JPH08238672A - Polystyrene film - Google Patents

Polystyrene film

Info

Publication number
JPH08238672A
JPH08238672A JP4304995A JP4304995A JPH08238672A JP H08238672 A JPH08238672 A JP H08238672A JP 4304995 A JP4304995 A JP 4304995A JP 4304995 A JP4304995 A JP 4304995A JP H08238672 A JPH08238672 A JP H08238672A
Authority
JP
Japan
Prior art keywords
film
refractive index
thickness
syndiotactic
breakdown voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4304995A
Other languages
Japanese (ja)
Other versions
JP3567516B2 (en
Inventor
Naonobu Oda
尚伸 小田
Tomonori Yoshinaga
知則 吉永
Tadashi Okudaira
正 奥平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP4304995A priority Critical patent/JP3567516B2/en
Publication of JPH08238672A publication Critical patent/JPH08238672A/en
Application granted granted Critical
Publication of JP3567516B2 publication Critical patent/JP3567516B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To improve the handleability, the thickness uniformity and the dielectric breakdown voltage at the time of manufacturing a film made of styrene polymer having a syndiotactic configuration by specifying the difference between the maximum value and the minimum value of its double refraction, and the mean refractive index. CONSTITUTION: Since a biaxially oriented film in which a plasticized resin containing syndiotactic styrene polymer as a main ingredient is biaxially oriented and thermally set has excellent heat resistance and electric characteristics, it is, for example, used for the dielectric material of a film capacitor. In this case, the polystyrene film is made of the styrene polymer having a syndiotactic configuration 0.01 or less of the difference (ΔnMAX-ΔnMIN) between the maximum value ΔnMAX and the minimum value ΔnMIN of the double refraction and 1.582 to 1.590 of mean refractive index. Thus, the handleability, the thickness uniformity and the dielectric breakdown voltage are obtained while satisfying the thickness reduction of the dielectric material required for the reduction in size and the increase in its electrostatic capacity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はシンジオタクチックポリ
スチレン系フィルムに関し、より詳しくは、ハンドリン
グ性および均一性に優れ、且つ絶縁破壊電圧に優れたポ
リスチレン系フィルムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a syndiotactic polystyrene film, and more particularly to a polystyrene film which is excellent in handleability and uniformity and has a high dielectric breakdown voltage.

【0002】[0002]

【従来の技術】シンジオタクチックスチレン系重合体を
主成分とする樹脂組成物を二軸延伸し、熱固定した二軸
延伸フィルムは、耐熱性、電気的特性などに優れ、フィ
ルムコンデンサの誘電体に用途展開されている(例え
ば、特開平2−143851号公報、特開平3−124
750号公報、特開平5−200858号公報)。
2. Description of the Related Art A biaxially stretched film obtained by biaxially stretching a resin composition containing a syndiotactic styrene-based polymer as a main component and heat-fixing is excellent in heat resistance and electrical characteristics, and is a dielectric material for film capacitors. Has been used for various purposes (for example, JP-A-2-143851 and JP-A-3-124).
750, JP-A-5-200858).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、これら
従来のシンジオタクチックポリスチレン系フィルムにお
いては、絶縁破壊電圧が不良であったり、またはフィル
ムの厚みむらが大きいために絶縁破壊電圧のばらつきが
生じたり、あるいはこれらフィルムをコンデンサに用い
ると容量のばらつきが発生するという問題があった。す
なわち、絶縁破壊電圧が不良となった場合、フィルム厚
を厚くする必要が生じ、その結果コンデンサの体積が大
きくなるという問題があり、また、容量や絶縁破壊電圧
のばらつきが大きい場合、コンデンサの信頼性が得られ
ないという問題があった。
However, in these conventional syndiotactic polystyrene-based films, the dielectric breakdown voltage is poor, or variations in the dielectric breakdown voltage occur due to large thickness unevenness of the film, Alternatively, when these films are used for capacitors, there is a problem that variations in capacitance occur. That is, when the breakdown voltage becomes defective, there is a problem that it is necessary to increase the film thickness, and as a result, the volume of the capacitor increases, and when the capacitance and the breakdown voltage vary widely, the reliability of the capacitor is increased. There was a problem that the sex could not be obtained.

【0004】また、コンデンサの小型化、靜電容量の増
大の観点から、現在、誘電体の薄手化が強く求められて
いる。しかし、シンジオタクチックポリスチレン系フィ
ルムを単に薄手化したのでは、フィルムの製造時及び加
工時のハンドリング特性が不良となる。
Further, from the viewpoint of miniaturization of capacitors and increase of electrostatic capacity, thinning of dielectrics is currently strongly demanded. However, if the syndiotactic polystyrene-based film is simply thinned, the handling properties during the production and processing of the film will be poor.

【0005】本発明の目的は、このような実情に鑑み、
ハンドリング性および厚み均一性に優れ、且つ絶縁破壊
電圧に優れたポリスチレン系フィルムを提供することに
ある。
In view of such circumstances, the object of the present invention is to
An object of the present invention is to provide a polystyrene-based film which is excellent in handleability and thickness uniformity and is also excellent in dielectric breakdown voltage.

【0006】[0006]

【課題を解決するための手段】本発明のポリスチレン系
フィルムは、シンジオタクチック構造を有するスチレン
系重合体からなり、複屈折の最大値ΔnMAX と最小値Δ
MIN の差ΔnMAX −ΔnMIN が0.01以下であり、
且つ平均屈折率が1.582以上1.590以下である
ことを特徴とするものである。
The polystyrene film of the present invention comprises a styrene polymer having a syndiotactic structure, and has a maximum birefringence value Δn MAX and a minimum birefringence value Δn MAX.
the difference Δn MAX -Δn MIN of n MIN is less than or equal to 0.01,
The average refractive index is 1.582 or more and 1.590 or less.

【0007】以下、本発明について詳細に説明する。本
発明のポリスチレン系フィルムの複屈折の最大値Δn
MAX と最小値ΔnMINの差ΔnMAX −ΔnMIN は0.0
1以下であり、好ましくは0.008以下であり、更に
好ましくは0.007以下である。差ΔnMAX −Δn
MIN が0.01より大きい場合には厚みむらが大きくな
るため、フィルムの絶縁破壊電圧の絶対値の変動が大き
くなり且つ容量変化が増大するため、コンデンサとして
の信頼性が低くなる。
Hereinafter, the present invention will be described in detail. Maximum value of birefringence Δn of the polystyrene film of the present invention
The difference between MAX and minimum value Δn MIN is Δn MAX −Δn MIN is 0.0
It is 1 or less, preferably 0.008 or less, and more preferably 0.007 or less. Difference Δn MAX −Δn
When MIN is larger than 0.01, the thickness unevenness becomes large, the fluctuation of the absolute value of the dielectric breakdown voltage of the film becomes large, and the capacitance change increases, so that the reliability as a capacitor becomes low.

【0008】本発明のポリスチレン系フィルムの平均屈
折率は、下限については1.582以上であり、好まし
くは1.584以上である。平均屈折率が1.582未
満では絶縁破壊電圧が不良となり、さらにハンドリング
性が不良となる。また、平均屈折率の上限については
1.590以下であり、好ましくは1.589以下であ
り、更に好ましくは1.588以下である。平均屈折率
が1.590より大きくなると厚みむらが大きくなるた
め、フィルムの絶縁破壊電圧の絶対値の変動が大きくな
り且つ容量変化が増大するため、コンデンサとしての信
頼性が低くなる。
The lower limit of the average refractive index of the polystyrene film of the present invention is 1.582 or more, preferably 1.584 or more. If the average refractive index is less than 1.582, the dielectric breakdown voltage becomes poor and the handling property becomes poor. The upper limit of the average refractive index is 1.590 or less, preferably 1.589 or less, and more preferably 1.588 or less. When the average refractive index is larger than 1.590, the thickness unevenness becomes large, the variation of the absolute value of the dielectric breakdown voltage of the film becomes large, and the capacitance change becomes large, so that the reliability as a capacitor becomes low.

【0009】本発明に用いられるシンジオタクチック構
造を有するスチレン系重合体とは、立体化学構造がシン
ジオタクチック構造、すなわち炭素−炭素結合から形成
された主鎖に対して側鎖であるフェニル基や置換フェニ
ル基が交互に反対方向に位置する立体構造を有するもの
である。本発明において、シンジオタクチック構造スチ
レン系重合体は、核磁気共鳴法(13C−NMR法)によ
り定量されるタクティシティが、ダイアッド(構成単位
が2個)で85%以上、ペンタッド(構成単位が5個)
で50%以上のシンジオタクチック構造であることが望
ましい。
The styrene polymer having a syndiotactic structure used in the present invention is a phenyl group having a stereochemical structure of syndiotactic structure, that is, a side chain with respect to a main chain formed from carbon-carbon bonds. And a substituted phenyl group have a three-dimensional structure in which they are alternately located in opposite directions. In the present invention, the syndiotactic styrene-based polymer has a tacticity quantified by a nuclear magnetic resonance method ( 13 C-NMR method) of 85% or more in a diad (two constitutional units) and a pentad (constitutional unit). 5)
It is desirable to have a syndiotactic structure of 50% or more.

【0010】本発明におけるスチレン系重合体として
は、例えば、ポリスチレン、ポリ(p- 、m- 又はo-
メチルスチレン)、ポリ(2,4−、2,5−、3,4
−又は3,5−ジメチルスチレン)、ポリ(p- ターシ
ャリーブチルスチレン)などのポリ(アルキルスチレ
ン); ポリ(p- 、m- 又はo- クロロスチレン)、
ポリ(p- 、m- 又はo- ブロモスチレン)、ポリ(p
- 、m- 又はo- フロオロスチレン)、ポリ(o- メチ
ル- p- フロオロスチレン)などのポリ(ハロゲン化ス
チレン); ポリ(p- 、m- 又はo- クロロメチルス
チレン)などのポリ(ハロゲン置換アルキルスチレ
ン); ポリ(p- 、m- 又はo- メトキシスチレ
ン)、ポリ(p- 、m- 又はo- エトキシスチレン)な
どのポリ(アルコキシスチレン); ポリ(p- 、m-
又はo- カルボキシメチルスチレン)などのポリ(カル
ボキシアルキルスチレン); ポリ(p- ビニルベンジ
ルプロピルエーテル)などのポリ(アルキルエーテルス
チレン); ポリ(p- トリメチルシリルスチレン)な
どのポリ(アルキルシリルスチレン); さらにはポリ
(ビニルベンジルジメトキシホスファイド)などが挙げ
られる。
Examples of the styrene polymer in the present invention include polystyrene, poly (p-, m- or o-.
Methylstyrene), poly (2,4-, 2,5-, 3,4
-Or 3,5-dimethylstyrene), poly (alkylstyrene) such as poly (p-tert-butylstyrene); poly (p-, m- or o-chlorostyrene),
Poly (p-, m- or o-bromostyrene), poly (p
-, M- or o- fluorostyrene), poly (o-methyl-p-fluorostyrene) and other poly (halogenated styrene); poly (p-, m- or o-chloromethylstyrene) and other poly (Halogen-substituted alkylstyrene); poly (p-, m- or o-methoxystyrene), poly (p-, m- or o-ethoxystyrene), and other poly (alkoxystyrene); poly (p-, m-
Or poly (carboxyalkylstyrene) such as o-carboxymethylstyrene); poly (alkyletherstyrene) such as poly (p-vinylbenzylpropyl ether); poly (alkylsilylstyrene) such as poly (p-trimethylsilylstyrene); Further, poly (vinylbenzyldimethoxyphosphide) and the like can be mentioned.

【0011】本発明においては、前記スチレン系重合体
のなかで、特にポリスチレンが好適である。また、本発
明で用いるシンジオタクチック構造を有するスチレン系
重合体は、必ずしも単一化合物である必要はなく、シン
ジオタクティシティが前記範囲内であれば、アタクチッ
ク構造やアイソタクチック構造のスチレン系重合体との
混合物や、スチレン系共重合体及びそれらの混合物でも
よい。
In the present invention, polystyrene is particularly preferable among the styrene polymers. Further, the styrene-based polymer having a syndiotactic structure used in the present invention does not necessarily have to be a single compound. It may be a mixture with a polymer, a styrene-based copolymer or a mixture thereof.

【0012】また本発明に用いるスチレン系重合体は、
重量平均分子量が好ましくは10,000以上、更に好
ましくは50,000以上である。重量平均分子量が1
0,000未満のものでは、強伸度特性や耐熱性に優れ
たフィルムを得られにくくなる。重量平均分子量の上限
については、特に限定されるものではないが、1,50
0,000以上では、延伸張力の増加に伴う破断の発生
などが生じるため余り好ましくない。
The styrenic polymer used in the present invention is
The weight average molecular weight is preferably 10,000 or more, more preferably 50,000 or more. Weight average molecular weight is 1
If it is less than 10,000, it becomes difficult to obtain a film having excellent strength and elongation characteristics and heat resistance. The upper limit of the weight average molecular weight is not particularly limited, but 1,50
If it is more than 10,000, breakage may occur with an increase in stretching tension, which is not preferable.

【0013】本発明に用いるシンジオタクチックスチレ
ン系重合体には必要に応じて、公知の酸化防止剤、帯電
防止剤、滑り性を付与するための微粒子等を適量配合す
ることができる。これら各種添加剤の配合量の合計は、
シンジオタクチックスチレン系重合体100重量部に対
して10重量部以下が望ましい。10重量部を超えると
延伸時に破断を起こしやすくなり、生産安定性不良とな
るので好ましくない。
If necessary, the syndiotactic styrene polymer used in the present invention may contain known antioxidants, antistatic agents, fine particles for imparting lubricity, and the like in appropriate amounts. The total amount of these various additives is
The amount is preferably 10 parts by weight or less based on 100 parts by weight of the syndiotactic styrene polymer. If it exceeds 10 parts by weight, breakage easily occurs during stretching, resulting in poor production stability.

【0014】微粒子としては、例えば、シリカ、二酸化
チタン、タルク、カオリナイト、ゼオライト等の金属酸
化物、炭酸カルシウム、リン酸カルシウム、硫酸バリウ
ムなどの金属の塩、シリコーン樹脂、架橋ポリスチレン
等の有機重合体からなる粒子等が挙げられる。これら微
粒子は、いずれか一種を単独で用いてもよく、また2種
以上を併用してもよい。使用する微粒子の平均粒子系
は、0.01μm以上2.0μm以下が好ましく、特に
0.05μm以上1.5μm以下が好ましく、粒子径の
ばらつき度(標準偏差と平均粒子径との比率)が25%
以下であることが好ましい。これら微粒子の添加量は、
シンジオタクチックスチレン系重合体100重量部に対
して0.005重量部以上2.0重量部以下とすること
が好ましく、特に0.01重量部以上1.0重量部以下
が好ましい。
Examples of the fine particles include metal oxides such as silica, titanium dioxide, talc, kaolinite and zeolite, metal salts such as calcium carbonate, calcium phosphate and barium sulfate, organic polymers such as silicone resin and crosslinked polystyrene. And the like. Any one of these fine particles may be used alone, or two or more thereof may be used in combination. The average particle system of the fine particles used is preferably 0.01 μm or more and 2.0 μm or less, particularly preferably 0.05 μm or more and 1.5 μm or less, and the degree of variation in particle size (the ratio of the standard deviation to the average particle size) is 25. %
The following is preferred. The amount of these fine particles added is
The amount is preferably 0.005 parts by weight or more and 2.0 parts by weight or less, and particularly preferably 0.01 parts by weight or more and 1.0 parts by weight or less, relative to 100 parts by weight of the syndiotactic styrene polymer.

【0015】本発明のポリスチレン系フィルムの前記平
均屈折率は、フィルムの製膜条件により調整される。す
なわち、一般に、延伸倍率を大きくすると平均屈折率が
大きくなり、延伸温度を高くすると平均屈折率が小さく
なり、熱固定温度を高くすると平均屈折率が大きくな
る。得られたフィルムの平均屈折率および複屈折の最大
値ΔnMAX と最小値ΔnMI N の差ΔnMAX −ΔnMIN
前記所定の範囲に入るならば製造条件は特に限定されな
いが、公知の方法、例えば、縦延伸及び横延伸を順に行
なう逐次二軸延伸方法のほか、横・縦・縦延伸法、縦・
横・縦延伸法、縦・縦・横延伸法などの延伸方法を採用
することができ、要求される強度や寸法安定性などの諸
特性に応じて選択される。また、熱固定処理、縦弛緩処
理、横弛緩処理などを施すことができる。また、蒸着層
の接着特性等を向上するために、インラインコートやオ
フラインコートにより接着層を設けたり、コロナ処理や
火炎プラズマ処理等を行なうことができる。
The average refractive index of the polystyrene film of the present invention is adjusted by the film forming conditions. That is, in general, increasing the draw ratio increases the average refractive index, increasing the drawing temperature decreases the average refractive index, and increasing the heat setting temperature increases the average refractive index. The production conditions are not particularly limited as long as the difference Δn MAX −Δn MIN between the maximum value Δn MAX and the minimum value Δn MI N of the average refractive index and the birefringence of the obtained film is within the above-mentioned predetermined range, but a known method, For example, in addition to the sequential biaxial stretching method in which longitudinal stretching and transverse stretching are carried out in order, transverse / longitudinal / longitudinal stretching method, longitudinal
A stretching method such as a transverse / longitudinal stretching method or a longitudinal / longitudinal / transverse stretching method can be adopted, and is selected according to various characteristics such as required strength and dimensional stability. Further, heat setting treatment, vertical relaxation treatment, lateral relaxation treatment, etc. can be performed. Further, in order to improve the adhesive property of the vapor deposition layer, an adhesive layer can be provided by in-line coating or off-line coating, corona treatment or flame plasma treatment can be performed.

【0016】[0016]

【実施例】以下に実施例にて本発明を具体的に説明する
が、本発明はこれら実施例のみに限定されるものではな
い。まず、フィルムの評価方法を以下に示す。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. First, the evaluation method of the film is shown below.

【0017】(1) 平均屈折率、複屈折の最大値と最小値
の差ΔnMAX −ΔnMIN 図1に示すように、各実施例で得られたフィルム(F) か
ら、フィルム(F) 長手方向に10cmごとに4cm×2
cmの10コの測定用サンプル(1)(2)(3)(4)……(10)を
切り出した。アタゴ光学社製アッベ屈折計4Tを用い
て、上記各測定用サンプルそれぞれについて、屈折率を
フィルム(F) 長手方向、幅方向および厚み方向について
測定し、これら3方向の屈折率を平均し屈折率n1 、n
2 、n3 、n4 、……、n10を求めた。これら10コの
屈折率の平均値(n1 +n2 +n3 +n4 +……+
10)/10を平均屈折率とした。また、各測定用サン
プルそれぞれについて、幅方向の屈折率と長手方向の屈
折率の差の絶対値を算出し、それらの最大のものΔn
MAX と最少のものΔnMIN の差ΔnMAX −ΔnMIN の差
を複屈折の最大値と最小値の差とした。
(1) Difference between maximum and minimum values of average refractive index and birefringence Δn MAX −Δn MIN As shown in FIG. 1, from the film (F) obtained in each Example, the film (F) longitudinal 4 cm x 2 for every 10 cm in the direction
10 measurement samples (1) (2) (3) (4) ... (10) of 10 cm were cut out. Using the Abbe refractometer 4T manufactured by Atago Optical Co., the refractive index of each of the above measurement samples was measured in the longitudinal direction, width direction and thickness direction of the film (F), and the refractive index in these three directions was averaged to obtain the refractive index. n 1 , n
2 , n 3 , n 4 , ..., N 10 were obtained. The average value of the refractive index of these 10 (n 1 + n 2 + n 3 + n 4 + ... +
The average refractive index was n 10 ) / 10. For each measurement sample, the absolute value of the difference between the refractive index in the width direction and the refractive index in the longitudinal direction is calculated, and the maximum value of them Δn
The difference between the difference Δn MAX -Δn MIN of MAX and minimum ones [Delta] n MIN and the difference between the maximum value and the minimum value of the birefringence.

【0018】(2) 絶縁破壊電圧 JIS C−2318に準じて行なった。10KV直流
耐電圧試験機を用い、23℃、50%RHの雰囲気下に
おいて、100V/secの昇圧速度で、フィルムが破
壊し短絡したときの電圧を読み取った。
(2) Dielectric breakdown voltage It was performed according to JIS C-2318. Using a 10 KV DC withstanding voltage tester, the voltage when the film was broken and short-circuited was read at a pressure rising rate of 100 V / sec in an atmosphere of 23 ° C. and 50% RH.

【0019】(3) 厚みむら ミクロン計測器社製連続厚さ測定器により、フィルムの
幅方向の中央部を長手方向に沿って測定し、次式により
算出した。 厚みむら=[(最大厚さ−最少厚さ)/平均厚さ]×1
00(%) 得られた厚みむらの値から、次のように評価した。 1級:厚みむら≧10% 2級:8%≦厚みむら<10% 3級:6%≦厚みむら<8% 4級:4%≦厚みむら<6% 5級:厚みむら<4%
(3) Thickness unevenness A continuous thickness measuring instrument manufactured by Micron Instruments Co., Ltd. was used to measure the central portion in the width direction of the film along the longitudinal direction, and the thickness was calculated by the following formula. Thickness unevenness = [(maximum thickness-minimum thickness) / average thickness] x 1
00 (%) The value of the obtained thickness unevenness was evaluated as follows. Grade 1: Thickness unevenness ≧ 10% Grade 2: 8% ≦ Thickness unevenness <10% Grade 3: 6% ≦ Thickness unevenness <8% Grade 4: 4% ≦ Thickness unevenness <6% Grade 5: Thickness unevenness <4%

【0020】(4) フィルムのハンドリング特性 広幅のスリットロールを高速でスリットし、小幅のロー
ルに巻直すに際しロール端部の巻ずれ、しわ、バルブ等
を生じないで問題のないロールが得られるかどうかを4
段階評価し、次のランク付けで評価した。 1級:問題のないスリットロールを得ることは極めて困
難 2級:低速で問題のないスリットロールが得られる 3級:中速で問題のないスリットロールが得られる 4級:高速で問題のないスリットロールが得られる
(4) Film handling characteristics Is it possible to obtain a satisfactory roll without causing misalignment of the roll end, wrinkles, valves, etc. when a wide slit roll is slit at a high speed and rewound into a narrow roll? Please 4
It was evaluated on a scale and evaluated according to the following ranking. 1st grade: It is extremely difficult to obtain a problem-free slit roll 2nd grade: A low-quality slit roll can be obtained 3rd grade: A medium-speed slit roll can be obtained 4th grade: A high-speed slit that does not have a problem Roll is obtained

【0021】(5) 平均粒子径 微粒子を(株)日立製作所製S−510型走査型電子顕
微鏡で観察し、写真撮影したものを拡大して複写し、微
粒子の外形をトレースし任意に200個の粒子を黒く塗
りつぶした。この像をニコレ(株)製ルーゼックス50
0型画像解析装置を用いて、それぞれの粒子の水平方向
のフェレ径を測定し、その平均値を平均粒子径とした。
また、粒子径のばらつき度は下記の式により算出した。 ばらつき度=(粒子径の標準偏差/平均粒子径)×10
0(%)
(5) Average Particle Size Fine particles are observed with a S-510 scanning electron microscope manufactured by Hitachi, Ltd., and a photograph is enlarged and copied to trace the outer shape of the fine particles and optionally 200 particles. Particles are painted black. This image is made by Nicolet Co., Ltd. Luzex 50
The Feret diameter in the horizontal direction of each particle was measured using a 0 type image analyzer, and the average value was taken as the average particle diameter.
The degree of variation in particle size was calculated by the following formula. Variability = (standard deviation of particle diameter / average particle diameter) × 10
0 (%)

【0022】[実施例1]滑剤として、平均粒子径0.
5μm、ばらつき度20%、面積形状係数80%のシリ
カを、シンジオタクチックポリスチレン(重量平均分子
量250,000)100重量部に対して0.5重量部
添加したポリマーチップと、滑剤の添加されていない前
記シンジオタクチックポリスチレンのポリマーチップを
重量比で1対9の割合で混合した後、乾燥し、290℃
で溶融し、800μmのリップギャップのTダイから押
し出し、50℃の冷却ロールに靜電印荷法により密着・
冷却固化し、60μmの無定形シートを得た。該無定形
シートをまず金属ロールにより95℃に予熱し、表面温
度140℃のセラミックロールを用い縦方向に3倍延伸
した後冷却し、更に120℃の金属ロールを用い縦方向
に1.2倍延伸した。次いで、テンターでフィルムを1
10℃に予熱し、横方向に延伸温度120℃で2倍延伸
し、更に150℃で1.6倍延伸した後、260℃で1
0秒熱固定処理した。その後、220℃で3%横弛緩処
理した。得られたフィルムの厚みは5.3μmであり、
走行性、ハンドリング性が良好であった。得られたフィ
ルムの物性を表1に示す。
Example 1 As a lubricant, an average particle size of 0.
A polymer chip was prepared by adding 0.5 parts by weight of silica having 5 μm, a degree of variation of 20%, and an area shape factor of 80% to 100 parts by weight of syndiotactic polystyrene (weight average molecular weight 250,000), and a lubricant was added. The above syndiotactic polystyrene polymer chips were mixed at a weight ratio of 1: 9, dried, and dried at 290 ° C.
Melted and extruded from a T-die with a lip gap of 800 μm, and adhered to a cooling roll at 50 ° C by the electrostatic charge method.
It was cooled and solidified to obtain a 60 μm amorphous sheet. The amorphous sheet was first preheated to 95 ° C. with a metal roll, stretched 3 times in the longitudinal direction using a ceramic roll having a surface temperature of 140 ° C., and then cooled, and further 1.2 times in the longitudinal direction using a metal roll at 120 ° C. It was stretched. Then roll the film with a tenter.
Preheated to 10 ° C, stretched 2 times in the transverse direction at a stretching temperature of 120 ° C, further stretched 1.6 times at 150 ° C, and then stretched at 260 ° C for 1 time.
It was heat-set for 0 seconds. Then, a lateral relaxation treatment was performed at 220 ° C. for 3%. The thickness of the obtained film was 5.3 μm,
The runnability and handleability were good. Table 1 shows the physical properties of the obtained film.

【0023】[実施例2]縦延伸を140℃のセラミッ
クロールにおいて2.4倍延伸した後、一度冷却し、更
に120℃の金属ロールで1.5倍延伸した以外は、実
施例1と同様に行なった。得られたフィルムの厚みは
5.3μmであった。得られたフィルムの物性を表1に
示す。
[Example 2] Same as Example 1 except that the film was longitudinally stretched 2.4 times on a ceramic roll at 140 ° C, cooled once, and further stretched 1.5 times on a metal roll at 120 ° C. I went to. The thickness of the obtained film was 5.3 μm. Table 1 shows the physical properties of the obtained film.

【0024】[実施例3]テンターでフィルムを125
℃に予熱し、横方向に延伸温度120℃で2倍延伸し、
更に150℃で1.6倍延伸した以外は、実施例1と同
様に行なった。得られたフィルムの厚みは5.3μmで
あった。得られたフィルムの物性を表1に示す。
[Embodiment 3] The film is put to 125 with a tenter.
Preheated to ℃, and stretched in the transverse direction at a stretching temperature of 120 ℃ 2 times,
The procedure of Example 1 was repeated, except that the film was stretched 1.6 times at 150 ° C. The thickness of the obtained film was 5.3 μm. Table 1 shows the physical properties of the obtained film.

【0025】[比較例1]縦延伸143℃のセラミック
ロールにおいて2.4倍延伸した後冷却せず、更に12
0℃の金属ロールで1.5倍延伸した以外は実施例1と
同様に行なった。得られたフィルムの厚みは5.3μm
であった。得られたフィルムの物性を表1に示す。
[Comparative Example 1] Longitudinal stretching A ceramic roll having a temperature of 143 ° C. was stretched 2.4 times and then was not cooled.
The same procedure as in Example 1 was performed except that the film was stretched 1.5 times with a metal roll at 0 ° C. The thickness of the obtained film is 5.3 μm
Met. Table 1 shows the physical properties of the obtained film.

【0026】[比較例2]テンターでフィルムを130
℃に予熱し、横方向に延伸温度130℃で2倍延伸し、
更に150℃で1.6倍延伸した以外は、実施例1と同
様に行なった。得られたフィルムの厚みは5.3μmで
あった。得られたフィルムの物性を表1に示す。
[Comparative Example 2] 130 films were formed using a tenter.
Preheated to ℃, and then stretched in the transverse direction twice at a stretching temperature of 130 ℃,
The procedure of Example 1 was repeated, except that the film was stretched 1.6 times at 150 ° C. The thickness of the obtained film was 5.3 μm. Table 1 shows the physical properties of the obtained film.

【0027】[比較例3]滑剤として、平均粒子径0.
5μm、ばらつき度20%、面積形状係数80%のシリ
カを、シンジオタクチックポリスチレン(重量平均分子
量250,000)100重量部に対して0.5重量部
添加したポリマーチップと、滑剤の添加されていない前
記シンジオタクチックポリスチレンのポリマーチップを
重量比で1対9の割合で混合した後、乾燥し、290℃
で溶融し、800μmのリップギャップのTダイから押
し出し、50℃の冷却ロールに靜電印荷法により密着・
冷却固化し、48μmの無定形シートを得た。無定形シ
ートをまず金属ロールにより95℃に予熱し、表面温度
140℃のセラミックロールを用い縦方向に3倍延伸し
た。次いで、テンターでフィルムを120℃に予熱し、
横方向に延伸温度120℃で2倍延伸し、更に150℃
で1.5倍延伸した後、260℃で10秒熱固定処理し
た。その後、220℃で3%横弛緩処理した。得られた
フィルムの厚みは5.3μmであった。得られたフィル
ムの物性を表1に示す。
[Comparative Example 3] As a lubricant, an average particle diameter of 0.
A polymer chip was prepared by adding 0.5 parts by weight of silica having 5 μm, a degree of variation of 20%, and an area shape factor of 80% to 100 parts by weight of syndiotactic polystyrene (weight average molecular weight 250,000), and a lubricant was added. The above syndiotactic polystyrene polymer chips were mixed at a weight ratio of 1: 9, dried, and dried at 290 ° C.
Melted and extruded from a T-die with a lip gap of 800 μm, and adhered to a cooling roll at 50 ° C by the electrostatic charge method.
It was cooled and solidified to obtain a 48 μm amorphous sheet. The amorphous sheet was first preheated to 95 ° C. with a metal roll and stretched 3 times in the machine direction using a ceramic roll with a surface temperature of 140 ° C. Then preheat the film to 120 ° C with a tenter,
Stretched 2 times in the transverse direction at a stretching temperature of 120 ° C, then 150 ° C
Then, the film was stretched 1.5 times by heating at 260 ° C. and heat-set at 260 ° C. for 10 seconds. Then, a lateral relaxation treatment was performed at 220 ° C. for 3%. The thickness of the obtained film was 5.3 μm. Table 1 shows the physical properties of the obtained film.

【0028】[0028]

【表1】 [Table 1]

【0029】表1より、実施例1、2、3で得られたフ
ィルムはフィルム製造時のハンドリング性および厚み均
一性に優れ、且つ絶縁破壊電圧に優れたものであること
が分かる。一方、比較例1で得られたフィルムは平均屈
折率が1.581と小さく、ハンドリング性に劣る。比
較例2で得られたフィルムは複屈折の最大値と最小値の
差ΔnMAX −ΔnMIN が0.011と大きく、厚み均一
性に劣る。また、比較例3で得られたフィルムは平均屈
折率が1.591と大きく、やはり厚み均一性に劣る。
From Table 1, it can be seen that the films obtained in Examples 1, 2 and 3 are excellent in handling property and thickness uniformity during the production of the film, and also excellent in dielectric breakdown voltage. On the other hand, the film obtained in Comparative Example 1 has a small average refractive index of 1.581 and is inferior in handleability. The film obtained in Comparative Example 2 has a large difference Δn MAX −Δn MIN between the maximum and minimum values of birefringence of 0.011 and is inferior in thickness uniformity. In addition, the film obtained in Comparative Example 3 has a large average refractive index of 1.591 and is also inferior in thickness uniformity.

【0030】[0030]

【発明の効果】本発明のポリスチレン系フィルムは、上
述のように構成されており、ハンドリング性および厚み
均一性に優れ、且つ絶縁破壊電圧に優れるものである。
従って、本発明のポリスチレン系フィルムは、特にコン
デンサ用として有用であり、工業的価値は非常に大き
い。
EFFECT OF THE INVENTION The polystyrene film of the present invention is constructed as described above, and is excellent in handling property and thickness uniformity, and also excellent in dielectric breakdown voltage.
Therefore, the polystyrene film of the present invention is particularly useful for capacitors and has a great industrial value.

【図面の簡単な説明】[Brief description of drawings]

【図1】フィルムの平均屈折率および複屈折の測定方法
を説明するための図である。
FIG. 1 is a diagram for explaining a method for measuring an average refractive index and a birefringence of a film.

【符号の説明】[Explanation of symbols]

(F) …フィルム (1)(2)(3)(4)…測定用サンプル (F)… Films (1) (2) (3) (4)… Samples for measurement

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 シンジオタクチック構造を有するスチレ
ン系重合体からなり、複屈折の最大値ΔnMAX と最小値
ΔnMIN の差ΔnMAX −ΔnMIN が0.01以下であ
り、且つ平均屈折率が1.582以上1.590以下で
あることを特徴とするポリスチレン系フィルム。
1. A styrene-based polymer having a syndiotactic structure, wherein the difference Δn MAX −Δn MIN between the maximum value Δn MAX and the minimum value Δn MIN of birefringence is 0.01 or less, and the average refractive index is A polystyrene-based film having a thickness of 1.582 or more and 1.590 or less.
JP4304995A 1995-03-02 1995-03-02 Polystyrene film Expired - Lifetime JP3567516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4304995A JP3567516B2 (en) 1995-03-02 1995-03-02 Polystyrene film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4304995A JP3567516B2 (en) 1995-03-02 1995-03-02 Polystyrene film

Publications (2)

Publication Number Publication Date
JPH08238672A true JPH08238672A (en) 1996-09-17
JP3567516B2 JP3567516B2 (en) 2004-09-22

Family

ID=12653033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4304995A Expired - Lifetime JP3567516B2 (en) 1995-03-02 1995-03-02 Polystyrene film

Country Status (1)

Country Link
JP (1) JP3567516B2 (en)

Also Published As

Publication number Publication date
JP3567516B2 (en) 2004-09-22

Similar Documents

Publication Publication Date Title
US10438746B2 (en) Insulating film
US6974620B1 (en) Polyester film for heat-resistant capacitor, metallized film thereof, and heat-resistant film capacitor containing the same
JP5771068B2 (en) High insulation film
KR20000023234A (en) Biaxially-Oriented Polyester Film
US9617407B2 (en) Highly insulating film
JP3270135B2 (en) Syndiotactic polystyrene biaxially stretched film for condenser
JP3309933B2 (en) Polystyrene film
JP3567523B2 (en) Polystyrene film for capacitors
JPH0724911A (en) Syndyotactic polystyrene film
JP3491697B2 (en) Polystyrene film for capacitors
JPH08238672A (en) Polystyrene film
JP5629235B2 (en) High insulation film
JP5587534B2 (en) High insulation film
JP5378667B2 (en) High insulation film
JPH0665400A (en) Biaxially oriented syndiotactic polystyrene film
JPH07117187A (en) Polystyrene laminated film
JP2611425B2 (en) Method for producing low shrinkage polyester film
JP2002164251A (en) Polyester film for capacitor
JP2001328159A (en) Method for producing biaxially oriented film
KR100306326B1 (en) Syndiotactic Polystyrene-based Stretch Film
JPH0848008A (en) Laminated film and condenser using the same
JP5249531B2 (en) High insulation film
JPH11129327A (en) Biaxially drawn film
JPH0224113A (en) Biaxially oriented polyester film
JPH0839741A (en) Laminated film and capacitor using it

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040607

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

EXPY Cancellation because of completion of term