JPH08229320A - Metallic filter and its production - Google Patents

Metallic filter and its production

Info

Publication number
JPH08229320A
JPH08229320A JP3990795A JP3990795A JPH08229320A JP H08229320 A JPH08229320 A JP H08229320A JP 3990795 A JP3990795 A JP 3990795A JP 3990795 A JP3990795 A JP 3990795A JP H08229320 A JPH08229320 A JP H08229320A
Authority
JP
Japan
Prior art keywords
average particle
powder
metal filter
wire mesh
powder particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3990795A
Other languages
Japanese (ja)
Inventor
Kazuhiko Sonomoto
和彦 園元
Yasuo Sawano
泰夫 澤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP3990795A priority Critical patent/JPH08229320A/en
Publication of JPH08229320A publication Critical patent/JPH08229320A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)

Abstract

PURPOSE: To provide an inexpensive metallic filter having fine pores, excellent in filterability and high mechanical strength. CONSTITUTION: The metallic filter 3 is provided with a substrate 4 obtained by pressing down a wire-mesh of a tatami (rush mat) weave or MUSHIRO (straw mat) weave, a 1st powder sintered layer 5 formed by sintering a powder particle having relatively large average particle diameter at least on one side of the substrate 4 and a 2nd powder sintered layer 6 formed by sintering a powder particle having relatively small average particle diameter on the 1st powder sintered layer 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種油類、ガス類およ
び水の濾過に使用する金属フィルタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal filter used for filtering various oils, gases and water.

【0002】[0002]

【従来の技術】従来から、水の濾過にはその所望される
濾過性能によって一般濾過、精密濾過、限外濾過などの
各段階に分けられている。一般濾過とは別名砂濾過とい
い、5μm以上の粒子を濾過できる程度の性能が求めら
れ、精密濾過は0.1〜10μm程度の粒子の濾過をで
きる程度の性能が求められ、公園などの水として使用す
るため修景用水とも呼ばれている。またさらに微細な
0.001〜1μmの粒子を濾過できる限外濾過は手で
触れる程度の水とのことで親水用水と呼ばれている。従
来から精密濾過や限外濾過に使用されるフィルタとして
はステンレス焼結フィルタ、樹脂フィルタ、ステンレス
金網フィルタ等が用いられている。以上のうちステンレ
ス焼結フィルタは繊維状のステンレス鋼を焼結してその
繊維の積み重なりの間隙をフィルタの目とするものであ
り、これには長繊維をそのまま用いるものと長繊維をカ
ットして短繊維として用いる場合がある。
2. Description of the Related Art Conventionally, water filtration has been divided into stages such as general filtration, microfiltration and ultrafiltration according to the desired filtration performance. General filtration is also known as sand filtration, and it is required to have the ability to filter particles of 5 μm or more, and microfiltration is required to have the ability to filter particles of 0.1 to 10 μm. It is also called scenic water for use as. Further, ultrafiltration capable of filtering finer particles of 0.001 to 1 μm is water that can be touched by hand, and is called hydrophilic water. Conventionally, a stainless sintered filter, a resin filter, a stainless wire mesh filter or the like has been used as a filter used for microfiltration or ultrafiltration. Among the above, the stainless sintered filter is one in which fibrous stainless steel is sintered and the gaps of the stack of the fibers are the eyes of the filter. For this, long fibers are used as they are and long fibers are cut. It may be used as short fibers.

【0003】[0003]

【発明が解決しようとする課題】しかし上記の従来の各
種フィルタには次のような欠点があった。まず樹脂フィ
ルタでは強度、耐熱性が劣るという問題があり、用途に
よっては実用性に欠けるという難点があった。
However, the above-mentioned various conventional filters have the following drawbacks. First, the resin filter has a problem that it is inferior in strength and heat resistance, and there is a problem that it is not practical depending on the application.

【0004】またステンレス焼結フィルタについては金
型で成形するため製作し得る寸法に限界があるだけでな
く、フィルタとして使用する過程でフィルタ自体が厚い
ことによる逆洗い時の効率すなわち再生効率が悪いとい
う問題があり、また十分に薄膜化することができないと
いう問題があるほか、非常に高価であるという問題があ
った。さらにステンレス金網フィルタについては空孔径
を超微細にすることが困難であり、たとえ技術的に可能
であったとしても高価となり、工業的な適用が困難であ
るという問題があった。
Further, since the stainless sintered filter is molded with a mold, the size that can be manufactured is limited, and the efficiency of backwashing, that is, the regeneration efficiency is poor because the filter itself is thick in the process of being used as a filter. In addition to the problem that the film cannot be sufficiently thinned, there is a problem that it is very expensive. Further, it is difficult to make the pore diameter of the stainless wire mesh filter ultrafine, and even if it is technically possible, it becomes expensive, and there is a problem that industrial application is difficult.

【0005】したがって本発明は以上の従来技術におけ
る問題点に鑑みてなされたものであって、濾過性が良好
で機械的強度が大きくかつ安価で微細孔を有する金属フ
ィルタを提供することを目的とする。
Therefore, the present invention has been made in view of the above problems in the prior art, and an object of the present invention is to provide a metal filter having fine pores, which is excellent in filterability, has high mechanical strength, and is inexpensive. To do.

【0006】[0006]

【課題を解決するための手段】すなわち本発明は、畳織
りまたはむしろ織りの金網を圧下して得られる基板と、
前記基板の少なくとも片面に相対的に平均粒径が大きい
粉末粒子を焼結した第1の粉末焼結層と、前記第1の粉
末焼結層上に形成された相対的に平均粒径が小さい粉末
粒子を焼結した第2の粉末焼結層を有することを特徴と
する金属フィルタである。さらに本発明の金属フィルタ
の製造方法は、畳織りまたはむしろ織りの金網を圧下
し、その圧下された金網に相対的に平均粒径が大きな第
1の粉末粒子を塗布し、その上に相対的に平均粒径が小
さい第2の粉末粒子を塗布し、その後乾燥し焼結したこ
とにより、基板部と焼結層とからなる金属フィルタを製
造することを特徴とする。
That is, the present invention provides a substrate obtained by pressing down a tatami-woven or rather woven wire mesh, and
A first powder sintered layer obtained by sintering powder particles having a relatively large average particle size on at least one surface of the substrate, and a relatively small average particle size formed on the first powder sintered layer. A metal filter having a second powder sintered layer obtained by sintering powder particles. Further, in the method for manufacturing a metal filter of the present invention, a wire mesh of tatami or rather weave is pressed down, and the pressed wire mesh is coated with the first powder particles having a relatively large average particle size, and the first powder particles are relatively applied thereon. Is coated with the second powder particles having a small average particle diameter, and then dried and sintered to manufacture a metal filter including a substrate portion and a sintered layer.

【0007】以下本発明を詳述する。本発明にいう畳織
り金網には図1に示される平畳織り金網と図2に示され
る綾畳織り金網がある。平畳織り金網とは、縦線と横線
が一本づつ相互に交わっており、しかも縦線が横線より
も太く、その横線を互いに相接して並べたもので、畳表
の様な織り方による金網をいう(JIS G3555D
W)。また、綾畳織り金網とは、太い縦線と横線とで織
り、その横線を互いに相接して並べ、しかも縦線横線を
互いに2本以上づつ乗り越して交わらせたものをいう。
むしろ織りとは、縦に5本程度、横に6本程度の線をそ
れぞれ一括して織ったむしろ状の織り方をいい、図3に
は綾むしろ織りの例を示す。
The present invention will be described in detail below. The tatami-woven wire mesh referred to in the present invention includes the flat-woven wire mesh shown in FIG. 1 and the twill-woven wire mesh shown in FIG. A flat tatami woven wire mesh is one in which vertical lines and horizontal lines intersect with each other, and the vertical lines are thicker than the horizontal lines, and the horizontal lines are arranged adjacent to each other. Saying wire net (JIS G3555D
W). In addition, the twill tatami weave wire mesh is one in which thick vertical lines and horizontal lines are woven, the horizontal lines are arranged adjacent to each other, and two or more vertical lines are crossed over each other.
Rather, weaving means a rather weaving method in which about 5 lines in the vertical direction and about 6 lines in the horizontal direction are collectively woven, and FIG. 3 shows an example of twill weaving.

【0008】以上の畳織り金網、むしろ織り金網は平面
とほぼ直交する方向に網目が形成されている点で共通
し、通常の図4に示すような平織り金網(JIS G3
555PW)、綾織り金網(JIS G3555TW)
の網目が平面に形成されているのとは異なる。本発明に
おいてこのように平面とほぼ直交する方向に網目が形成
されている畳織り金網、むしろ織り金網を適用するのは
次の理由による。すなわち、通常の平織り金網または綾
織り金網は圧下率を大きくしても網目を微細化するのが
困難であるのに対し、畳織り金網またはむしろ織り金網
は平面とほぼ直交する方向に網目が形成されているため
に圧下率が小さくても容易に網目を微細化することが可
能であるからである。網目微細化の過程を図5に示す
が、平面とほぼ直交する方向に形成された網目が圧下率
の増大につれて微細化することが判る。通常の平織り金
網または綾織り金網は、同程度の圧下を施しても殆ど網
目は微細化しない。
The above-mentioned tatami woven wire mesh, rather, the woven wire mesh is common in that a mesh is formed in a direction substantially orthogonal to the plane, and a plain weave wire mesh (JIS G3 as shown in FIG.
555PW), twill wire mesh (JIS G3555TW)
The mesh is different from that formed in a plane. In the present invention, the reason why the tatami-woven wire mesh, in which the mesh is formed in the direction substantially orthogonal to the plane as described above, rather, the woven wire mesh is applied is as follows. That is, it is difficult for a normal plain weave wire mesh or a twill weave wire mesh to make the mesh finer even if the rolling reduction is increased, whereas a tatami weave wire mesh or rather a woven wire mesh has a mesh formed in a direction substantially orthogonal to the plane. This is because the mesh can be easily made finer even if the rolling reduction is small. FIG. 5 shows the process of making the mesh finer. It can be seen that the mesh formed in the direction substantially orthogonal to the plane becomes finer as the rolling reduction increases. In a normal plain weave wire mesh or a twill weave wire mesh, even if the same degree of reduction is applied, the mesh is hardly made fine.

【0009】本発明の場合に畳織りまたはむしろ織りの
金網を基板として用いる場合に圧下する際の圧下率は5
〜50%とするのが好ましい。圧下率が5%未満では圧
下による効果が実質的に認められず、圧下率が50%を
越える場合には圧下後に得られる金属フィルタを透過し
得る純水の水量すなわち透過水量が低くなり、フィルタ
としての使用後に逆洗いする再生処理が困難となる。
In the case of the present invention, when a tatami weave or rather a woven wire mesh is used as a substrate, the rolling reduction is 5
It is preferably about 50%. When the rolling reduction is less than 5%, the effect due to the rolling reduction is not substantially observed, and when the rolling reduction exceeds 50%, the amount of pure water that can pass through the metal filter obtained after the rolling reduction, that is, the amount of permeated water becomes low. As a result, it becomes difficult to perform a backwashing process after use.

【0010】本発明は以上のようにして得られた圧下さ
れた金網を基板部とし、少なくともその片面に粉末焼結
層を設けるが、その粉末粒子として相対的に平均粒径が
大きい第1の粉末粒子群の上に相対的に平均粒径が小さ
い第2の粉末粒子群を2種類の粉末粒子を用いる。焼結
層は基板部に比べ特にその表面で微細空孔であることが
要求されるが、単一平均粒度を有する粉末を用いる場合
は表面の必要孔径に合わせた粒度の粉末を用いる必要が
ある。この場合、確かに阻止率という点では効果がある
が、透過水量などの濾過効率としてみると粉末焼結層全
体が微細孔径であるために透過水量が低いものとなって
いた。また、微細孔を得るには粉末自体を微細なものと
する必要があり、比較的孔の大きな基板の片面に塗布す
る場合に基板の孔から反対側へ抜けてしまうために塗布
が困難であるといった問題点もあった。そこで本発明の
ように粒度の異なる2種類の粉末を用いると、基板部の
孔径から段階的に孔径が小さくなっていくため、透過水
量を減じることなく微細空孔がえやすい。そこで本発明
では焼結層を構成する粉末粒子として相対的に平均粒径
が大きい第1の粉末粒子群とその上に相対的に平均粒径
が小さい第2の粉末粒子群の2種の粉末粒子を用いるこ
ととした。なお、本発明では少なくとも2種の粉末群を
用いればよく、平均粒径の異なる3種、またはそれ以上
の粉末粒子群を用いてもよい。
According to the present invention, the rolled wire net obtained as described above is used as a substrate portion and a powder sintered layer is provided on at least one surface thereof. The powder particles have a relatively large average particle diameter. A second powder particle group having a relatively small average particle size is used on the powder particle group, and two types of powder particles are used. The sintered layer is required to have fine pores especially on the surface as compared with the substrate portion, but when using a powder having a single average particle size, it is necessary to use a powder having a particle size that matches the required pore size on the surface. . In this case, although it is certainly effective in terms of the rejection rate, the filtration efficiency such as the amount of permeated water was low because the whole powder sintered layer had a fine pore size. Further, in order to obtain fine pores, it is necessary to make the powder itself fine, and when applying to one side of a substrate with relatively large pores, the powder will escape from the holes of the substrate to the opposite side, making it difficult to apply. There was also a problem. Therefore, when two kinds of powders having different particle sizes are used as in the present invention, the pore diameter gradually decreases from the pore diameter of the substrate portion, and thus it is easy to form fine pores without reducing the amount of permeated water. Therefore, in the present invention, two kinds of powders, namely, a first powder particle group having a relatively large average particle size and a second powder particle group having a relatively small average particle size thereon are used as the powder particles constituting the sintered layer. It was decided to use particles. In the present invention, at least two powder groups may be used, and three or more powder particle groups having different average particle sizes may be used.

【0011】前記相対的に平均粒径の大きい第1の粉末
粒子群の平均粒径は5〜50μmが望ましく、また前記
相対的に平均粒径の小さい第2の粉末粒子群の平均粒径
は0.5〜10μmが望ましい。第1の粉末粒子の平均
粒径が5μm未満では塗布時に粉末が基板の編み目を抜
けて塗布が困難となり、50μmを越えると第2層目に
形成する粉末焼結層に用いられる粉末の粒径が大きいも
のしか使用できず、焼結後に必要な細孔径が得られな
い。第2の粉末粒子群の平均粒径が0.5μm未満では
粉末粒子の表面部の酸化の為焼結が困難であり、10μ
mを越えると焼結により必要とする細孔径が得られな
い。
The average particle size of the first powder particle group having a relatively large average particle size is preferably 5 to 50 μm, and the average particle size of the second powder particle group having a relatively small average particle size is 0.5-10 micrometers is desirable. If the average particle size of the first powder particles is less than 5 μm, the powder will pass through the stitches of the substrate during application, making it difficult to apply, and if it exceeds 50 μm, the particle size of the powder used in the powder sintered layer formed in the second layer. Can be used, and the required pore size cannot be obtained after sintering. If the average particle diameter of the second powder particle group is less than 0.5 μm, it is difficult to sinter because of the oxidation of the surface portion of the powder particles, and
If it exceeds m, the required pore size cannot be obtained by sintering.

【0012】図6に本発明の金属フィルタの断面模式図
を示すが、金属フィルタ3は圧下された畳織りまたはむ
しろ織りの金網よりなる基板4により機械的強度を得る
と共に圧力損失を減少させ、その基板4上に所望の空孔
径を有する粒径の大きい層5とその上に粒径の小さい層
6を形成することにより所定の濾過性能を有する金属フ
ィルタを得ることができる。
FIG. 6 shows a schematic cross-sectional view of the metal filter of the present invention. The metal filter 3 obtains mechanical strength and reduces pressure loss by the substrate 4 made of rolled tatami or rather woven wire mesh, By forming a layer 5 having a large particle size having a desired pore diameter on the substrate 4 and a layer 6 having a small particle size thereon, a metal filter having a predetermined filtering performance can be obtained.

【0013】前記粉末粒子としてステンレス鋼粉末をも
ちいれば、機械的強度、耐食性等の性能につき良好な金
属フィルタを得ることができる。前記粉末粒子としてC
uをもちいれば、機械的強度、耐食性が良好となりしか
も被処理物に対する殺菌性能をフィルタに付与すること
ができる。
If stainless steel powder is used as the powder particles, it is possible to obtain a metal filter having excellent mechanical strength and corrosion resistance. C as the powder particles
When u is used, mechanical strength and corrosion resistance are improved, and the filter can be provided with sterilization performance for the object to be treated.

【0014】本発明において、前記網目基板の孔径は5
〜100μm、前記粉末層の孔径は0.05〜5.0μmと
するのが好ましい。その様にすることにより金属フィル
タ全体として良好な機械的強度と濾過性能を同時に得る
ことができるからである。
In the present invention, the mesh substrate has a hole diameter of 5
˜100 μm, and the pore diameter of the powder layer is preferably 0.05 to 5.0 μm. By doing so, it is possible to obtain good mechanical strength and filtration performance at the same time for the metal filter as a whole.

【0015】本発明の金属フィルタの製造方法は畳織り
またはむしろ織りの金網を圧下し、その圧下された金網
に相対的に平均粒径が大きな第1の粉末粒子を塗布し、
その上に相対的に平均粒径が小さい第2の粉末粒子を塗
布し、その後乾燥し焼結することにより製造することが
できる。また畳織りまたはむしろ織りの金網を圧下し、
その圧下された金網に相対的に平均粒径が大きな第1の
粉末粒子を塗布し乾燥し焼結後、その上に相対的に平均
粒径が小さい第2の粉末粒子を塗布し、その後乾燥し焼
結することによっても製造することができる。
In the method for manufacturing a metal filter of the present invention, a wire mesh of tatami or weave is pressed down, and the pressed wire mesh is coated with first powder particles having a relatively large average particle size.
It can be manufactured by applying second powder particles having a relatively small average particle size thereon, followed by drying and sintering. Also, pressing down the tatami or rather weave wire mesh,
First powder particles having a relatively large average particle size are applied to the pressed wire net, dried and sintered, and then second powder particles having a relatively small average particle size are applied thereon, followed by drying. It can also be manufactured by sintering.

【実施例】以下本発明を実施例により、より詳細に説明
する。 (実施例1)厚さ0.4mmで#40/200メッシュの
平畳織りSUS316金網を圧下率30%でロール圧延
して厚さ0.28mm、網目径42μmの基板とした。この
基板上に1層目に平均粒径10μm、2層目に平均粒径
3μmの2種類のSUS316L粉末を1層目60μ
m、2層目30μmの合わせて90μm厚に塗布した。乾
燥後水素雰囲気中で1020℃、1時間焼結し粉末層を
形成し、本発明例1を得た。比較例として上記の2層の
焼結層の代わりに厚さ90μmの単層の焼結層を平均粒
径3μmと平均粒径10μmの粉末粒子を用いてそれぞ
れ形成し比較例1と比較例2を作製した。さらに従来例
として平均細孔径0.1μmで厚さ0.25mmの樹脂
フィルタを用いて各種フィルタについてフィルタ性能を
調査した。結果を図7に示す。なお図7において、阻止
率の評価方法は平均粒径0.117±0.01μmの樹
脂粒子を純水に懸濁し、濾過装置により濾過後の濾液の
濃度を分光光度計により分析し評価した。従って阻止率
100%とは濾過された液中には樹脂粒子がないことを
意味する。透過流束は阻止率と同じ樹脂粒子を用いクロ
スフロー方式の時間毎の単位時間当たりの濾過量を示
す。従来例の樹脂フィルタは本発明例に比べ阻止率は同
等であるが、透過流束で劣ることが分かる。また、平均
粒径3μmの比較例1は阻止率は本発明例と同等である
が、透過流束が樹脂フィルタ程度に劣っており、平均粒
径10μmの比較例2は透過流束は本発明例よりも大き
いが阻止率が80%台と低いことが分かる。
EXAMPLES The present invention will now be described in more detail with reference to examples. (Example 1) A flat-woven SUS316 wire mesh having a thickness of 0.4 mm and # 40/200 mesh was roll-rolled at a rolling reduction of 30% to obtain a substrate having a thickness of 0.28 mm and a mesh diameter of 42 μm. On this substrate, two kinds of SUS316L powder having an average particle size of 10 μm as the first layer and an average particle size of 3 μm as the second layer were used as the first layer of 60 μm.
The second layer of 30 μm was applied to a total thickness of 90 μm. After drying, it was sintered at 1020 ° C. for 1 hour in a hydrogen atmosphere to form a powder layer, and the present invention example 1 was obtained. As a comparative example, instead of the above-mentioned two sintered layers, a single sintered layer having a thickness of 90 μm was formed by using powder particles having an average particle diameter of 3 μm and an average particle diameter of 10 μm, respectively. Was produced. Furthermore, as a conventional example, the filter performance was investigated for various filters using a resin filter having an average pore diameter of 0.1 μm and a thickness of 0.25 mm. FIG. 7 shows the results. In FIG. 7, the rejection rate was evaluated by suspending resin particles having an average particle size of 0.117 ± 0.01 μm in pure water and analyzing the concentration of the filtrate after filtering with a filter with a spectrophotometer. Therefore, a rejection rate of 100% means that there are no resin particles in the filtered liquid. The permeation flux indicates the amount of filtration per unit time per time of the cross flow system using the resin particles having the same rejection rate. It can be seen that the resin filter of the conventional example has the same rejection rate as the example of the present invention, but is inferior in the permeation flux. Further, Comparative Example 1 having an average particle diameter of 3 μm has the same rejection ratio as that of the present invention, but the permeation flux is inferior to that of the resin filter, and Comparative Example 2 having an average particle diameter of 10 μm has the permeation flux of the present invention. Although it is larger than the example, it can be seen that the blocking rate is as low as 80%.

【0019】(実施例2)製造方法は実施例1と同じと
し、第1の粉末粒子として平均粒径20μmのSUS3
16L粉末を用い、その上に形成するSUS316Lの
第2の粉末粒子の平均粒径を3μm、6μm、10μm
とした場合の金属フィルタをそれぞれ本発明例2、本発
明例3、本発明例4として実施例1と同じようにフィル
タ性能を評価した結果を図8に示す。第2層目の平均粒
径が小さくなるにつれて透過流束は変わらないが阻止率
が上昇していることが分かる。
(Example 2) The manufacturing method is the same as in Example 1, and SUS3 having an average particle size of 20 μm is used as the first powder particles.
The average particle diameter of the second powder particles of SUS316L formed on 16L powder is 3 μm, 6 μm, and 10 μm.
FIG. 8 shows the results of evaluating the filter performance in the same manner as in Example 1 except that the metal filters in the above cases were Inventive Example 2, Inventive Example 3, and Inventive Example 4, respectively. It can be seen that as the average particle diameter of the second layer decreases, the permeation flux does not change, but the blocking rate increases.

【0018】[0018]

【発明の効果】以上のように本発明により得られる金属
フィルタによれば、畳織り金網を圧延して得られる基板
と、粉末を焼結して得られる相対的に微細な空孔径を有
する粉末層とからなるので基板により金属フィルタ全体
に機械的強度を与え、かつ粉末層の厚さを薄くすること
ができるため、圧力損失を最小限に抑えることが可能に
なる。
As described above, according to the metal filter obtained by the present invention, the substrate obtained by rolling the tatami-woven wire mesh and the powder having a relatively fine pore diameter obtained by sintering the powder. Since the substrate can provide mechanical strength to the entire metal filter and can reduce the thickness of the powder layer, the pressure loss can be minimized.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の金属フィルタの製造方法に適用され
る平畳織り金網の構造を示す斜視図である。
FIG. 1 is a perspective view showing a structure of a flat woven wire mesh applied to a method for manufacturing a metal filter of the present invention.

【図2】 本発明の金属フィルタの製造方法に適用され
る綾畳織り金網の構造を示す斜視図である。
FIG. 2 is a perspective view showing the structure of a twill weave wire mesh applied to the method for manufacturing a metal filter of the present invention.

【図3】 本発明の金属フィルタの製造方法に適用され
るむしろ織り金網の構造を示す斜視図である。
FIG. 3 is a perspective view showing the structure of a woven wire mesh applied to the method for manufacturing a metal filter of the present invention.

【図4】 従来の平織り金網の構造を示す斜視図であ
る。
FIG. 4 is a perspective view showing a structure of a conventional plain weave wire mesh.

【図5】 平畳織り金網に対する圧下により生じる変化
を示す斜視図であり、 (A)圧下しない状態を示す図である。 (B)圧下率30%の場合の状態を示す図である。 (C)圧下率40%の場合の状態を示す図である。 (D)圧下率50%の場合の状態を示す図である。
FIG. 5 is a perspective view showing a change caused by reduction of a flat-woven woven wire mesh, and (A) is a diagram showing a state in which no reduction is performed. (B) It is a figure which shows the state in case of a reduction rate of 30%. (C) It is a figure which shows the state in case of a reduction rate of 40%. It is a figure which shows the state at the time of (D) rolling reduction of 50%.

【図6】 本発明の一実施例の金属フィルタ断面の概略
構成を示す模式図である。
FIG. 6 is a schematic diagram showing a schematic configuration of a cross section of a metal filter according to an embodiment of the present invention.

【図7】 本発明の金属フィルタの特性を調査した結果
を従来の樹脂フィルタ及び比較例と比較して示す図であ
る。
FIG. 7 is a diagram showing the results of investigation of the characteristics of the metal filter of the present invention in comparison with a conventional resin filter and a comparative example.

【図8】 本発明の金属フィルタの特性を調査した結果
を示す図である。
FIG. 8 is a diagram showing the results of investigating the characteristics of the metal filter of the present invention.

【符号の説明】[Explanation of symbols]

3・・・金属フィルタ、4・・・基板、5,6・・・粉末層 3 ... Metal filter, 4 ... Substrate, 5, 6 ... Powder layer

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 畳織りまたはむしろ織りの金網を圧下し
て得られる基板と、前記基板の少なくとも片面に相対的
に平均粒径が大きい粉末粒子を焼結した第1の粉末焼結
層と、前記第1の粉末焼結層上に形成された相対的に平
均粒径が小さい粉末粒子を焼結した第2の粉末焼結層を
有することを特徴とする金属フィルタ。
1. A substrate obtained by pressing down a wire mesh of a tatami or weave, and a first powder sintered layer obtained by sintering powder particles having a relatively large average particle size on at least one surface of the substrate. A metal filter having a second powder sintered layer obtained by sintering powder particles having a relatively small average particle diameter formed on the first powder sintered layer.
【請求項2】 前記第1の粉末焼結層の粉末粒子の平均
粒径が5〜50μmである請求項1に記載の金属フィル
タ。
2. The metal filter according to claim 1, wherein the average particle diameter of the powder particles in the first powder sintered layer is 5 to 50 μm.
【請求項3】 前記第2の粉末焼結層の粉末粒子の平均
粒径が0.5〜10μmである請求項1または請求項2
に記載の金属フィルタ。
3. The average particle diameter of the powder particles of the second powder sintered layer is 0.5 to 10 μm.
The metal filter described in.
【請求項4】 前記基板の空孔径が5〜100μmであ
る請求項1〜請求項3のいずれかに記載の金属フィル
タ。
4. The metal filter according to claim 1, wherein the substrate has a pore size of 5 to 100 μm.
【請求項5】 前記基板の金網からの圧下率が5〜50
%である請求項1〜請求項4のいずれかに記載の金属フ
ィルタ。
5. The rolling reduction of the substrate from the wire mesh is 5 to 50.
%, The metal filter according to any one of claims 1 to 4.
【請求項6】 前記粉末焼結層の表面部の孔径が0.0
5〜5.0μmである請求項1〜請求項5のいずれかに記
載の金属フィルタ。
6. The pore size of the surface portion of the powder sintered layer is 0.0.
The metal filter according to any one of claims 1 to 5, which has a thickness of 5 to 5.0 µm.
【請求項7】 畳織りまたはむしろ織りの金網を圧下
し、その圧下された金網に相対的に平均粒径が大きな第
1の粉末粒子を塗布し、その上に相対的に平均粒径が小
さい第2の粉末粒子を塗布し、その後乾燥し焼結したこ
とを特徴とする金属フィルタの製造方法。
7. A tatami-woven or rather woven wire mesh is pressed down, and the pressed wire mesh is coated with first powder particles having a relatively large average particle size, on which a relatively small average particle size is applied. A method for producing a metal filter, which comprises applying second powder particles, then drying and sintering.
【請求項8】 畳織りまたはむしろ織りの金網を圧下
し、その圧下された金網に相対的に平均粒径が大きな第
1の粉末粒子を塗布し乾燥し焼結後、その上に相対的に
平均粒径が小さい第2の粉末粒子を塗布し、その後乾燥
し焼結したことを特徴とする請求項7に記載の金属フィ
ルタの製造方法。
8. A tatami-woven or rather woven wire mesh is pressed down, and the pressed wire mesh is coated with first powder particles having a relatively large average particle size, dried and sintered, and then relatively placed thereon. The method for producing a metal filter according to claim 7, wherein the second powder particles having a small average particle diameter are applied, and then dried and sintered.
【請求項9】 前記第1の粉末粒子の平均粒径が5〜5
0μmである請求項7または請求項8に記載の金属フィ
ルタの製造方法。
9. The average particle size of the first powder particles is 5 to 5
The method for producing a metal filter according to claim 7, wherein the metal filter has a thickness of 0 μm.
【請求項10】 前記第2の粉末粒子の平均粒径が0.
5〜10μmである請求項7〜請求項9のいずれかに記
載の金属フィルタの製造方法。
10. The average particle diameter of the second powder particles is 0.
It is 5-10 micrometers, The manufacturing method of the metal filter in any one of Claim 7-9.
JP3990795A 1995-02-28 1995-02-28 Metallic filter and its production Pending JPH08229320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3990795A JPH08229320A (en) 1995-02-28 1995-02-28 Metallic filter and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3990795A JPH08229320A (en) 1995-02-28 1995-02-28 Metallic filter and its production

Publications (1)

Publication Number Publication Date
JPH08229320A true JPH08229320A (en) 1996-09-10

Family

ID=12566034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3990795A Pending JPH08229320A (en) 1995-02-28 1995-02-28 Metallic filter and its production

Country Status (1)

Country Link
JP (1) JPH08229320A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030026549A (en) * 2001-09-26 2003-04-03 주식회사 미래소재 Manufacturing Method for Filter of Cars
CN104415591A (en) * 2013-09-05 2015-03-18 天津日望环境技术有限公司 Multi-layer metal sintering felt filtering disc

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030026549A (en) * 2001-09-26 2003-04-03 주식회사 미래소재 Manufacturing Method for Filter of Cars
CN104415591A (en) * 2013-09-05 2015-03-18 天津日望环境技术有限公司 Multi-layer metal sintering felt filtering disc
CN104415591B (en) * 2013-09-05 2019-04-05 天津日望环境技术有限公司 Integrated, multi-level metal sintering felt crosses filter dish

Similar Documents

Publication Publication Date Title
US5665479A (en) Sintered multilayer metal fiber web
US4655797A (en) Fine screen and fine screen stack, their use and process for the manufacture of fine screens
EP2340098B1 (en) Filter medium for particulate filtration
EP0970739A1 (en) Filter medium for air filters
EP1148926B1 (en) Layered filtering structure
CN108339413B (en) Preparation method of filtering and catalyzing integrated porous film
JPH08504692A (en) Porous sintered laminate containing metal fiber
US5102539A (en) Method of producing a membrane and a membrane for microfiltration, ultrafiltration, pervaporation or reverse osmosis of suspensions, emulsions and for gas separation
JPH07155520A (en) Metallic filter and its production
US20010037972A1 (en) Fluid separating device
JPH08229320A (en) Metallic filter and its production
JP3146837B2 (en) Metal filter and method for manufacturing the same
JPH09253431A (en) Metal membrane filter
JPH05253418A (en) Sintered type filter
JPH08229319A (en) Production of metallic filter
CN216170662U (en) Filter media construction
JPH1015321A (en) Production of metal filter
JP2007090231A (en) Metal fiber filter with pleat for molten polymer
JPH0724729B2 (en) Filtration material for cake formation filtration method
JPH07136428A (en) Production of metal filter
JP4138377B2 (en) Porous metal material for filters
JP2606925Y2 (en) Laminated filter media
KR100334158B1 (en) A sintering method for manufacturing filtering material by metal fiber
JPH07124426A (en) Precision laminated filter medium
JPH06114247A (en) Metallic separation membrane