyimide resin having a specific structure, It lowers the elastic modulus at a temperature lower than the glass transition temperature of the resin, thus improving workability at low temperature such as adhesiveness and processability. On the other hand, in a temperature range higher than the glass transition temperature, it is considered that a three-dimensional network structure is formed by the applied heat and the fluidity of the polyimide resin is lowered, and thus the heat resistance of the polyimide resin is maintained or improved. By the above mechanism, both low temperature processability and heat resistance reliability at high temperature can be achieved. Further, it can be bonded in an extremely short time as compared with a thermosetting adhesive which involves a chemical reaction. By processing into a tape shape, the workability of bonding and the dimensional accuracy of the bonded portion can be made excellent. The present invention is described in detail below with reference to examples, but the present invention is not limited to these examples.

【0029】[0029]

【実施例】【Example】

(ポリイミド樹脂PI−1の合成)乾燥窒素ガス導入
管、冷却器、温度計、撹拌機を備えた四口フラスコに、
脱水精製したNMP716gを入れ、窒素ガスを流しなが
ら10分間激しくかき混ぜる。次に2,2-ビス(4-(4-アミ
ノフェノキシ)フェニル)プロパン(BAPP)24.631
g(0.060モル)、1,3-ビス(3-アミノフェキシ)ベン
ゼン(APB)48.236g(0.165モル)、α,ω-ビス(3-
アミノプロピル)ポリジメチルシロキサン(APPS 式
(2))57.753g(平均分子量837、0.069モル)、1.3-ビ
ス(3-アミノプロピル)テトラメチルジメチルシロキサ
ン(APPS,式(2)においてk=1)1.491g(0.006モ
ル)を投入し、系を60℃に加熱し、均一になるまでかき
混ぜる。均一に溶解後、系を氷水浴で5℃に冷却し、3,
3',4,4'-ビフェニルテトラカルボン酸二無水物(BPD
A) 52.960g(0.180モル)、3,3',4,4'-ベンゾフェノ
ンテトラカルボン酸二無水物(BTDA) 38.668g
(0.120モル)を粉末状のまま15分間かけて添加し、そ
の後3時間撹拌を続けた。この間フラスコは5℃に保っ
た。
(Synthesis of Polyimide Resin PI-1) In a four-necked flask equipped with a dry nitrogen gas introduction tube, a cooler, a thermometer, and a stirrer,
Add 716 g of dehydrated and purified NMP, and stir vigorously for 10 minutes while flowing nitrogen gas. Next, 2,2-bis (4- (4-aminophenoxy) phenyl) propane (BAPP) 24.631
g (0.060 mol), 1,3-bis (3-aminophenoxy) benzene (APB) 48.236 g (0.165 mol), α, ω-bis (3-
Aminopropyl) polydimethylsiloxane (APPS formula
(2)) 57.753 g (average molecular weight 837, 0.069 mol), 1.3-bis (3-aminopropyl) tetramethyldimethylsiloxane (APPS, k = 1 in formula (2)) 1.491 g (0.006 mol), Heat the system to 60 ° C and stir until uniform. After uniform dissolution, the system was cooled to 5 ° C in an ice-water bath,
3 ', 4,4'-biphenyltetracarboxylic dianhydride (BPD
A) 52.960 g (0.180 mol), 3,3 ', 4,4'-benzophenone tetracarboxylic dianhydride (BTDA) 38.668 g
(0.120 mol) was added as a powder over 15 minutes, and then stirring was continued for 3 hours. During this time, the flask was kept at 5 ° C.

【0030】その後、窒素ガス導入管と冷却器を外し、
キシレンを満たしたディーン・スターク管をフラスコに
装着し、系にキシレン179gを添加した。油浴に代えて
系を175℃に加熱し発生する水を系外に除いた。4時間加
熱したところ、系からの水の発生は認められなくなっ
た。冷却後この反応溶液を大量のメタノール中に投入
し、ポリイミド樹脂を析出させた。固形分を濾過後、80
℃で12時間減圧乾燥し溶剤を除き、204.72g(収率91.5
%)の固形樹脂を得た。KBr錠剤法で赤外吸収スペク
トルを測定したところ、環状イミド結合に由来する5.6
μmの吸収を認めたが、アミド結合に由来する6.06μm
の吸収を認めることはできず、この樹脂はほぼ100%イ
ミド化していることが確かめられた。
Then, the nitrogen gas introducing pipe and the cooler were removed,
A Dean-Stark tube filled with xylene was attached to the flask, and 179 g of xylene was added to the system. Instead of the oil bath, the system was heated to 175 ° C. and the water generated was removed from the system. After heating for 4 hours, generation of water from the system was not observed. After cooling, this reaction solution was poured into a large amount of methanol to precipitate a polyimide resin. After filtering the solids, 80
After removing the solvent by drying under reduced pressure at ℃ for 12 hours, 204.72 g (yield 91.5
%) Solid resin was obtained. When the infrared absorption spectrum was measured by the KBr tablet method, it was found to be 5.6
Absorption of μm was observed, but 6.06 μm derived from amide bond
It was confirmed that the resin was almost 100% imidized.

【0031】このようにして得たポリイミド樹脂は、ガ
ラス転移温度が133℃、引っ張り弾性率が170kgf/mm2
ジメチルホルムアミド(DMF)、1,4-ジオキサン(1,
4-DO)に良く溶解することが確かめられた。
The polyimide resin thus obtained has a glass transition temperature of 133 ° C., a tensile elastic modulus of 170 kgf / mm 2 ,
Dimethylformamide (DMF), 1,4-dioxane (1,
It was confirmed that it was well dissolved in 4-DO).

【0032】(ポリイミド樹脂PI−2の合成)前記の
ポリイミド樹脂PI−1の合成と同様にして、NMP67
4gにジアミン成分として1,3-ビス(3-アミノフェノキ
シ)ベンゼン(APB)61.391g(0.210モル)、2,2-ビ
ス(4-(4-アミノフェノキシ)フェニル)プロパン(BA
PP)18.473g(0.045モル)、α,ω-ビス(3-アミノプ
ロピル)ポリジメチルシロキサン(APPS)37.665g
(0.045モル)を投入し、酸成分として4,4'-オキシジフ
タル酸二無水物(ODPA)93.067g(0.300モル)を
加え、その後3時間撹拌を続けた。その後系を加熱しイ
ミド化を行い、195.22g(収率92.7%)の固形樹脂を得
た。
(Synthesis of Polyimide Resin PI-2) In the same manner as the synthesis of the above-mentioned polyimide resin PI-1, NMP67
61.391 g (0.210 mol) of 1,3-bis (3-aminophenoxy) benzene (APB) as a diamine component in 4 g of 2,2-bis (4- (4-aminophenoxy) phenyl) propane (BA
PP) 18.473 g (0.045 mol), α, ω-bis (3-aminopropyl) polydimethylsiloxane (APPS) 37.665 g
(0.045 mol) was added, 93.067 g (0.300 mol) of 4,4'-oxydiphthalic acid dianhydride (ODPA) was added as an acid component, and the stirring was continued for 3 hours thereafter. Then, the system was heated for imidization to obtain 195.22 g (yield 92.7%) of a solid resin.

【0033】(ポリイミド樹脂PI−3の合成)前記の
ポリイミド樹脂PI−1の合成と同様にして、NMP65
4gにジアミン成分として1,3-ビス(3-アミノフェノキ
シ)ベンゼン(APB)14.617g(0.050モル)、2,2-
ビス(4-(4-アミノフェノキシ)フェニル)プロパン(B
APP)61.577g(0.150モル)、α,ω-ビス(3-アミノ
プロピル)ポリジメチルシロキサン(APPS)41.850
g(0.050モル)を投入し、酸成分としてエチレングリ
コールビストリメリット酸二無水物(TMEG)50.261
g(0.125モル)、3,3',4,4'-ビフェニルテトラカルボ
ン酸二無水物(BPDA)30.042g(0.125モル)を加
え、その後3時間撹拌を続けた。その後、系を加熱しイ
ミド化を行いポリイミド樹脂を得た。表1にポリイミド
樹脂PI−1、PI−2及びPI−3の特性を示した。
(Synthesis of Polyimide Resin PI-3) NMP65 was prepared in the same manner as the synthesis of the polyimide resin PI-1.
4,617 g (0.050 mol) of 1,3-bis (3-aminophenoxy) benzene (APB) as a diamine component in 4 g of 2,2-
Bis (4- (4-aminophenoxy) phenyl) propane (B
APP) 61.577 g (0.150 mol), α, ω-bis (3-aminopropyl) polydimethylsiloxane (APPS) 41.850
g (0.050 mol), ethylene glycol bistrimellitic dianhydride (TMEG) 50.261 as an acid component
g (0.125 mol) and 30.042 g (0.125 mol) of 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride (BPDA) were added, and stirring was continued for 3 hours thereafter. Then, the system was heated and imidized to obtain a polyimide resin. Table 1 shows the properties of the polyimide resins PI-1, PI-2 and PI-3.

【0034】[0034]

【表1】 [Table 1]

【0035】(実施例1) (塗布ワニスの調整)ガラス製フラスコにポリイミド樹
脂PI−1、100gとDMF450gを入れ、室温で充分に
撹拌し、ポリイミドを完全に溶解させる。均一に溶解し
た後、ビスフェノールA型エポキシ樹脂(エピコート82
8、油化シェルエポキシ(株)製)50gを加え室温にて2
時間撹拌した。その後均一に溶解していることを確認し
て、シランカップリング剤(トリエトキシビニルシラ
ン、KBE1003、信越化学(株)製)1gを系を撹拌
しながら徐々に加えた。引き続き2時間撹拌し塗布ワニ
スを作製した。この溶液組成物は、室温にて10日間放置
してもゲル化せず均一な溶液の状態のままであった。
(Example 1) (Preparation of coating varnish) 100 g of polyimide resin PI-1 and 450 g of DMF were placed in a glass flask and sufficiently stirred at room temperature to completely dissolve the polyimide. After uniform dissolution, bisphenol A type epoxy resin (Epicoat 82
8 、 Okaka Shell Epoxy Co., Ltd.) 50g was added and it was 2 at room temperature.
Stirred for hours. Then, after confirming that the system was uniformly dissolved, 1 g of a silane coupling agent (triethoxyvinylsilane, KBE1003, manufactured by Shin-Etsu Chemical Co., Ltd.) was gradually added while stirring the system. Subsequently, the mixture was stirred for 2 hours to prepare a coating varnish. The solution composition did not gel even after standing at room temperature for 10 days and remained in a uniform solution state.

【0036】(耐熱性フィルム接着剤の製造)前記のワ
ニスをリバースロールコーターでポリイミドフィルム
(商品名ユーピレックスSGA、厚み50μm、宇部興産
(株)製)の片面に塗布し、接着剤層の厚みが30μmの接
着テープを得た。乾燥温度は最高185℃で乾燥時間6分で
あった。このフィルム接着剤を35μm銅箔に熱圧着して
試験片を作製し(銅箔の処理面に250℃ 2秒間熱圧着
し、圧を解放後250℃で30秒間アニールした。接着面に
かかる圧力はゲージ圧力と接着面積から計算の結果4kg
f/cm2であった。)、テンシロンにて180度ピール強度を
測定した(引張り速度50mm/min)。180度ピール強度は
3.24kgf/cmであり、優れた接着力を示した。破断面は接
着樹脂層が凝集破壊し、発泡は全く認められなかった。
また、圧着後の試験片をプレッシャークッカー(125
℃,48時間,飽和100%)で処理した後の180度ピール強
度を測定したところ、2.86kgf/cmであり、優れた接着力
を保持していることがわかる。
(Production of Heat-Resistant Film Adhesive) A polyimide film (trade name UPILEX SGA, thickness 50 μm, Ube Industries, Ltd.) was prepared by applying the above varnish to a reverse roll coater.
(Manufactured by K.K.) to obtain an adhesive tape having an adhesive layer with a thickness of 30 μm. The maximum drying temperature was 185 ° C and the drying time was 6 minutes. This film adhesive was thermocompression bonded to a 35 μm copper foil to prepare a test piece (thermocompression bonded to the treated surface of the copper foil for 2 seconds at 250 ° C., after releasing the pressure, annealed at 250 ° C. for 30 seconds. Is the result of calculation from the gauge pressure and the adhesion area 4kg
It was f / cm 2 . ), And 180 degree peel strength was measured with Tensilon (tensile speed 50 mm / min). 180 degree peel strength is
It was 3.24 kgf / cm, and showed excellent adhesive strength. At the fracture surface, the adhesive resin layer was cohesively destroyed and no foaming was observed.
In addition, the pressure cooker (125
The 180-degree peel strength after treatment at ℃, 48 hours, saturation 100%) was 2.86 kgf / cm, which shows that it has excellent adhesive strength.

【0037】(実施例2)実施例1のワニスをリバース
ロールコーターで二軸延伸ポリエステルフィルム(商品
名ダイヤホイル、厚さ50μm、三菱レーヨン(株)製)に
塗布し、乾燥後ポリエステルフィルムから剥離し、30μ
m厚みの支持体なしの均一な単層フィルム接着剤を得
た。剥離は容易で特に支障はなかった。実施例1と同様
に銅箔光沢面に接着した結果を表2に示す。
Example 2 The varnish of Example 1 was applied to a biaxially stretched polyester film (trade name: Diamond foil, thickness 50 μm, Mitsubishi Rayon Co., Ltd.) with a reverse roll coater, and peeled from the polyester film after drying. , 30μ
An m-thick uniform single-layer film adhesive without a support was obtained. Peeling was easy and there was no particular problem. Table 2 shows the results of adhesion to the shiny side of the copper foil as in Example 1.

【0038】(実施例3〜5)実施例1及び2と同様に
して、表2に示す配合にて塗布ワニスを調整しフィルム
接着剤を得た。得られた評価結果を表2に示す。
(Examples 3 to 5) In the same manner as in Examples 1 and 2, coating varnishes were prepared with the formulations shown in Table 2 to obtain film adhesives. Table 2 shows the obtained evaluation results.

【0039】[0039]

【表2】 [Table 2]

【0040】溶解性の欄のSは、該当する溶媒に溶解す
ることを示す。ガラス転移温度はDSC測定により求め
た。引張り試験は室温、引張り速度5mm/minにて測定し
た。使用する成分(B)エポキシ化合物について、YX
−4000Hはビフェニル型エポキシ化合物エピコート
YX−4000H、油化シェルエポキシ(株)製、EOC
N−1020はフェノールノボラック型エポキシ化合物
EOCN−1020、日本化薬(株)製をそれぞれ示して
いる。使用する成分(C)カップリング剤はKBC10
03(トリスメトキシエトキシビニルシラン)、KBE
1003(トリエトキシビニルシラン)、KBM573
(N−フェニル−γ−アミノプロピルトリメトキシシラ
ン)信越化学(株)製を使用した。
S in the solubility column indicates that the compound is soluble in the corresponding solvent. The glass transition temperature was determined by DSC measurement. The tensile test was performed at room temperature and a tensile speed of 5 mm / min. Regarding the component (B) epoxy compound used, YX
-4000H is a biphenyl type epoxy compound Epicoat YX-4000H, manufactured by Yuka Shell Epoxy Co., Ltd., EOC
N-1020 is a phenol novolac type epoxy compound EOCN-1020, manufactured by Nippon Kayaku Co., Ltd., respectively. The component (C) coupling agent used is KBC10.
03 (Trismethoxyethoxyvinylsilane), KBE
1003 (triethoxyvinylsilane), KBM573
(N-phenyl-γ-aminopropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd. was used.

【0041】(比較例1、2、3)ポリイミド樹脂PI
−1、PI−2及びPI−3をポリイミドフィルム(ユ
ーピレックス)の片面に塗布し、フィルム接着剤を得
た。銅との接着強度を実施例と同様にして測定し、その
結果を表1に示した。
(Comparative Examples 1, 2, 3) Polyimide resin PI
-1, PI-2 and PI-3 were applied on one surface of a polyimide film (Upilex) to obtain a film adhesive. The adhesive strength with copper was measured in the same manner as in the example, and the results are shown in Table 1.

【0042】表1、2の結果から、実施例のフィルム接
着剤の接着強度は吸湿加熱後でもその強度はわずかしか
低下していないが、比較例のポリイミド樹脂のみのフィ
ルムの接着強度は、常態に比べて吸湿加熱後は著しく低
下している。以上のことから本発明により、耐熱性と成
形加工性に優れたフィルム接着剤を得られることが示さ
れる。
From the results shown in Tables 1 and 2, the adhesive strength of the film adhesives of the examples is slightly decreased even after the moisture absorption and heating, but the adhesive strength of the film of the comparative polyimide resin only is normal. Compared to the above, the value after heating by moisture absorption is significantly decreased. From the above, it is shown that the present invention can provide a film adhesive excellent in heat resistance and molding processability.

【0043】[0043]

【発明の効果】本発明によれば、耐熱性と成形加工性を
両立させた信頼性の高いフィルム接着剤を提供すること
が可能である。低沸点溶媒に可溶であるため残留溶媒を
ほぼ完璧になくすことが可能で、また既にイミド化され
ているため、加工時にイミド化のための高温過程が不要
で水分の発生も無い。またタックのないフィルムとして
使用することができるので連続作業性やクリーンな環境
を必要とする場合に非常に有効である。このため高信頼
性と耐熱性を要求するエレクトロニクス用材料として工
業的に極めて利用価値が高い。
According to the present invention, it is possible to provide a highly reliable film adhesive having both heat resistance and molding processability. Since it is soluble in a low boiling point solvent, it is possible to almost completely eliminate the residual solvent, and since it has already been imidized, a high temperature process for imidization is not required during processing and no water is generated. Since it can be used as a tack-free film, it is very effective when continuous workability and a clean environment are required. Therefore, it is industrially extremely useful as a material for electronics that requires high reliability and heat resistance.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C09J 163/00 JFP 179/08 JGE H01L 21/52 E ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location C09J 163/00 JFP 179/08 JGE H01L 21/52 E

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 (A)有機溶剤に可溶で、ガラス転移温
度が350℃以下のポリイミド樹脂 100重量部と、(B)
1分子中に少なくとも2個のエポキシ基を有するエポキ
シ化合物 5〜100重量部と、(C)カップリング剤 0.1
〜50重量部とを主たる成分とする耐熱性フィルム接着
剤。
1. (A) 100 parts by weight of a polyimide resin soluble in an organic solvent and having a glass transition temperature of 350 ° C. or lower;
5 to 100 parts by weight of an epoxy compound having at least two epoxy groups in one molecule, and (C) a coupling agent 0.1.
A heat-resistant film adhesive whose main component is -50 parts by weight.
【請求項2】 成分(A)が、一般式(1)で表される
シロキサン化合物をアミン成分総量の5〜50モル%含有
してなるポリイミド樹脂である請求項1記載の耐熱性フ
ィルム接着剤。 【化1】 (式中、R1,R2:二価の、炭素数1〜4の脂肪族基又は
芳香族基 R3,R4,R5,R6:一価の脂肪族基又は芳香族基 k:1〜20の整数)
2. The heat-resistant film adhesive according to claim 1, wherein the component (A) is a polyimide resin containing a siloxane compound represented by the general formula (1) in an amount of 5 to 50 mol% of the total amount of amine components. . Embedded image (In the formula, R 1 and R 2 : a divalent aliphatic group or an aromatic group having 1 to 4 carbon atoms R 3 , R 4 , R 5 and R 6 : a monovalent aliphatic group or an aromatic group k : Integer from 1 to 20)
【請求項3】 成分(C)がシランカップリング剤であ
る請求項1又は2記載の耐熱性フィルム接着剤。
3. The heat resistant film adhesive according to claim 1, wherein the component (C) is a silane coupling agent.
【請求項4】 (A)有機溶剤に可溶で、ガラス転移温
度が350℃以下のポリイミド樹脂 100重量部に対して、
(B)1分子中に少なくとも2個のエポキシ基を有する
エポキシ化合物 5〜100重量部と、(C)カップリング
剤 0.1〜50重量部とを主たる成分として含有する耐熱性
樹脂組成物の溶液を、支持体の片面又は両面に流延成形
することを特徴とする耐熱性フィルム接着剤の製造方
法。
4. (A) 100 parts by weight of a polyimide resin which is soluble in an organic solvent and has a glass transition temperature of 350 ° C. or lower,
A solution of a heat resistant resin composition containing (B) 5 to 100 parts by weight of an epoxy compound having at least two epoxy groups in one molecule and (C) a coupling agent of 0.1 to 50 parts by weight as main components. A method for producing a heat-resistant film adhesive, comprising casting on one or both sides of a support.
【請求項5】 成分(A)が、一般式(1)で表される
シロキサン化合物をアミン成分総量の5〜50モル%含有
してなるポリイミド樹脂である請求項4記載の耐熱性フ
ィルム接着剤の製造方法。
5. The heat-resistant film adhesive according to claim 4, wherein the component (A) is a polyimide resin containing the siloxane compound represented by the general formula (1) in an amount of 5 to 50 mol% of the total amount of the amine components. Manufacturing method.
【請求項6】 成分(C)がシランカップリング剤であ
る請求項4又は5記載の耐熱性フィルム接着剤の製造方
法。
6. The method for producing a heat resistant film adhesive according to claim 4, wherein the component (C) is a silane coupling agent.
【請求項7】 沸点が200℃以下である有機溶剤を使用
して支持体の上に流延成形、乾燥後、支持体から剥離し
て得る請求項4、5又は6記載の耐熱性フィルム接着剤
の製造方法。
7. The heat-resistant film adhesive according to claim 4, 5 or 6, which is obtained by casting on a support using an organic solvent having a boiling point of 200 ° C. or lower, drying and peeling from the support. Method of manufacturing agent.
JP16145594A 1994-07-13 1994-07-13 Heat-resistant film adhesive and its production Pending JPH0827427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16145594A JPH0827427A (en) 1994-07-13 1994-07-13 Heat-resistant film adhesive and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16145594A JPH0827427A (en) 1994-07-13 1994-07-13 Heat-resistant film adhesive and its production

Publications (1)

Publication Number Publication Date
JPH0827427A true JPH0827427A (en) 1996-01-30

Family

ID=15735437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16145594A Pending JPH0827427A (en) 1994-07-13 1994-07-13 Heat-resistant film adhesive and its production

Country Status (1)

Country Link
JP (1) JPH0827427A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5654654A (en) * 1995-01-24 1997-08-05 National Instruments Corporation Instrumentation system with combined voltage and current source
JPH10183079A (en) * 1996-12-26 1998-07-07 Tomoegawa Paper Co Ltd Adhesive tape for electronic part
JPH10212460A (en) * 1997-01-30 1998-08-11 Tomoegawa Paper Co Ltd Adhesive tape for electronic part
JPH1135902A (en) * 1997-07-23 1999-02-09 Tomoegawa Paper Co Ltd Adhesive tape for electronic parts
JPH1192719A (en) * 1997-09-17 1999-04-06 Tomoegawa Paper Co Ltd Adhesive tape for electronic component
JP2006342287A (en) * 2005-06-10 2006-12-21 Shin Etsu Chem Co Ltd Adhesive composition and adhesive film
EP1777278A1 (en) 2005-10-20 2007-04-25 Shin-Etsu Chemical Co., Ltd. Adhesive composition and sheet having an adhesive layer of the composition
US7364797B2 (en) 2003-09-19 2008-04-29 Shin-Etsu Chemical Co., Ltd. Adhesive composition and adhesive film
US7820742B2 (en) 2006-02-16 2010-10-26 Shin-Etsu Chemical Co., Ltd. Adhesive exhibiting maximum melt viscosity of 10,000 Pa s at 40 to 80 degrees C
CN104893649A (en) * 2015-07-02 2015-09-09 苏州云舒新材料科技有限公司 Heat-resistant solid composite adhesive
CN105838303A (en) * 2016-03-31 2016-08-10 航天材料及工艺研究所 Epoxy resin waterproof adhesive and preparation method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5654654A (en) * 1995-01-24 1997-08-05 National Instruments Corporation Instrumentation system with combined voltage and current source
JPH10183079A (en) * 1996-12-26 1998-07-07 Tomoegawa Paper Co Ltd Adhesive tape for electronic part
JPH10212460A (en) * 1997-01-30 1998-08-11 Tomoegawa Paper Co Ltd Adhesive tape for electronic part
JPH1135902A (en) * 1997-07-23 1999-02-09 Tomoegawa Paper Co Ltd Adhesive tape for electronic parts
JPH1192719A (en) * 1997-09-17 1999-04-06 Tomoegawa Paper Co Ltd Adhesive tape for electronic component
US7364797B2 (en) 2003-09-19 2008-04-29 Shin-Etsu Chemical Co., Ltd. Adhesive composition and adhesive film
JP4577895B2 (en) * 2005-06-10 2010-11-10 信越化学工業株式会社 Adhesive composition and adhesive film
JP2006342287A (en) * 2005-06-10 2006-12-21 Shin Etsu Chem Co Ltd Adhesive composition and adhesive film
EP1777278A1 (en) 2005-10-20 2007-04-25 Shin-Etsu Chemical Co., Ltd. Adhesive composition and sheet having an adhesive layer of the composition
US7488539B2 (en) 2005-10-20 2009-02-10 Shin-Etsu Chemical Co., Ltd. Adhesive composition and sheet having an adhesive layer of the composition
US7820742B2 (en) 2006-02-16 2010-10-26 Shin-Etsu Chemical Co., Ltd. Adhesive exhibiting maximum melt viscosity of 10,000 Pa s at 40 to 80 degrees C
CN104893649A (en) * 2015-07-02 2015-09-09 苏州云舒新材料科技有限公司 Heat-resistant solid composite adhesive
CN105838303A (en) * 2016-03-31 2016-08-10 航天材料及工艺研究所 Epoxy resin waterproof adhesive and preparation method

Similar Documents

Publication Publication Date Title
US5773509A (en) Heat resistant resin composition, heat resistant film adhesive and process for producing the same
WO1993024583A1 (en) Film adhesive and production thereof
JPH0827427A (en) Heat-resistant film adhesive and its production
JP3695848B2 (en) Heat resistant film adhesive and method for producing the same
JPH05331424A (en) Film adhesive
JP2721445B2 (en) Film adhesive for electronics
JP3014578B2 (en) Resin composition with improved properties at high temperatures
JP2887359B2 (en) Film adhesive
JP2983827B2 (en) Resin composition with improved properties at high temperatures
JPH0827430A (en) Film adhesive improved in physical property at high temperature and its production
JP3439262B2 (en) Film adhesive having improved properties at high temperature and method for producing the same
JPH0834968A (en) Heat-resistant film adhesive having excellent low-temperature processability and production thereof
JPH0834969A (en) Heat-resistant film adhesive having excellent low-temperature processability and production thereof
JP3093064B2 (en) Film adhesive and method for producing the same
JP3526130B2 (en) Film adhesive with improved heat resistance and method for producing the same
JP3093062B2 (en) Film adhesive and method for producing the same
JPH0827429A (en) Heat-resistant film adhesive and its production
JPH0827432A (en) Film adhesive improved in physical property at high temperature and its production
JPH0827428A (en) Heat-resistant film adhesive and its production
JPH06172736A (en) Film adhesive and its production
JPH0834966A (en) Heat-resistant film adhesive and production thereof
JPH0834851A (en) Heat-resistant film adhesive excellent in low-temperature processability and production thereof
JPH0841438A (en) Heat-resistant film adhesive excellent in low temperature processability and method for producing the same
JP2983828B2 (en) Resin composition with improved properties at high temperatures
JPH05331444A (en) Film adhesive capable of heat bonding at low temperature