JP2002319391A - Negative electrode for lithium battery, and manufacturing method therefor - Google Patents

Negative electrode for lithium battery, and manufacturing method therefor

Info

Publication number
JP2002319391A
JP2002319391A JP2001123279A JP2001123279A JP2002319391A JP 2002319391 A JP2002319391 A JP 2002319391A JP 2001123279 A JP2001123279 A JP 2001123279A JP 2001123279 A JP2001123279 A JP 2001123279A JP 2002319391 A JP2002319391 A JP 2002319391A
Authority
JP
Japan
Prior art keywords
thin film
solid electrolyte
inorganic solid
negative electrode
protective sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001123279A
Other languages
Japanese (ja)
Other versions
JP4873281B2 (en
Inventor
Yuichi Hisagai
裕一 久貝
Yukihiro Ota
進啓 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2001123279A priority Critical patent/JP4873281B2/en
Publication of JP2002319391A publication Critical patent/JP2002319391A/en
Application granted granted Critical
Publication of JP4873281B2 publication Critical patent/JP4873281B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium battery negative electrode and its producting method by preventing an inorganic solid electrolyte thin membrane from being deteriorated by moisture, and precluding workability in assembling of a battery from being disturbed. SOLUTION: The inorganic solid electrolyte thin membrane 3 is covered with a flexible protection sheet 4, in a negative electrode of a lithium battery with the inorganic solid electrolyte thin membrane 3 formed on lithium- containing metal (a lithium metal thin film 2). A polypropylene- or polyethylene- made protection sheet is preferable for the protection sheet 4. The negative electrode is prevented from being deteriorated by moisture until the lithium secondary battery has been assembled, by covering a negative electrode surface with the flexible protection sheet 4 to allow contact close therebetween.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
に使用される負極とその製造方法に関するものである。
特に、負極に用いられる無機固体電解質薄膜の加水分解
を抑制することができるリチウム電池負極に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode used for a lithium secondary battery and a method for producing the same.
In particular, the present invention relates to a lithium battery negative electrode capable of suppressing hydrolysis of an inorganic solid electrolyte thin film used for the negative electrode.

【0002】[0002]

【従来の技術】有機電解液を使用したリチウム二次電池
の実用化が進展している。その特徴とするところは、他
の電池と比較して、単位体積あるいは単位重量当りのエ
ネルギー出力が高いことであり、移動体通信、ノートパ
ソコンや電気自動車用電源として、実用化開発が進めら
れている。
2. Description of the Related Art Practical use of lithium secondary batteries using an organic electrolyte is progressing. Its feature is that it has a higher energy output per unit volume or unit weight than other batteries, and has been developed for practical use as a power source for mobile communications, notebook computers and electric vehicles. I have.

【0003】リチウム二次電池の性能を向上させるた
め、負極としてリチウム金属を使用しようとする試みが
あるが、充放電時に樹枝状のリチウム金属の成長が負極
上に起こり、正極との内部短絡を引き起こし、最終的に
は爆発に至る危険性を有している。この危険性を抑える
手法として、特開2000−340257号公報に記載されている
ように、リチウム金属上に硫化物系の無機固体電解質薄
膜を形成することが検討されている。
[0003] In order to improve the performance of lithium secondary batteries, attempts have been made to use lithium metal as a negative electrode. However, during charge and discharge, dendritic lithium metal grows on the negative electrode, causing an internal short circuit with the positive electrode. Risk of causing and eventually exploding. As a method for suppressing this risk, formation of a sulfide-based inorganic solid electrolyte thin film on lithium metal has been studied as described in JP-A-2000-340257.

【0004】一方で無機固体電解質薄膜は、高い吸湿性
および加水分解性を有し、水分の吸収による劣化(加水
分解)と言う欠点も同時に有している。この欠点を解消
するため、無機固体電解質薄膜表面に酸化物薄膜等の保
護薄膜を形成することも検討されている。
[0004] On the other hand, the inorganic solid electrolyte thin film has high hygroscopicity and hydrolyzability, and also has a drawback of deterioration (hydrolysis) due to absorption of moisture. In order to solve this drawback, formation of a protective thin film such as an oxide thin film on the surface of the inorganic solid electrolyte thin film has been studied.

【0005】[0005]

【発明が解決しようとする課題】しかし、酸化物薄膜は
イオン伝導度が低いため、電池に使用するときには除去
する必要がある。その際、酸化物薄膜は無機固体電解質
薄膜から除去しにくく、電池の製造性を低下させるとい
う問題があった。
However, since the oxide thin film has low ionic conductivity, it needs to be removed when used in a battery. At this time, the oxide thin film is difficult to remove from the inorganic solid electrolyte thin film, and there is a problem that the productivity of the battery is reduced.

【0006】従って、本発明の主目的は、無機固体電解
質薄膜の水分による劣化を防ぐことができ、かつ電池を
組み立てる際の作業性に支障を及ぼさないリチウム電池
負極とその製造方法とを提供することにある。
Accordingly, a main object of the present invention is to provide a lithium battery negative electrode which can prevent the inorganic solid electrolyte thin film from deteriorating due to moisture and does not impair workability in assembling the battery, and a method of manufacturing the same. It is in.

【0007】[0007]

【課題を解決するための手段】本発明は、酸化物薄膜の
代わりに、容易に剥離できる可撓性の保護シートを用い
ることで上記の目的を達成する。
According to the present invention, the above object is achieved by using a flexible protective sheet which can be easily peeled, instead of an oxide thin film.

【0008】すなわち、本発明リチウム電池負極は、リ
チウム含有金属上に無機固体電解質薄膜を形成したリチ
ウム電池負極において、前記無機固体電解質薄膜上を可
撓性の保護シートで覆ったことを特徴とする。
That is, the lithium battery negative electrode of the present invention is characterized in that the inorganic solid electrolyte thin film is formed on a lithium-containing metal and the inorganic solid electrolyte thin film is covered with a flexible protective sheet. .

【0009】可撓性の保護シートで負極表面を密着して
覆うことにより、リチウム二次電池を組み立てるまでに
負極が水分により劣化することを防ぐことができる。ま
た、実際にリチウム二次電池に使用するときには、簡単
に保護シートをはがすことができ、二次電池組立作業時
の支障にもならない。
By closely covering the surface of the negative electrode with a flexible protective sheet, it is possible to prevent the negative electrode from deteriorating due to moisture before the lithium secondary battery is assembled. Further, when actually used for a lithium secondary battery, the protective sheet can be easily peeled off, which does not hinder the assembly work of the secondary battery.

【0010】以下、本発明の構成をより詳しく説明す
る。
Hereinafter, the configuration of the present invention will be described in more detail.

【0011】保護シートの材質は、可撓性を有するこ
と、無機固体電解質薄膜と反応しないこと、耐湿性
が高いことの条件を満たすものが好ましい。
The material of the protective sheet preferably satisfies the conditions of being flexible, not reacting with the inorganic solid electrolyte thin film, and having high moisture resistance.

【0012】通常、無機固体電解質薄膜は、テープ状に
形成してロール巻きされて取り扱われるため、可撓性
は、保護シートを被覆した状態でロール巻きできる程度
が好ましい。
Usually, since the inorganic solid electrolyte thin film is formed into a tape shape and handled by being rolled, it is preferable that the flexibility is such that it can be rolled with the protective sheet covered.

【0013】無機固体電解質には、硫化物系、酸化物
系、窒化物系およびこれらの混合系である酸窒化物系、
酸硫化物系が考えられる。ここでの硫化物としては、Li
S、及びLiSとPS、SiS、GeS、GaSとの
化合物などが挙げられる。また、酸窒化物としては、Li
PO4−XN2X/3、LiSiO4−XN2X/3、LiG
eO4−XN2X/3(0<X<4)、LiBO3−XN
2X/3(0<X<3)などが挙げられる。これらと反
応しない材料を保護シートに用いることで、負極の劣化
を抑制する。
The inorganic solid electrolyte includes sulfide-based, oxide-based, nitride-based, and oxynitride-based compounds that are a mixture thereof.
Oxysulfides are conceivable. The sulfide here is Li
Compounds of 2 S and Li 2 S with P 2 S 5 , SiS 2 , GeS 2 , and Ga 2 S 3 are exemplified. As the oxynitride, Li
3 PO 4-X N 2X / 3, Li 4 SiO 4-X N 2X / 3, Li 4 G
eO 4-X N 2X / 3 (0 <X <4), Li 3 BO 3-X N
2X / 3 (0 <X <3). By using a material that does not react with these materials for the protective sheet, deterioration of the negative electrode is suppressed.

【0014】耐湿性は、保護シート自体が極力吸湿し難
いことが重要である。
It is important for the moisture resistance that the protective sheet itself hardly absorb moisture.

【0015】以上の3つの条件を満たす材料としては、
プラスチックが好適である。より具体的には、ポリエチ
レンやポリプロピレンが好ましい。
Materials satisfying the above three conditions include:
Plastics are preferred. More specifically, polyethylene and polypropylene are preferred.

【0016】さらに、保護シートはリチウム含有金属と
も反応しない材料が好ましい。通常、リチウム含有金属
の上には無機固体電解質が形成されて保護シートとリチ
ウム含有金属とは直接接しないが、無機固体電解質が剥
がれる場合なども考慮するとリチウム含有金属と反応し
ない材料が好ましい。リチウム含有金属には、リチウム
金属自体はもちろんリチウム合金も含まれる。リチウム
合金の具体例としては、リチウムとIn、Ti、Zn、Bi、Sn
等との合金が挙げられる。
Further, the protective sheet is preferably made of a material which does not react with the lithium-containing metal. Usually, an inorganic solid electrolyte is formed on the lithium-containing metal so that the protective sheet and the lithium-containing metal are not in direct contact with each other. However, considering the case where the inorganic solid electrolyte is peeled off, a material that does not react with the lithium-containing metal is preferable. The lithium-containing metal includes a lithium alloy as well as a lithium metal itself. Specific examples of the lithium alloy include lithium, In, Ti, Zn, Bi, and Sn.
And the like.

【0017】保護シートの厚さは、5μm以上100μm以下
であることが望ましい。この下限値を下回ると、強度が
弱く破れやすくなるためである。逆に、上限を超えると
負極全体の体積・重量が大きくなりすぎて材料の無駄と
なる上、ロール巻きした場合のサイズが大きくなるから
である。例えば、直径30cmの芯材に保護シートを1000回
(長さ約1km)巻いた場合、5μmのシートに比べて100μ
mのシートは、ロール径が約10cm程度大きくなる。
It is desirable that the thickness of the protective sheet is not less than 5 μm and not more than 100 μm. If the value is below the lower limit, the strength is weak and the film is easily broken. Conversely, if the upper limit is exceeded, the volume and weight of the entire negative electrode become too large, so that the material is wasted and the size when rolled becomes large. For example, if a protective sheet is wound 1000 times (about 1 km long) around a core material with a diameter of 30 cm, it will be 100 μm larger than a 5 μm sheet.
The sheet m has a roll diameter about 10 cm larger.

【0018】通常、リチウム含有金属、無機固体電解質
薄膜および保護シートの積層体は、テープ状に加工され
る。その場合、保護シートの幅は、電池に組み立てる際
に必要な幅よりも5〜10mm程度広く形成しておくことが
好ましい。保護シートを無機固体電解質薄膜の表面に積
層した場合、無機固体電解質薄膜の両側面は保護シート
に覆われておらず、そこから水分の吸収に伴う劣化の生
じることが考えられる。この劣化は、保護シート両側面
から1mm以下の深さで止まると考えられるため、予め必
要幅よりも広く積層体を形成しておくことで、電池への
組立前に両側を切断して用いることができる。
Usually, a laminate of a lithium-containing metal, an inorganic solid electrolyte thin film and a protective sheet is processed into a tape shape. In that case, it is preferable that the width of the protective sheet is formed to be about 5 to 10 mm wider than the width required for assembling the battery. When the protective sheet is laminated on the surface of the inorganic solid electrolyte thin film, both side surfaces of the inorganic solid electrolyte thin film are not covered with the protective sheet, and it is conceivable that deterioration accompanying absorption of moisture therefrom occurs. Since this deterioration is considered to stop at a depth of 1 mm or less from both sides of the protective sheet, it is necessary to cut the both sides before assembling into a battery by forming a laminate wider than the required width in advance. Can be.

【0019】無機固体電解質薄膜と保護シートとは、無
機固体電解質薄膜への水分の吸収を極力抑えることがで
きるように密接していることが好ましい。ただし、両者
は接着している必要はない。電池に組み立てる際、保護
シートは除去するが、両者が接着されていると保護シー
トの除去が困難となるからである。従って、無機固体電
解質薄膜と保護シートの位置ずれが容易に起こらない程
度に無機固体電解質薄膜を保護シートが被覆していれば
十分である。
It is preferable that the inorganic solid electrolyte thin film and the protective sheet are in close contact with each other so that absorption of moisture into the inorganic solid electrolyte thin film can be suppressed as much as possible. However, the two need not be adhered. This is because when the battery is assembled, the protective sheet is removed, but if the two are adhered, it is difficult to remove the protective sheet. Therefore, it is sufficient that the protective sheet covers the inorganic solid electrolyte thin film to such an extent that the misalignment between the inorganic solid electrolyte thin film and the protective sheet does not easily occur.

【0020】本発明リチウム電池負極の製造方法は、リ
チウム含有金属上に無機固体電解質薄膜を形成する工程
と、前記電解質薄膜を形成後、直ちに電解質薄膜上を可
撓性の保護シートで覆う工程とを具えることを特徴とす
る。
The method for producing a negative electrode of a lithium battery according to the present invention comprises the steps of forming an inorganic solid electrolyte thin film on a lithium-containing metal, and covering the electrolyte thin film with a flexible protective sheet immediately after forming the electrolyte thin film. It is characterized by having.

【0021】無機固体電解質薄膜を形成した直後に保護
シートで覆うことで、無機固体電解質薄膜の加水分解に
よる劣化を抑制することができる。
By covering with a protective sheet immediately after forming the inorganic solid electrolyte thin film, deterioration of the inorganic solid electrolyte thin film due to hydrolysis can be suppressed.

【0022】ここで、直後とは、無機固体電解質薄膜が
吸水して劣化しない程度の短時間を指す。実用的には、
無機固体電解質薄膜の形成工程に連続して保護シートの
被覆工程を行う。
Here, "immediately" means a short period of time such that the inorganic solid electrolyte thin film does not deteriorate by absorbing water. In practice,
The protective sheet covering step is performed continuously to the inorganic solid electrolyte thin film forming step.

【0023】リチウム含有金属上に無機固体電解質薄膜
を形成する工程は、公知の種々の方法を利用することが
できる。例えば、スパッタリング法、レーザアブレーシ
ョン法、イオンプレーティング法などが利用できる。
In the step of forming the inorganic solid electrolyte thin film on the lithium-containing metal, various known methods can be used. For example, a sputtering method, a laser ablation method, an ion plating method, or the like can be used.

【0024】保護シートは予め乾燥工程を経たものを用
いることが好ましい。乾燥工程により、保護シートの水
分を極力少なくし無機固体電解質薄膜の劣化を最小限に
抑制する。乾燥工程は、50℃以上の温度で、30分以上保
持することが好適である。乾燥温度の下限は、50℃未満
では乾燥時間が長くかかってしまうからである。乾燥温
度の上限は、保護シートの融点や軟化点を考慮して決定
すれば良い。ポリエチレンでは約80℃、ポリプロピレン
では約100℃が上限温度と思われる。乾燥時間は、50℃
以上とした場合に、保護シートを十分に乾燥できる時間
を選択した。従って、乾燥時間の上限は特にないが、あ
まり長くなると生産効率が低下するので、実用的な時間
を選択することが望ましい。
It is preferable to use a protective sheet which has been subjected to a drying step in advance. The drying step minimizes the water content of the protective sheet and minimizes the deterioration of the inorganic solid electrolyte thin film. In the drying step, it is preferable to keep the temperature at 50 ° C. or more for 30 minutes or more. If the lower limit of the drying temperature is less than 50 ° C., the drying time is long. The upper limit of the drying temperature may be determined in consideration of the melting point and the softening point of the protective sheet. It is considered that the maximum temperature is about 80 ° C. for polyethylene and about 100 ° C. for polypropylene. Drying time is 50 ℃
In the case described above, a time during which the protective sheet can be sufficiently dried was selected. Accordingly, there is no particular upper limit on the drying time, but if the drying time is too long, the production efficiency decreases. Therefore, it is desirable to select a practical time.

【0025】さらに、この乾燥工程は、133Pa(1Toor)
以下の真空中にて行うことが好ましい。真空中で乾燥を
行うことで一層水分の除去を容易にする。この乾燥工程
は、無機固体電解質薄膜を形成する工程や、無機固体電
解質薄膜上に保護シートを被覆する工程と同一チャンバ
ー内で行うことが好ましいが、独立して行っても良い。
Further, this drying step is performed at 133 Pa (1 Toor).
It is preferable to carry out in the following vacuum. Drying in vacuum further facilitates the removal of moisture. This drying step is preferably performed in the same chamber as the step of forming the inorganic solid electrolyte thin film and the step of coating the protective sheet on the inorganic solid electrolyte thin film, but may be performed independently.

【0026】無機固体電解質薄膜上に保護シートを被覆
する工程は、ロール状に巻き取って行うことが好適であ
る。すなわち、リチウム含有金属上に無機固体電解質薄
膜を形成したテープをロール状に巻き取る際、無機固体
電解質薄膜の表面に保護シートも併せて巻き取ることが
好ましい。無機固体電解質薄膜のロール巻きに併せて保
護シートも巻き取ることで、保護シートを装着するまで
の時間を短くすることができ、無機固体電解質薄膜の劣
化を少なくすることができる。また、ロール状に巻き取
ることで、接着剤などを用いることなく無機固体電解質
薄膜に対して保護シートを密接させた状態に保持するこ
とができる。さらに、ロール状に巻き取ることで、保護
シートが機械的な衝撃に対する緩衝材として無機固体電
解質薄膜表面の損傷を防ぐと共に、隣接するターンとの
間における仕切りの役割も果たすことができる。
The step of coating the protective sheet on the inorganic solid electrolyte thin film is preferably carried out by winding it into a roll. That is, when winding the tape having the inorganic solid electrolyte thin film formed on the lithium-containing metal in a roll shape, it is preferable to wind the protective sheet together with the surface of the inorganic solid electrolyte thin film. By winding the protective sheet together with the roll of the inorganic solid electrolyte thin film, the time until the protective sheet is attached can be shortened, and the deterioration of the inorganic solid electrolyte thin film can be reduced. Further, by winding the protective sheet in a roll shape, the protective sheet can be kept in close contact with the inorganic solid electrolyte thin film without using an adhesive or the like. Furthermore, by winding in a roll shape, the protective sheet can serve as a buffer against mechanical impact, prevent damage to the surface of the inorganic solid electrolyte thin film, and serve as a partition between adjacent turns.

【0027】また、無機固体電解質薄膜の形成工程と保
護シートの被覆工程とを連続する真空室内で行うことが
好ましい。無機固体電解質薄膜の形成は、真空中で蒸着
されることが多く、その場合、保護シートの被覆工程と
を連続する真空室内で行えば、保護シートを装着するま
での時間を短くできて生産性を効率化することができ
る。通常、負極は、集電体となる金属箔上にリチウム含
有金属層が形成され、その上に無機固体電解質薄膜が形
成されて、さらにその上に保護シートが被覆されること
になる。その場合、リチウム含有金属層の形成も同一真
空室内で行うことが好ましい。
Preferably, the step of forming the inorganic solid electrolyte thin film and the step of covering the protective sheet are performed in a continuous vacuum chamber. The formation of the inorganic solid electrolyte thin film is often performed in a vacuum. Can be made more efficient. Usually, in the negative electrode, a lithium-containing metal layer is formed on a metal foil serving as a current collector, an inorganic solid electrolyte thin film is formed thereon, and a protective sheet is further coated thereon. In that case, the formation of the lithium-containing metal layer is preferably performed in the same vacuum chamber.

【0028】[0028]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。 <負極の構成>この負極は、図1に示すように、集電体
となる銅箔1上にリチウム金属薄膜2が形成され、その上
に無機固体電解質薄膜3が形成されて、さらにその上に
保護シート4が被覆された構成である。銅箔1、リチウム
金属薄膜2、無機固体電解質薄膜3は一体にされている
が、保護シート4は無機固体電解質薄膜3に接した状態に
保持されているだけであり、容易に除去することができ
る。
Embodiments of the present invention will be described below. <Constitution of Negative Electrode> As shown in FIG. 1, this negative electrode has a lithium metal thin film 2 formed on a copper foil 1 serving as a current collector, an inorganic solid electrolyte thin film 3 formed thereon, and a This is a configuration in which a protective sheet 4 is covered. Although the copper foil 1, the lithium metal thin film 2, and the inorganic solid electrolyte thin film 3 are integrated, the protective sheet 4 is merely held in contact with the inorganic solid electrolyte thin film 3, and can be easily removed. it can.

【0029】<負極の製造方法>上記の負極は、図2に
示す製造ラインにより製造することができる。
<Method of Manufacturing Negative Electrode> The above-described negative electrode can be manufactured by a manufacturing line shown in FIG.

【0030】このラインは、銅箔1の供給リール5が配置
された供給室10、リチウム金属薄膜の成膜室11、イオン
ビーム処理室12、固体電解質成膜室13、巻取り室14を具
える。各室10〜14は連続して構成された真空室である。
This line includes a supply chamber 10 in which a supply reel 5 for the copper foil 1 is disposed, a lithium metal thin film forming chamber 11, an ion beam processing chamber 12, a solid electrolyte film forming chamber 13, and a winding chamber 14. I can. Each of the chambers 10 to 14 is a continuous vacuum chamber.

【0031】供給リール5から引き出された銅箔1は、順
次リチウム金属薄膜の成膜室11、イオンビーム処理室1
2、固体電解質成膜室13を経て巻取り室14の巻取りリー
ル6に巻き取られる。その間、リチウム金属薄膜の成膜
室11では銅箔1上にリチウム金属薄膜が形成される。イ
オンビーム処理室12ではリチウム金属薄膜にイオンビー
ム処理を施す。固体電解質成膜室13ではリチウム金属薄
膜上に固体電解質薄膜を形成する。巻取り室14には巻取
りリール6の他に、保護シート4の供給リール7が具えら
れている。そして、リチウム金属薄膜、無機固体電解質
薄膜が形成された銅箔が巻き取りリール6に巻き取られ
る際、供給リール7から引き出された保護シート4も併せ
て巻き取りリール6に巻き取られる。
The copper foil 1 pulled out from the supply reel 5 is sequentially deposited in a lithium metal thin film forming chamber 11 and an ion beam processing chamber 1.
2. It is taken up by the take-up reel 6 of the take-up chamber 14 through the solid electrolyte film formation chamber 13. In the meantime, the lithium metal thin film is formed on the copper foil 1 in the lithium metal thin film forming chamber 11. In the ion beam processing chamber 12, ion beam processing is performed on the lithium metal thin film. In the solid electrolyte film forming chamber 13, a solid electrolyte thin film is formed on the lithium metal thin film. The take-up chamber 14 is provided with a supply reel 7 for the protection sheet 4 in addition to the take-up reel 6. Then, when the copper foil on which the lithium metal thin film and the inorganic solid electrolyte thin film are formed is taken up by the take-up reel 6, the protection sheet 4 pulled out from the supply reel 7 is also taken up by the take-up reel 6.

【0032】以上の工程により、図1に示す積層構造の
負極を巻き取りリールに巻き取った状態で得ることがで
きる。
Through the above steps, the negative electrode having the laminated structure shown in FIG. 1 can be obtained in a state wound on a take-up reel.

【0033】<実施例>図2に示すラインにより、厚み
10μmで幅50mmの銅箔1を供給リールから引き出す。この
銅箔1の上に、リチウム金属薄膜の成膜室11中で厚さが1
0μmのリチウム金属薄膜を真空蒸着法にて形成した。
<Embodiment> According to the line shown in FIG.
A copper foil 1 having a width of 10 μm and a width of 50 mm is pulled out from a supply reel. On this copper foil 1, a thickness of 1
A 0 μm lithium metal thin film was formed by a vacuum evaporation method.

【0034】銅箔上に形成したリチウム金属薄膜は、無
機固体電解質薄膜を形成する前に真空のイオンビーム処
理室12でイオンビーム処理を行った。圧力2×10−4Torr
(267×10−4Pa)でアルゴンと窒素の混合ガス(アルゴ
ン75体積%、窒素25体積%)を流し、イオンガンによ
り、20mA、500Vでイオンビームを試料表面に照射した。
The lithium metal thin film formed on the copper foil was subjected to ion beam processing in a vacuum ion beam processing chamber 12 before forming the inorganic solid electrolyte thin film. Pressure 2 × 10 −4 Torr
A mixed gas of argon and nitrogen (75% by volume of argon, 25% by volume of nitrogen) was flowed at (267 × 10 −4 Pa), and the sample surface was irradiated with an ion beam at 20 mA and 500 V by an ion gun.

【0035】このリチウム金属薄膜上に、固体電解質成
膜室13にて厚さ0.5μmの硫化物無機固体電解質薄膜を真
空蒸着法により形成した。
On this lithium metal thin film, a sulfide inorganic solid electrolyte thin film having a thickness of 0.5 μm was formed in a solid electrolyte film forming chamber 13 by a vacuum evaporation method.

【0036】硫化物無機固体電解質の組成は以下の通り
である。 No.1 Li2S:P2S5=80:20(モル比) No.2 Li2S:P2S5:Li3PO4=79:20.5:0.5(モル比)
The composition of the sulfide inorganic solid electrolyte is as follows. No.1 Li 2 S: P 2 S 5 = 80: 20 (molar ratio) No.2 Li 2 S: P 2 S 5 : Li 3 PO 4 = 79: 20.5: 0.5 (molar ratio)

【0037】リチウム金属薄膜および無機固体電解質薄
膜の形成方法としては、スパッタリング法、レーザアブ
レーション法、イオンプレーティング法でも可能であ
る。
As a method for forming the lithium metal thin film and the inorganic solid electrolyte thin film, a sputtering method, a laser ablation method, and an ion plating method are also possible.

【0038】リチウム金属薄膜と無機固体電解質薄膜を
形成した銅箔は、巻取りリール6に巻き取られる。その
際、保護シートの供給リール7から引き出された保護シ
ート4も同時に巻き取る。保護シート4には、厚さは50μ
mのポリプロピレンシートを用いた。ポリプロピレンの
代わりにポリエチレンを使用してもかまわない。ポリプ
ロピレンシートは事前に乾燥処理を行なった。乾燥条件
は、ロータリーポンプにより真空引きして真空度0.1Tor
r(13.3Pa)、温度60℃、保持時間5時間とした。
The copper foil on which the lithium metal thin film and the inorganic solid electrolyte thin film are formed is taken up on a take-up reel 6. At this time, the protection sheet 4 drawn from the protection sheet supply reel 7 is also wound up at the same time. Protection sheet 4 has a thickness of 50μ
m polypropylene sheet was used. Polyethylene may be used instead of polypropylene. The polypropylene sheet was dried beforehand. Drying conditions are as follows.
r (13.3 Pa), the temperature was 60 ° C., and the holding time was 5 hours.

【0039】得られた負極と、セパレータ(多孔質ポリ
マーフィルム)、正極、有機電解液等からなるリチウム
二次電池を作製した。以下に、電池の作製手順および電
池評価結果を記す。
A lithium secondary battery comprising the obtained negative electrode, a separator (porous polymer film), a positive electrode, an organic electrolyte and the like was produced. Hereinafter, the procedure for producing the battery and the battery evaluation result will be described.

【0040】エチレンカーボネート(EC)とプロピレン
カーボネート(PC)の混合溶液を加熱し、ポリアクリロ
ニトリル(PAN)を高濃度に溶解させたものを冷却し
て、LiPF6が溶解しているEC、PCを多量に含有するPANを
作製した。このPAN中に、活物質となるLiCoO2粒子およ
び電子伝導性を付与する炭素粒子を混合し、20μm厚の
アルミ箔(正極集電体)上に300μmの厚みで塗布して正
極とした。
A mixed solution of ethylene carbonate (EC) and propylene carbonate (PC) is heated, and a polyacrylonitrile (PAN) dissolved at a high concentration is cooled to remove EC and PC in which LiPF 6 is dissolved. PAN containing a large amount was prepared. In this PAN, LiCoO 2 particles as an active material and carbon particles for imparting electron conductivity were mixed, and applied on a 20 μm-thick aluminum foil (positive electrode current collector) with a thickness of 300 μm to form a positive electrode.

【0041】電池の作製作業は、露点が−60℃以下のア
ルゴンガス雰囲気中で行なった。無機固体電解質薄膜を
形成した負極から保護シートをはがし、セパレータ(多
孔質ポリマーフィルム)及び正極とともに、ステンレス
製密封容器中に重ねて設置した。保護シートの剥離は、
何ら支障なく容易に行えた。さらにエチレンカーボネー
トとプロピレンカーボネートの混合溶液に電解塩として
1モル%のLiPF6を溶解させた有横電解液を滴下して、リ
チウム二次電池を作製した。
The battery was produced in an argon gas atmosphere having a dew point of -60 ° C. or less. The protective sheet was peeled off from the negative electrode on which the inorganic solid electrolyte thin film was formed, and placed together with the separator (porous polymer film) and the positive electrode in a stainless steel sealed container. Peeling of the protective sheet
It was easy without any hindrance. In addition, a mixed solution of ethylene carbonate and propylene carbonate is used as an electrolytic salt.
A horizontal electrolytic solution in which 1 mol% of LiPF 6 was dissolved was added dropwise to produce a lithium secondary battery.

【0042】作製した電池の充放電特性を評価した。そ
の結果、負極試料No.1およびNo.2いずれの電池も充電電
圧を4.2Vとして、100mA放電により、3.0Vまで電圧が低
下するまでの容量は0.5Ah(アンペア時)であった。ま
た、エネルギー密度は、500Wh(キロワット時)/1(リ
ットル)であった。さらに同一の条件のサイクル充放電
をおこない、300回以上のサイクルで安定であった。
The charge / discharge characteristics of the produced battery were evaluated. As a result, the capacity of each of the batteries of the negative electrode samples No. 1 and No. 2 was 0.5 Ah (ampere hours) until the voltage dropped to 3.0 V by discharging at 100 mA with a charging voltage of 4.2 V. The energy density was 500 Wh (kilowatt hours) / 1 (liter). Further, the charge / discharge cycle was performed under the same conditions, and the cycle was stable in 300 or more cycles.

【0043】[0043]

【発明の効果】以上説明したように、本発明リチウム電
池負極によれば、容易に剥離できる保護シートで無機電
解質薄膜を覆うことで、無機電解質薄膜が水分を吸収し
て劣化することを防止できる。
As described above, according to the lithium battery negative electrode of the present invention, by covering the inorganic electrolyte thin film with the protective sheet which can be easily peeled off, it is possible to prevent the inorganic electrolyte thin film from absorbing water and being deteriorated. .

【0044】また、本発明リチウム電池負極負極は、無
機電解質薄膜に保護シートを装着するまでの時間を短く
することができ、無機固体電解質薄膜の劣化を少なくす
ることができる。
Further, in the negative electrode of the present invention, the time until the protective sheet is attached to the inorganic electrolyte thin film can be shortened, and the deterioration of the inorganic solid electrolyte thin film can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明リチウム電池負極の断面図である。FIG. 1 is a cross-sectional view of a lithium battery negative electrode of the present invention.

【図2】本発明リチウム電池負極の製造方法を示す説明
図である。
FIG. 2 is an explanatory view showing a method for producing a negative electrode of a lithium battery of the present invention.

【符号の説明】[Explanation of symbols]

1 銅箔 2 リチウム金属薄膜 3 無機固体電解質薄膜 4 保護シート 5 供給リール 6 巻取りリール 7 供給リール 10 供給室 11 リチウム金属薄膜の成膜室 12 イオンビーム処理室 13 固体電解質成膜室 14 巻取り室 1 Copper foil 2 Lithium metal thin film 3 Inorganic solid electrolyte thin film 4 Protective sheet 5 Supply reel 6 Take-up reel 7 Supply reel 10 Supply chamber 11 Lithium metal thin film deposition chamber 12 Ion beam processing chamber 13 Solid electrolyte deposition chamber 14 Winding Room

フロントページの続き Fターム(参考) 4K044 AA06 AB02 AB10 BA01 BA18 BA19 BB04 BC02 CA13 CA31 5H029 AJ07 AJ14 AK03 AL12 AM12 BJ12 BJ13 CJ02 CJ07 CJ24 CJ28 CJ30 HJ04 HJ12 HJ14 5H050 AA13 AA19 BA18 CA08 CB12 DA03 DA09 DA13 EA23 FA04 FA08 FA18 GA02 GA09 GA24 GA27 GA29 HA04 HA12 HA14 HA20 Continued on the front page F term (reference) 4K044 AA06 AB02 AB10 BA01 BA18 BA19 BB04 BC02 CA13 CA31 5H029 AJ07 AJ14 AK03 AL12 AM12 BJ12 BJ13 CJ02 CJ07 CJ24 CJ28 CJ30 HJ04 HJ12 HJ14 5H050 AA13 FA08 DA08 FA08 GA09 GA24 GA27 GA29 HA04 HA12 HA14 HA20

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 リチウム含有金属上に無機固体電解質薄
膜を形成したリチウム電池負極において、 前記無機固体電解質薄膜上を可撓性の保護シートで覆っ
たことを特徴とするリチウム電池負極。
1. A negative electrode for a lithium battery, wherein an inorganic solid electrolyte thin film is formed on a lithium-containing metal, wherein the inorganic solid electrolyte thin film is covered with a flexible protective sheet.
【請求項2】 前記保護シートが樹脂製であることを特
徴とする請求項1に記載のリチウム電池負極。
2. The lithium battery negative electrode according to claim 1, wherein the protective sheet is made of a resin.
【請求項3】 前記保護シートがポリプロピレン製また
はポリエチレン製であることを特徴とする請求項2に記
載のリチウム電池負極。
3. The lithium battery negative electrode according to claim 2, wherein the protective sheet is made of polypropylene or polyethylene.
【請求項4】 前記保護シートの厚さは、5μm以上100
μm以下であることを特徴とする請求項1〜3のいずれ
かに記載のリチウム電池負極。
4. The thickness of the protective sheet is 5 μm or more and 100
The lithium battery negative electrode according to any one of claims 1 to 3, wherein the thickness is not more than μm.
【請求項5】 リチウム含有金属上に無機固体電解質薄
膜を形成する工程と、 前記電解質薄膜を形成後、直ちに電解質薄膜上を可撓性
の保護シートで覆う工程とを具えることを特徴とするリ
チウム電池負極の製造方法。
5. A process for forming an inorganic solid electrolyte thin film on a lithium-containing metal, and immediately after forming the electrolyte thin film, covering the electrolyte thin film with a flexible protective sheet. A method for producing a lithium battery negative electrode.
【請求項6】 保護シートは乾燥工程を経たものを用い
ることを特徴とする請求項5に記載のリチウム電池負極
の製造方法。
6. The method according to claim 5, wherein the protective sheet is subjected to a drying step.
【請求項7】 乾燥工程は、50℃以上の温度で、30分以
上保持することを特徴とする請求項6に記載のリチウム
電池負極の製造方法。
7. The method according to claim 6, wherein the drying step is performed at a temperature of 50 ° C. or more for 30 minutes or more.
【請求項8】 リチウム含有金属上に無機固体電解質薄
膜を形成したテープをロール状に巻き取る工程を具え、 この巻き取り工程時に、無機固体電解質薄膜の表面に保
護シートも併せて巻き取ることを特徴とする請求項5に
記載のリチウム電池負極の製造方法。
8. A step of winding a tape in which an inorganic solid electrolyte thin film is formed on a lithium-containing metal in a roll shape, wherein in the winding step, a protective sheet is also wound on the surface of the inorganic solid electrolyte thin film. A method for producing a negative electrode for a lithium battery according to claim 5.
【請求項9】 無機固体電解質薄膜の形成工程と保護シ
ートの被覆工程とを連続する真空室内で行うことを特徴
とする請求項5に記載のリチウム電池負極の製造方法。
9. The method according to claim 5, wherein the step of forming the inorganic solid electrolyte thin film and the step of covering the protective sheet are performed in a continuous vacuum chamber.
JP2001123279A 2001-04-20 2001-04-20 Method for producing lithium battery negative electrode Expired - Fee Related JP4873281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001123279A JP4873281B2 (en) 2001-04-20 2001-04-20 Method for producing lithium battery negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001123279A JP4873281B2 (en) 2001-04-20 2001-04-20 Method for producing lithium battery negative electrode

Publications (2)

Publication Number Publication Date
JP2002319391A true JP2002319391A (en) 2002-10-31
JP4873281B2 JP4873281B2 (en) 2012-02-08

Family

ID=18972863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001123279A Expired - Fee Related JP4873281B2 (en) 2001-04-20 2001-04-20 Method for producing lithium battery negative electrode

Country Status (1)

Country Link
JP (1) JP4873281B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004134403A (en) * 2002-10-12 2004-04-30 Samsung Sdi Co Ltd Lithium metal anode for lithium battery
JP2009064667A (en) * 2007-09-06 2009-03-26 Research Institute Of Innovative Technology For The Earth All solid thin film battery, its manufacturing method, and its manufacturing apparatus
JP2013505556A (en) * 2009-09-22 2013-02-14 アプライド マテリアルズ インコーポレイテッド Thin film battery method for complexity reduction
JP2013505557A (en) * 2009-09-22 2013-02-14 アプライド マテリアルズ インコーポレイテッド Thin film battery manufacturing method and equipment therefor
JP2014216217A (en) * 2013-04-26 2014-11-17 トヨタ自動車株式会社 Manufacturing method of sulfide all-solid battery
KR101771292B1 (en) * 2014-09-29 2017-08-24 주식회사 엘지화학 Cathode unit covered with passivation layer and forming method of passivation layer for Li metal

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04315775A (en) * 1991-01-23 1992-11-06 Sanyo Electric Co Ltd Battery
JPH06150935A (en) * 1992-11-12 1994-05-31 Yuasa Corp Manufacture of negative electrode collector
JPH06290773A (en) * 1993-03-30 1994-10-18 Nippondenso Co Ltd Lithium secondary battery
JPH07240208A (en) * 1993-11-16 1995-09-12 Bollore Technol Preparation of electrochemical multilayer assembly
JPH08250110A (en) * 1995-03-08 1996-09-27 Dainippon Printing Co Ltd Manufacture of electrode plate for nonaqueous electrolytic secondary battery
JPH1197065A (en) * 1997-04-23 1999-04-09 Hydro Quebec Ultra thin layer solid lithium battery and manufacture of the same
JP2000340257A (en) * 1998-12-03 2000-12-08 Sumitomo Electric Ind Ltd Lithium secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04315775A (en) * 1991-01-23 1992-11-06 Sanyo Electric Co Ltd Battery
JPH06150935A (en) * 1992-11-12 1994-05-31 Yuasa Corp Manufacture of negative electrode collector
JPH06290773A (en) * 1993-03-30 1994-10-18 Nippondenso Co Ltd Lithium secondary battery
JPH07240208A (en) * 1993-11-16 1995-09-12 Bollore Technol Preparation of electrochemical multilayer assembly
JPH08250110A (en) * 1995-03-08 1996-09-27 Dainippon Printing Co Ltd Manufacture of electrode plate for nonaqueous electrolytic secondary battery
JPH1197065A (en) * 1997-04-23 1999-04-09 Hydro Quebec Ultra thin layer solid lithium battery and manufacture of the same
JP2000340257A (en) * 1998-12-03 2000-12-08 Sumitomo Electric Ind Ltd Lithium secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004134403A (en) * 2002-10-12 2004-04-30 Samsung Sdi Co Ltd Lithium metal anode for lithium battery
JP2009064667A (en) * 2007-09-06 2009-03-26 Research Institute Of Innovative Technology For The Earth All solid thin film battery, its manufacturing method, and its manufacturing apparatus
JP2013505556A (en) * 2009-09-22 2013-02-14 アプライド マテリアルズ インコーポレイテッド Thin film battery method for complexity reduction
JP2013505557A (en) * 2009-09-22 2013-02-14 アプライド マテリアルズ インコーポレイテッド Thin film battery manufacturing method and equipment therefor
JP2015187988A (en) * 2009-09-22 2015-10-29 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Method for manufacturing thin film battery, and facility therefor
JP2014216217A (en) * 2013-04-26 2014-11-17 トヨタ自動車株式会社 Manufacturing method of sulfide all-solid battery
KR101771292B1 (en) * 2014-09-29 2017-08-24 주식회사 엘지화학 Cathode unit covered with passivation layer and forming method of passivation layer for Li metal

Also Published As

Publication number Publication date
JP4873281B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
JP7417642B2 (en) Lithium deposition using integrated protective layer tools
JP4911990B2 (en) Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
US9502735B1 (en) Fabrication methods to produce lithium battery structures with composite layers
JP2021044254A5 (en)
US6991662B2 (en) Encapsulated alloy electrodes
CN100423325C (en) Baffle plate having inorganic protective film and lithium battery using said baffle plate
US6723140B2 (en) Plating metal negative electrodes under protective coatings
US6432584B1 (en) Method for forming encapsulated lithium electrodes having glass protective layers
US20040253510A1 (en) Aliovalent protective layers for active metal anodes
CN103443986B (en) Electrode assemblie and preparation method thereof
JP4940625B2 (en) Electrolyte and battery
CN111316478A (en) Ectopic solid electrolyte interface modification of lithium metal anodes using chalcogenides
US20050008938A1 (en) Negative electrode for rechargeable lithium battery, method of producing same and rechargeable lithium battery comprising same
WO2003043109A1 (en) Electrode active materials for lithium secondary batteries, method for preparing the same, and lithium secondary batteries using the same
US9859590B2 (en) Battery
KR20040019994A (en) Electrolyte solution for secondary battery and secondary battery using same
JP2005183366A (en) Energy device and its manufacturing method
EP4203138A1 (en) Battery
JP2004356082A (en) Negative electrode for lithium secondary battery and lithium secondary battery using this
JP4016344B2 (en) Lithium secondary battery
JP2002319391A (en) Negative electrode for lithium battery, and manufacturing method therefor
US20130011730A1 (en) Positive electrode for rechargeable lithium battery and rechargeable lithium battery
JP2002319407A (en) Lithium secondary battery electrode and lithium secondary battery
KR20070026071A (en) Non-aqueous electrolyte secondary battery
JP2007128658A (en) Manufacturing method of anode for lithium secondary battery and manufacturing method of lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees