JPH08229319A - Production of metallic filter - Google Patents

Production of metallic filter

Info

Publication number
JPH08229319A
JPH08229319A JP3531795A JP3531795A JPH08229319A JP H08229319 A JPH08229319 A JP H08229319A JP 3531795 A JP3531795 A JP 3531795A JP 3531795 A JP3531795 A JP 3531795A JP H08229319 A JPH08229319 A JP H08229319A
Authority
JP
Japan
Prior art keywords
powder
sintering
weave
substrate
tatami
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3531795A
Other languages
Japanese (ja)
Inventor
Kazuhiko Sonomoto
和彦 園元
Yasuo Sawano
泰夫 澤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP3531795A priority Critical patent/JPH08229319A/en
Publication of JPH08229319A publication Critical patent/JPH08229319A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To inexpensively obtain a metallic filter having fine pore size and featuring high accuracy by providing the above process with a stage for pressurizing powder prior to sintering after application of the powder in the case the metallic filter is produced by sintering the powder to a base plate obtd. by pressing down a wire net of a tatami (rush mat) weave or MUSHIRO (straw mat) weave. CONSTITUTION: The metallic filter to be used for filtration of various kinds of oils, gases and water is produced by forming the sintered layer of the metallic powder on at least one surface of the base plate obtd. by pressing down the wire net of the tatami (rush mat) weave or MUSHIRO (straw mat) weave. This process is provided with the stage for pressurizing the powder prior to sintering after the application of the powder. A plain woven wire net formed by intersecting one piece each of longitudinal wires and transverse wires with each other, forming the longitudinal wires larger in diameter than the transverse wires and lining up the transverse wires adjacent to each other or a twill woven wire net formed by weaving the net with the larger- sized longitudinal wires and the transverse wires, lining up the transverse wires adjacent to each other and intersecting the longitudinal wires and the transverse wires with each other in such a manner that >=2 pieces each pass over each other is used for the tatami weave wire net.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種油類、ガス類およ
び水の濾過に使用する金属フィルタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal filter used for filtering various oils, gases and water.

【0002】[0002]

【従来の技術】従来から、水の濾過にはその所望される
濾過性能によって一般濾過、精密濾過、限外濾過などの
各段階に分けられている。一般濾過とは別名砂濾過とい
い、5μm程度の粒子を濾過により取り除くことができ
る程度の性能が求められ、精密濾過は0.1〜10μm
程度の粒子の濾過をできる程度の性能が求められ、公園
などの水として使用するために修景用水とも呼ばれてい
る。またさらに微細な0.001〜1μmの粒子を濾過
できる限外濾過は手で触れる程度の水とのことで親水用
水と呼ばれている。従来から精密濾過や限外濾過に使用
されるフィルタとしてはステンレス焼結フィルタ、樹脂
フィルタ、ステンレス金網フィルタ等が知られている。
2. Description of the Related Art Conventionally, water filtration has been divided into stages such as general filtration, microfiltration and ultrafiltration according to the desired filtration performance. General filtration is also known as sand filtration, and it is required to have the ability to remove particles of about 5 μm by filtration.
It is also called scenic water for use as water in parks, etc., because it is required to have the ability to filter some particles. Further, ultrafiltration capable of filtering finer particles of 0.001 to 1 μm is water that can be touched by hand, and is called hydrophilic water. Conventionally, a stainless sintered filter, a resin filter, a stainless wire mesh filter and the like are known as filters used for microfiltration and ultrafiltration.

【0003】[0003]

【発明が解決しようとする課題】しかし上記の従来の各
種フィルタには次のような欠点があった。まず樹脂フィ
ルタは強度、耐熱性が劣るという問題があり、用途によ
っては実用性に欠けるという難点があった。
However, the above-mentioned various conventional filters have the following drawbacks. First, the resin filter has a problem that it is inferior in strength and heat resistance, and there is a problem that it is not practical depending on the application.

【0004】ステンレス焼結フィルタは繊維状のステン
レス鋼を焼結してその繊維の積み重なりの間隙をフィル
タの目とするものであり、これには長繊維をそのまま用
いるものと長繊維をカットして短繊維として用いる場合
がある。このようなステンレス焼結フィルタは金型で成
形するため製作し得る寸法に限界があるだけでなく、フ
ィルタとして使用する過程でフィルタ自体が厚いことに
よる逆洗い時の効率すなわち再生効率が悪いという問題
があり、また十分に薄膜化することができないという問
題があるほか、非常に高価であるという問題があった。
さらにステンレス金網フィルタについては針金を織るこ
とにより製造するために空孔径を超微細にすることが困
難であった。また、微細な孔径を有する金網が市販され
ているが使用する針金が微細径であり、織り方も難しい
ために高価であり、工業的な適用が困難であるという問
題があった。
A stainless sintered filter is one in which fibrous stainless steel is sintered and the gap between the fibers is used as a filter eye. For this, long fibers are used as they are or long fibers are cut. It may be used as short fibers. Since such a sintered stainless filter has a limit in the size that can be manufactured because it is molded with a mold, the efficiency of backwashing, that is, the regeneration efficiency is poor because the filter itself is thick in the process of being used as a filter. However, there is a problem that the film cannot be sufficiently thinned, and there is a problem that it is very expensive.
Further, since the stainless wire mesh filter is manufactured by weaving a wire, it is difficult to make the pore diameter ultrafine. Further, although wire nets having a fine hole diameter are commercially available, the wire used has a fine diameter and is expensive because the weaving is difficult, and there is a problem that industrial application is difficult.

【0005】[0005]

【課題を解決するための手段】本発明者らは、畳織り又
はむしろ織りの金網を圧下して得られる基板上に、前記
基板の少なくとも一方の面上に形成された金属粉末焼結
層とからなる金属フィルタが上記の従来技術の問題点を
解決できることを見いだした。本発明は上記の金属フィ
ルタを安定して製造できる手段を提供することを目的と
する。本発明の金属フィルタの製造方法は、畳織りまた
はむしろ織りの金網を圧下して得られた基板に粉末を焼
結して得られる金属フィルタの製造方法において、粉末
を塗布した後焼結前に加圧する工程を含むことである。
The present inventors have found that a metal powder sintered layer formed on at least one surface of the substrate is formed on a substrate obtained by pressing down a tatami-woven or rather woven wire mesh. It has been found that a metal filter consisting of can solve the above problems of the prior art. It is an object of the present invention to provide means for stably manufacturing the above metal filter. The method for producing a metal filter of the present invention is a method for producing a metal filter obtained by sintering powder on a substrate obtained by pressing down a wire mesh of tatami or weave, and after applying the powder and before sintering. It is to include a step of pressurizing.

【0006】本発明の製造方法にかかわる金属フィルタ
は主に一般濾過又は精密濾過に使用される。本発明にい
う畳織り金網には図1に示される平畳織り金網と図2に
示される綾畳織り金網がある。平畳織り金網とは、縦線
と横線が一本づつ相互に交わっており、しかも縦線が横
線よりも太く、その横線を互いに相接して並べたもの
で、畳表の様な織り方による金網をいう(JIS G3
555DW)。また、綾畳織り金網とは、太い縦線と横
線とで織り、その横線を互いに相接して並べ、しかも縦
線横線を互いに2本以上づつ乗り越して交わらせたもの
をいう。むしろ織りとは、縦に5本程度、横に6本程度
の線をそれぞれ一括して織ったむしろ状の織り方をい
い、図3には綾むしろ織りの例を示す。
The metal filter according to the manufacturing method of the present invention is mainly used for general filtration or microfiltration. The tatami-woven wire mesh referred to in the present invention includes the flat-woven wire mesh shown in FIG. 1 and the twill-woven wire mesh shown in FIG. A flat tatami woven wire mesh is one in which vertical lines and horizontal lines intersect with each other, and the vertical lines are thicker than the horizontal lines, and the horizontal lines are arranged adjacent to each other. Saying wire net (JIS G3
555 DW). In addition, the twill tatami weave wire mesh is one in which thick vertical lines and horizontal lines are woven, the horizontal lines are arranged adjacent to each other, and two or more vertical lines are crossed over each other. Rather, weaving means a rather weaving method in which about 5 lines in the vertical direction and about 6 lines in the horizontal direction are collectively woven, and FIG. 3 shows an example of twill weaving.

【0007】以上の畳織り金網、むしろ織り金網は平面
とほぼ直交する方向に網目が形成されている点で共通し
ており、金網の平面とほぼ直交する方向に網目が形成さ
れた他の織り方も本発明に含まれる。また図4に示すよ
うな通常の平織り金網(JIS G3555PW)、綾
織り金網(JIS G3555TW)の網目が金網の平
面に形成されているのとは異なる。
The above-mentioned tatami woven wire mesh, or rather, the woven wire mesh is common in that a mesh is formed in a direction substantially orthogonal to the plane, and other weaves having a mesh formed in a direction substantially orthogonal to the plane of the wire mesh. This is also included in the present invention. Further, the meshes of the ordinary plain weave wire mesh (JIS G3555PW) and twill weave wire mesh (JIS G3555TW) as shown in FIG. 4 are different from those formed on the plane of the wire mesh.

【0008】このように平面とほぼ直交する方向に網目
が形成されている畳織り金網、むしろ織り金網を適用す
るのは次の理由による。すなわち、通常の平織り金網ま
たは綾織り金網は圧下率を大きくしても網目を微細化す
るのが困難であるのに対し、畳織り金網またはむしろ織
り金網は平面とほぼ直交する方向に網目が形成されてい
るために圧下率が小さくても容易に網目を微細化するこ
とが可能であるからである。網目微細化の過程を図5に
示すが、平面とほぼ直交する方向に形成された網目が圧
下率の増大につれて微細化することが判る。通常の平織
り金網または綾織り金網は、同程度の圧下を施しても殆
ど網目は微細化しない。
The reason why the tatami woven wire mesh, in which the mesh is formed in the direction substantially orthogonal to the plane as described above, rather the woven wire mesh is applied, is as follows. That is, it is difficult for a normal plain weave wire mesh or a twill weave wire mesh to make the mesh finer even if the rolling reduction is increased, whereas a tatami weave wire mesh or rather a woven wire mesh has a mesh formed in a direction substantially orthogonal to the plane. This is because the mesh can be easily made finer even if the rolling reduction is small. FIG. 5 shows the process of making the mesh finer. It can be seen that the mesh formed in the direction substantially orthogonal to the plane becomes finer as the rolling reduction increases. In a normal plain weave wire mesh or a twill weave wire mesh, even if the same degree of reduction is applied, the mesh is hardly made fine.

【0009】以上の各場合に畳織りまたはむしろ織りの
金網を圧下する際の圧下率は5〜50%とするのが好ま
しい。圧下率が5%未満では圧下による効果が実質的に
認められず、圧下率が50%を越える場合には圧下後に
得られる金属フィルタを透過し得る純水の水量すなわち
透過水量が低くなり、フィルタとしての使用後に逆洗い
する再生処理が困難となる。
In each of the above cases, it is preferable that the reduction rate when the wire net of the tatami weave or rather the weave is reduced is 5 to 50%. When the rolling reduction is less than 5%, the effect due to the rolling reduction is not substantially observed, and when the rolling reduction exceeds 50%, the amount of pure water that can pass through the metal filter obtained after the rolling reduction, that is, the amount of permeated water becomes low. As a result, it becomes difficult to perform a backwashing process after use.

【0010】圧下された金網の孔径は5〜120μmと
するのが好ましい。ここで網目基板の孔径が5μmより
小さいと前記したように透過水量が非現実的に少なくな
り、実際の使用はできない。また孔径が120μmより
も大きいと基板上に形成する金属粉末焼結層の粉末が網
目から抜け出すことを防止するために粉末の粒径を大き
くする必要があり、粉末焼結層に求められる孔径が得ら
れない。また、金属粉末焼結層の孔径が5μmより大き
いと精密濾過用としては使用できず、またこの程度の孔
径であれば金網の圧延によっても得ることができるため
に粉末焼結層を形成する必要性がない。粉末焼結層は必
要とされる孔径にあわせて使用する粉末の平均粒径を決
めることができる。使用される粉末の平均粒径は3〜5
0μmである。
The hole diameter of the metal wire which has been pressed down is preferably 5 to 120 μm. Here, if the hole diameter of the mesh substrate is smaller than 5 μm, the amount of permeated water becomes unrealistically small as described above, and it cannot be actually used. If the pore size is larger than 120 μm, it is necessary to increase the particle size of the powder in order to prevent the powder of the metal powder sintered layer formed on the substrate from coming out of the mesh, and the pore size required for the powder sintered layer is I can't get it. Further, if the pore size of the metal powder sintered layer is larger than 5 μm, it cannot be used for microfiltration, and if the pore size is about this level, it can be obtained by rolling the wire mesh, so it is necessary to form the powder sintered layer. There is no nature. The powder sintered layer can determine the average particle size of the powder used according to the required pore size. The average particle size of the powder used is 3-5
0 μm.

【0011】前記基板としてオーステナイト系ステンレ
ス鋼を用い、粉末粒子として平均粒径3〜50μmのオ
ーステナイト系ステンレス鋼粉末をもちいれば、機械的
強度、耐食性等の性能につき良好な金属フィルタを得る
ことができる。粉末粒子の平均粒径が3μm未満では焼
結時に得られる孔径が微細になりすぎ除去できる粒径は
小さくなるが、透過水量が非現実的に少なくなるためで
ある。また平均粒径が50μmよりも大きいと焼結時に
得られる孔径が大きくなりすぎ、焼結後に圧延を加えて
も透過水量が小さくなるだけで必要とする孔径が得られ
にくい。前記粉末粒子としてCuをもちいれば、機械的
強度、耐食性が良好となりしかも被処理物に対する殺菌
性能をフィルタに付与することができる。
If austenitic stainless steel is used as the substrate and austenitic stainless steel powder having an average particle size of 3 to 50 μm is used as the powder particles, a metal filter having good performance such as mechanical strength and corrosion resistance can be obtained. it can. If the average particle size of the powder particles is less than 3 μm, the pore size obtained during sintering becomes too fine and the particle size that can be removed becomes small, but the amount of permeated water becomes unrealistically small. On the other hand, if the average particle size is larger than 50 μm, the pore size obtained at the time of sintering becomes too large, and even if rolling is performed after the sintering, the amount of permeated water becomes small and the required pore size cannot be obtained. When Cu is used as the powder particles, the mechanical strength and the corrosion resistance are improved, and the sterilization performance for the object to be treated can be imparted to the filter.

【0012】焼結層は基板部に比べ特にその表面部で微
細空孔であることが要求されるが、単一平均粒度を有す
る粉末を用いる場合は表面の必要孔径にあわせた粒度の
粉末を用いる必要がある。この場合、確かに阻止率とい
う点では効果があるが、透過水量などの濾過効率として
みると粉末焼結層全体が微細孔径であるために低いもの
となっていた。また、微細孔径を得るには粉末自体を微
細なものとする必要があり、比較的孔径の大きな基板の
片面に塗布する場合に基板の孔から反対側へぬけてしま
うために塗布が困難であるといった問題点もあった。そ
こで要求される濾過特性によっては前記基板部上に相対
的に平均粒度の大きい第1の粉末粒子からなる焼結層を
形成し、その上に相対的に平均粒径の小さい第2の粉末
粒子からなる焼結層を形成すれば、基板部の孔径から段
階的に孔径が小さくなっていくため、透過水量を減じる
ことなく微細空孔が得やすい。なお、要求される濾過特
性によってはさらに3層や4層の異なる平均粒径の粉末
を用いることもある。
The sintered layer is required to have fine pores particularly in the surface portion as compared with the substrate portion. When powder having a single average grain size is used, a powder having a grain size corresponding to the required pore diameter on the surface is used. Must be used. In this case, it is certainly effective in terms of the rejection rate, but the filtration efficiency such as the amount of permeated water was low because the entire powder sintered layer had a fine pore size. Further, in order to obtain a fine pore size, it is necessary to make the powder itself fine, and when applying to one side of a substrate having a relatively large pore size, it is difficult to apply because it penetrates from the hole of the substrate to the opposite side. There was also a problem. Depending on the filtering characteristics required therefor, a sintered layer composed of first powder particles having a relatively large average particle size is formed on the substrate portion, and second powder particles having a relatively small average particle size are formed thereon. If the sintered layer made of is formed, the pore diameter gradually decreases from the pore diameter of the substrate portion, and thus it is easy to obtain fine pores without reducing the amount of permeated water. Depending on the required filtration characteristics, powders having different average particle diameters of three layers or four layers may be used.

【0013】前記第1の粉末粒子は平均粒径は5〜50
μmが望ましく、また前記第2の粉末粒子の平均粒径は
0.5〜10μmが望ましい。第1の平均粒子が5μm
未満では塗布時に粉末が基板の編み目を抜けて塗布が困
難となり、50μmを超えると第2層に用いる粉末の粒
径が大きいものしか使用できず、焼結後に必要な細孔径
が得られない。第2の粉末粒子の平均粒径が0.5μm
未満では粉末粒子の表面部の酸化のために焼結が困難で
あり、10μmを超えると焼結により必要とする細孔径
が得られない。
The average particle size of the first powder particles is 5 to 50.
The average particle size of the second powder particles is preferably 0.5 to 10 μm. First average particle is 5 μm
If it is less than 50 μm, it becomes difficult to apply the powder because it passes through the stitches of the substrate. If it exceeds 50 μm, only the powder having a large particle diameter used in the second layer can be used, and the necessary pore diameter cannot be obtained after sintering. The average particle size of the second powder particles is 0.5 μm
If it is less than 10 μm, it is difficult to sinter due to the oxidation of the surface portion of the powder particles, and if it exceeds 10 μm, the required pore diameter cannot be obtained by sintering.

【0014】本発明の製造方法は、畳織り又はむしろ織
りの金網を圧下して得られた基板に粉末を焼結して得ら
れる金属フィルタを製造する方法において、粉末を塗布
した後に加圧する工程を含むことを特徴とする。また上
記の加圧においては圧下率は粉末塗布層の厚さに対して
5〜20%であることを特徴とする。粉末を塗布した後
に加圧を行うことにより、粉末の厚さが均一になり部分
的に焼結層の厚さが異なることもなく、さらに粉末同士
の接触面積が増すことにより焼結効率が向上する。
The manufacturing method of the present invention is a method for manufacturing a metal filter obtained by sintering powder on a substrate obtained by pressing down a wire net of tatami or weave, and applying pressure after applying the powder. It is characterized by including. Further, in the above pressurization, the reduction rate is 5 to 20% with respect to the thickness of the powder coating layer. By applying pressure after applying the powder, the thickness of the powder becomes uniform and the thickness of the sintered layer does not differ partially, and the contact area between the powders increases and the sintering efficiency improves. To do.

【0015】水などの濾過用として使用される場合には
特に表面部の微細な孔径が必要とされ、内部の孔径につ
いては特に微細である必要はなく、逆に内部の孔径が微
細な場合には、透過水量が減少することにより濾過効率
の低下や逆洗時透過する水量が減少し、逆洗効率が低下
するために内部の孔径は微細でない方がよい。そのため
に表面部の孔径減少効果はあるが内部の孔径に影響の少
ない5〜20%の低圧下率とした。圧下率が5%より小
さいと表面部の孔径の減少効果が少なく、圧下率が20
%より大きいと内部まで圧下され、透過水量が減少し濾
過効率が低下し、又逆洗時の透過水量も低下し逆洗効率
が低下する。さらに焼結工程の後に圧下率5〜50%で
圧下することによりさらに表面部の孔径を微細にするこ
とができる。圧下率が5%より小さいと表面部の孔径の
減少効果が少なく、圧下率が50%より大きいと内部ま
で圧下され、透過水量が減少し濾過効率が低下し、又逆
洗時の透過水量も低下し逆洗効率が低下する。
When it is used for filtering water or the like, a fine pore diameter on the surface is particularly required, and it is not necessary for the inner pore diameter to be particularly fine. On the contrary, when the inner pore diameter is fine. It is preferable that the inner pore diameter is not fine because the reduction of the amount of permeated water lowers the filtration efficiency and the amount of water permeated during backwashing decreases, and the backwashing efficiency decreases. Therefore, the low-pressure reduction ratio of 5 to 20% has the effect of reducing the pore diameter of the surface portion but has little effect on the pore diameter inside. If the rolling reduction is less than 5%, the effect of reducing the pore diameter of the surface portion is small, and the rolling reduction is 20%.
If it is larger than 0.1%, the amount of permeated water is reduced to lower the filtration efficiency, and the amount of permeated water at the time of backwashing is also lowered to lower the backwashing efficiency. Further, after the sintering step, the pore diameter of the surface portion can be made finer by rolling at a rolling reduction of 5 to 50%. If the rolling reduction is less than 5%, the effect of reducing the pore diameter of the surface is small, and if the rolling reduction is more than 50%, it is reduced to the inside, the permeated water amount is reduced, the filtration efficiency is reduced, and the permeated water amount during backwashing is also reduced. As a result, the backwash efficiency decreases.

【0016】[0016]

【実施例】以下本発明を実施例により、より詳細に説明
する。 (実施例1)厚さ0.4mmで#40/200メッシュの
平畳織りSUS316L金網を圧下率30%でロール圧
延して厚さ0.28mm、網目径42μmの基板を得た。平
均粒度10μmのSUS316L粉末と水とを混合し前
記基板上に60μm厚に塗布した。乾燥後、5%、15
%、30%の圧下率で加圧した後に真空雰囲気中で99
0℃、2時間焼結することによりそれぞれ本発明の実施
例1、2、3が得られた。
EXAMPLES The present invention will now be described in more detail with reference to examples. (Example 1) A flat-woven SUS316L wire net having a thickness of 0.4 mm and a # 40/200 mesh was roll-rolled at a rolling reduction of 30% to obtain a substrate having a thickness of 0.28 mm and a mesh diameter of 42 μm. SUS316L powder having an average particle size of 10 μm was mixed with water and coated on the substrate to a thickness of 60 μm. After drying, 5%, 15
%, 30% and then 99% in a vacuum atmosphere after pressurizing.
Examples 1, 2, and 3 of the present invention were obtained by sintering at 0 ° C. for 2 hours.

【0017】また厚さ0.4mmで#40/200メッシ
ュの平畳織りSUS316L金網を圧下率40%でロー
ル圧延して厚さ0.28mm、網目径42μmの基板を得
た。平均粒度12μmのSUS316L粉末と水とを混
合し基板上に60μm厚に塗布した。乾燥後、平均粒度
5μmのSUS316L粉末を水と混合し前記粉末上3
0μm厚さで塗布した。乾燥後90μm厚さに対し圧下
率5%で加圧を行い厚さ85.5μmの粉末層厚さとし
た後、水素雰囲気中で930℃、1時間焼結することに
より本発明の実施例4を得た。比較例として他の製造条
件は実施例1と同一として焼結前に加圧を行わない場合
の金属フィルタを比較例1とする。さらに従来のフィル
タとして公称細孔径0.5μm、厚さ0.27mmの樹
脂フィルタを従来例1とした。
A flat woven SUS316L wire net having a thickness of 0.4 mm and # 40/200 mesh was roll-rolled at a rolling reduction of 40% to obtain a substrate having a thickness of 0.28 mm and a mesh diameter of 42 μm. SUS316L powder having an average particle size of 12 μm and water were mixed and coated on a substrate to a thickness of 60 μm. After drying, SUS316L powder having an average particle size of 5 μm was mixed with water and mixed on the powder 3 times.
It was applied to a thickness of 0 μm. After drying, a pressure of 5% was applied to the thickness of 90 μm to obtain a powder layer thickness of 85.5 μm, which was then sintered in a hydrogen atmosphere at 930 ° C. for 1 hour to obtain Example 4 of the present invention. Obtained. As a comparative example, the other manufacturing conditions are the same as in Example 1, and a metal filter in the case where no pressure is applied before sintering is referred to as Comparative Example 1. Further, as a conventional filter, a resin filter having a nominal pore diameter of 0.5 μm and a thickness of 0.27 mm is referred to as Conventional Example 1.

【0018】上記の実施例1、2、3、4と比較例1及
び従来例1のそれぞれの金属フィルタについてフィルタ
性能の評価として、阻止率、透過水量及び透過流束に関
して評価を行った。その結果を図6および表1に示す。
阻止率の評価方法は0.506μm±0.01μmの樹
脂粒子を純水に懸濁し、濾過装置により濾過前の懸濁液
と濾過された懸濁液の濃度を分光光度計により分析し評
価した。従って阻止率100%とは濾過された液中には
樹脂粒子がないことを意味する。透過水量を純水を1
9.6×104Paで濾過したときの単位時間の水量を
示す。透過流束は阻止率と同じ樹脂粒子を用いクロスフ
ロー方式の時間毎の単位時間当たりの濾過水量を示す。
As the evaluation of the filter performance of each of the metal filters of Examples 1, 2, 3 and 4 and Comparative Example 1 and Conventional Example 1, the rejection rate, the amount of permeated water and the permeation flux were evaluated. The results are shown in FIG. 6 and Table 1.
The blocking rate was evaluated by suspending 0.506 μm ± 0.01 μm resin particles in pure water and analyzing the concentrations of the suspension before filtration and the filtered suspension by a spectrophotometer using a filtration device. . Therefore, a rejection rate of 100% means that there are no resin particles in the filtered liquid. The amount of permeated water is 1
The amount of water per unit time when filtered at 9.6 × 10 4 Pa is shown. The permeation flux indicates the amount of filtered water per unit time for each time of the cross flow system using the same resin particles as the rejection rate.

【0019】[0019]

【表1】 [Table 1]

【0020】図6および表1より本発明に係わる金属フ
ィルタは従来の樹脂フィルタと比較して、阻止率はいず
れも100%であるが、透過水量及び透過流束に優れて
いる事が分かる。さらに本発明フィルタは比較フィルタ
に比較して透過水量は低いが阻止率が高いことが分か
る。
It can be seen from FIG. 6 and Table 1 that the metal filter according to the present invention has 100% rejection rate as compared with the conventional resin filter, but is superior in permeated water amount and permeation flux. Further, it can be seen that the filter of the present invention has a lower amount of permeated water but a higher blocking rate than the comparative filter.

【0021】(実施例2)厚さ0.4mmで#40/20
0メッシュの平畳織りSUS316L金網を圧下率40
%でロール圧延して厚さ0.24mm、網目径42μmの基
板を得た。平均粒度12μmのSUS316L粉末と水
とを混合し基板上に60μm厚に塗布した。乾燥後、圧
下率10%で圧延を行い厚さ54μmの粉末層を得た。
さらに平均粒度3μmのSUS316L粉末を水と混合
し前記粉末上30μm厚さで塗布した。乾燥後、水素雰
囲気中で930℃、1時間焼結することにより本発明の
実施例5を得た。厚さ0.4mmで#40/200メッシ
ュの平畳織りSUS316L金網を圧下率40%でロー
ル圧延して厚さ0.28mm、網目径42μmの基板を得
た。平均粒度10μmのSUS316L粉末と水とを混
合し基板上に60μm厚に塗布した。乾燥後、圧下率5
%で圧延を行い厚さ57μmの粉末層を得た。さらに平
均粒度3μmのSUS316L粉末を水と混合し前記粉
末上に30μm厚さで塗布した。乾燥後、圧下率5%で
圧延を行った後水素雰囲気中で930℃、1時間焼結す
ることにより本発明の実施例6を得た。さらに従来のフ
ィルタとして公称細孔径0.5μm、厚さ0.27mm
の樹脂フィルタを従来例1とした。
(Example 2) # 40/20 with a thickness of 0.4 mm
0 mesh flat weave SUS316L wire mesh with a reduction rate of 40
% To obtain a substrate having a thickness of 0.24 mm and a mesh diameter of 42 μm. SUS316L powder having an average particle size of 12 μm and water were mixed and coated on a substrate to a thickness of 60 μm. After drying, rolling was performed at a rolling reduction of 10% to obtain a powder layer having a thickness of 54 μm.
Further, SUS316L powder having an average particle size of 3 μm was mixed with water and coated on the powder to a thickness of 30 μm. After drying, sintering was performed in a hydrogen atmosphere at 930 ° C. for 1 hour to obtain Example 5 of the present invention. A flat woven SUS316L wire net having a thickness of 0.4 mm and a # 40/200 mesh was roll-rolled at a rolling reduction of 40% to obtain a substrate having a thickness of 0.28 mm and a mesh diameter of 42 μm. SUS316L powder having an average particle size of 10 μm was mixed with water and applied on a substrate to a thickness of 60 μm. After drying, the reduction rate is 5
% To obtain a powder layer having a thickness of 57 μm. Further, SUS316L powder having an average particle size of 3 μm was mixed with water and coated on the powder to a thickness of 30 μm. After drying, rolling was performed at a rolling reduction of 5%, and then sintering was performed at 930 ° C. for 1 hour in a hydrogen atmosphere, to obtain Example 6 of the present invention. Furthermore, as a conventional filter, the nominal pore diameter is 0.5 μm and the thickness is 0.27 mm.
The resin filter of No. 1 is referred to as Conventional Example 1.

【0022】実施例5、6、従来例1のそれぞれの金属
フィルタについてフィルタ性能の評価として、阻止率、
透過水量及び透過流束に関して評価を行った。その結果
を図7および表2に示す。阻止率の評価方法は平均粒子
径0.117μmの樹脂粒子を純水に懸濁し、濾過装置
により濾過前の懸濁液と濾過された懸濁液の濃度を分光
光度計により分析し評価した。従って阻止率100%と
は濾過された液中には樹脂粒子がないことを意味する。
透過水量を純水を19.6×104Paで濾過したとき
の単位時間の水量を示す。透過流束は阻止率と同じ樹脂
粒子を用いクロスフロー方式の時間毎の単位時間当たり
の濾過水量を示す。
The filter performances of the metal filters of Examples 5 and 6 and Conventional Example 1 were evaluated as follows.
The amount of permeated water and the permeation flux were evaluated. The results are shown in FIG. 7 and Table 2. As a method of evaluating the rejection rate, resin particles having an average particle diameter of 0.117 μm were suspended in pure water, and the concentrations of the suspension before filtration and the filtered suspension were analyzed by a spectrophotometer and evaluated. Therefore, a rejection rate of 100% means that there are no resin particles in the filtered liquid.
The amount of permeated water is the amount of water per unit time when pure water is filtered at 19.6 × 10 4 Pa. The permeation flux indicates the amount of filtered water per unit time for each time of the cross flow system using the same resin particles as the rejection rate.

【0023】[0023]

【表2】 [Table 2]

【0024】図7および表2より本発明に係わる金属フ
ィルタは従来の樹脂フィルタと比較して、阻止率はいず
れも100%であるが、透過水量及び透過流束に優れて
いる事が分かる。このため金属フィルタは金属の長寿命
とともに、装置のコンパクト化が可能となる。
It can be seen from FIG. 7 and Table 2 that the metal filter according to the present invention has a rejection rate of 100% as compared with the conventional resin filter, but is superior in the amount of permeated water and the permeation flux. For this reason, the metal filter allows the metal to have a long life and enables the device to be made compact.

【0025】[0025]

【発明の効果】以上のように本発明の金属フィルタの製
造方法は、畳織り金網を圧延して得られる基板と、粉末
を焼結して得られる微細な空孔径を有する粉末層とから
なる金属フィルタを表面部の微細な孔径の精度良く安価
に製造できる。
As described above, the method for producing a metal filter of the present invention comprises a substrate obtained by rolling a tatami-woven wire mesh and a powder layer having a fine pore diameter obtained by sintering powder. The metal filter can be manufactured at a low cost with a fine pore size on the surface.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の金属フィルタの製造方法に適用される
平畳織り金網の構造を示す斜視図である。
FIG. 1 is a perspective view showing a structure of a flat-woven woven wire mesh applied to a method for manufacturing a metal filter of the present invention.

【図2】本発明の金属フィルタの製造方法に適用される
綾畳織り金網の構造を示す斜視図である。
FIG. 2 is a perspective view showing the structure of a twill weave wire mesh applied to the method for manufacturing a metal filter of the present invention.

【図3】本発明の金属フィルタの製造方法に適用される
むしろ織り金網の構造を示す斜視図である。
FIG. 3 is a perspective view showing the structure of a woven wire mesh applied to the method for manufacturing a metal filter of the present invention.

【図4】従来の平織り金網の構造を示す斜視図である。FIG. 4 is a perspective view showing a structure of a conventional plain weave wire mesh.

【図5】平畳織り金網に対する圧下により生じる変化を
示す斜視図であり、 (A) 圧下しない状態を示す図である。 (B) 圧下率30%の場合の状態を示す図である。 (C) 圧下率40%の場合の状態を示す図である。 (D) 圧下率50%の場合の状態を示す図である。
FIG. 5 is a perspective view showing a change caused by rolling down a flat-woven woven wire mesh, and (A) is a diagram showing a state without rolling down. (B) It is a figure which shows the state in case of a reduction rate of 30%. (C) It is a figure which shows the state at the time of a rolling reduction of 40%. (D) It is a figure which shows the state in case of a reduction rate of 50%.

【図6】各種金属フィルタの特性を調査した図である。FIG. 6 is a diagram in which the characteristics of various metal filters are investigated.

【図7】各種金属フィルタの特性を調査した図である。FIG. 7 is a diagram in which the characteristics of various metal filters are investigated.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 畳織りまたはむしろ織りの金網を圧下し
て得られた基板に粉末を焼結して得られる金属フィルタ
の製造方法において、粉末を塗布した後焼結前に加圧す
る工程を含むことを特徴とする金属フィルタの製造方
法。
1. A method of manufacturing a metal filter obtained by sintering powder to a substrate obtained by pressing down a wire mesh of a tatami or weave, including a step of applying powder and then applying pressure before sintering. A method of manufacturing a metal filter, comprising:
【請求項2】 畳織りまたはむしろ織りの金網を圧下し
て得られた基板に粉末を焼結して得られる金属フィルタ
の製造方法において、粉末を塗布した後焼結前に粉末塗
布厚さに対して圧下率5〜20%で加圧する工程を含む
ことを特徴とする請求項1に記載の金属フィルタの製造
方法。
2. A method for producing a metal filter obtained by sintering powder on a substrate obtained by pressing down a wire mesh of a tatami or weave, and applying a powder to a powder coating thickness after coating the powder. The method for producing a metal filter according to claim 1, further comprising the step of pressurizing at a reduction rate of 5 to 20%.
【請求項3】 畳織りまたはむしろ織りの金網を圧下し
て基板を形成する第1の加圧工程、前記基板上に粉末を
塗布する粉末塗布工程、粉末塗布後の基板を粉末塗布厚
さに対して圧下率5〜20%で加圧する第2の加圧工
程、粉末を焼結する焼結工程よりなることを特徴とする
請求項2に記載の金属フィルタの製造方法。
3. A first pressurizing step of forming a substrate by pressing down a wire mesh of a tatami or weave, a powder applying step of applying powder on the substrate, and a powder applied thickness of the substrate after powder applying. The method for producing a metal filter according to claim 2, further comprising a second pressing step of pressing at a reduction rate of 5 to 20% and a sintering step of sintering the powder.
【請求項4】 畳織りまたはむしろ織りの金網を圧下し
て基板を形成する第1の加圧工程、前記基板上に第1の
粉末を塗布する第1の粉末塗布工程、前記第1の粉末上
に前記第1の粉末よりも平均粒径の小さい第2の粉末を
塗布する第2の粉末塗布工程、粉末塗布後の基板を粉末
塗布厚さに対して圧下率5〜20%で加圧する第2の加
圧工程、粉末を焼結する焼結工程よりなることを特徴と
する請求項2に記載の金属フィルタの製造方法。
4. A first pressurizing step of forming a substrate by pressing down a wire mesh of tatami or weave, a first powder applying step of applying a first powder on the substrate, and the first powder. A second powder applying step of applying a second powder having an average particle size smaller than that of the first powder, and pressing the substrate after the powder applying at a reduction rate of 5 to 20% with respect to the powder applied thickness. The method for producing a metal filter according to claim 2, comprising a second pressurizing step and a sintering step of sintering the powder.
【請求項5】 前記第1の粉末塗布工程の後に、粉末塗
布厚さに対して圧下率5〜20%で加圧した後に前記第
1の粉末よりも平均粒径の小さい第2の粉末を塗布する
第2の粉末塗布工程を行うことを特徴とする請求項4に
記載の金属フィルタの製造方法。
5. After the first powder coating step, a second powder having an average particle size smaller than that of the first powder is applied after pressing at a reduction rate of 5 to 20% with respect to the powder coating thickness. The method for manufacturing a metal filter according to claim 4, wherein a second powder coating step of coating is performed.
【請求項6】 前記第2の粉末塗布工程の前に、第1の
粉末を焼結する焼結工程を行うことを特徴とする請求項
4又は5に記載の金属フィルタの製造方法。
6. The method for producing a metal filter according to claim 4, wherein a sintering step of sintering the first powder is performed before the second powder coating step.
【請求項7】 前記請求項1乃至請求項6のいづれかに
記載の製造方法において焼結後さらに圧下率5〜50%
で加圧することを特徴とする金属フィルタの製造方法。
7. The manufacturing method according to claim 1, further comprising a reduction rate of 5 to 50% after sintering.
A method for producing a metal filter, which comprises pressurizing with a metal.
JP3531795A 1995-02-23 1995-02-23 Production of metallic filter Pending JPH08229319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3531795A JPH08229319A (en) 1995-02-23 1995-02-23 Production of metallic filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3531795A JPH08229319A (en) 1995-02-23 1995-02-23 Production of metallic filter

Publications (1)

Publication Number Publication Date
JPH08229319A true JPH08229319A (en) 1996-09-10

Family

ID=12438439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3531795A Pending JPH08229319A (en) 1995-02-23 1995-02-23 Production of metallic filter

Country Status (1)

Country Link
JP (1) JPH08229319A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140072289A (en) * 2012-11-29 2014-06-13 동양하이테크산업주식회사 Process for preparing metal mesh fliter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140072289A (en) * 2012-11-29 2014-06-13 동양하이테크산업주식회사 Process for preparing metal mesh fliter

Similar Documents

Publication Publication Date Title
US5665479A (en) Sintered multilayer metal fiber web
JP5997818B2 (en) Sinter bonded porous metal coating
DE3332345C2 (en) Filter material made of metal mesh
US3327866A (en) Woven wire mesh
US3049796A (en) Perforate metal sheets
EP0561001B1 (en) Laminated filter medium, method of making said medium, and filter using said medium
JP3177512B2 (en) Metal filter
EP1148926B1 (en) Layered filtering structure
US7125440B2 (en) Composite structure for high efficiency hydrogen separation and its associated methods of manufacture and use
JP2007532778A (en) Method for producing sintered metal fiber
US20010037972A1 (en) Fluid separating device
JPH07155520A (en) Metallic filter and its production
JPH0724227A (en) Laminated filter made of wire net
JPH08229319A (en) Production of metallic filter
JPH09253431A (en) Metal membrane filter
JPH08229320A (en) Metallic filter and its production
JP3569682B2 (en) High corrosion resistance metal sintered filter
JP3146837B2 (en) Metal filter and method for manufacturing the same
JP2004089838A (en) Separation membrane module and its manufacturing method
JP3538212B2 (en) Precision laminated filter media
JPH1015321A (en) Production of metal filter
JP4138377B2 (en) Porous metal material for filters
JPH06114247A (en) Metallic separation membrane
KR100334158B1 (en) A sintering method for manufacturing filtering material by metal fiber
JPH0760035A (en) Metal filter and production thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040220

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040625