JPH0822900A - Electromagnet for charged particle accumulating ring - Google Patents

Electromagnet for charged particle accumulating ring

Info

Publication number
JPH0822900A
JPH0822900A JP6156245A JP15624594A JPH0822900A JP H0822900 A JPH0822900 A JP H0822900A JP 6156245 A JP6156245 A JP 6156245A JP 15624594 A JP15624594 A JP 15624594A JP H0822900 A JPH0822900 A JP H0822900A
Authority
JP
Japan
Prior art keywords
coils
magnetic poles
magnetomotive force
magnetic
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6156245A
Other languages
Japanese (ja)
Inventor
Yuji Tsutsui
裕士 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP6156245A priority Critical patent/JPH0822900A/en
Publication of JPH0822900A publication Critical patent/JPH0822900A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)
  • Electromagnets (AREA)

Abstract

PURPOSE:To provide a miniaturized charged particle accumulating ring which eliminates the need for arranging six-pole electromagnets alone by causing a quadrupole field and a six-pole field to simultaneously act on charged particles by means of only quadrupole electromagnets. CONSTITUTION:Four magnetic poles 1a-1d are arranged in four-turn rotation symmetry with respect to an electron orbit 10 with the center axis of each magnetic pole crossing at 45 deg. to a median plane (horizontal orbital plane). An electron orbit space 11 surrounded by the four magnetic poles 1a-1d is thus formed. Quadrupole field coils 2a-2d, and six-pole field coils 3a-3d are wound around the respective magnetic coils 1a-1d. In the case of use in a linear region till the magnetic saturation of the magnetic poles, the density of magnetic flux generated inside the electron orbit space 11 when currents are passed through the quadrupole field coils 2a-2d and the six-pole field coils 3a-3d simultaneously is equal to the density of the sum of magnetic flux generated when currents are passed through only the coils 2a-2d and that generated when currents are passed through only the coils 3a-3d.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、荷電粒子蓄積リング用
電磁石に関し、特に四極電磁石に関する。
FIELD OF THE INVENTION The present invention relates to an electromagnet for a charged particle storage ring, and more particularly to a quadrupole electromagnet.

【0002】[0002]

【従来の技術】図4(A)は、従来の電子蓄積リングの
一部を示す。電子軌道50に沿って図に示すように複数
の偏向電磁石B、四極電磁石Q、六極電磁石S、ステア
リング電磁石VHS、HS、VSが配置されている。
2. Description of the Related Art FIG. 4A shows a part of a conventional electron storage ring. A plurality of deflection electromagnets B, quadrupole electromagnets Q, hexapole electromagnets S, and steering electromagnets VHS, HS, VS are arranged along the electron trajectory 50 as shown in the figure.

【0003】偏向電磁石Bは、電子ビームの進行方向を
曲げ周回軌道を形成する。四極電磁石Qは電子ビームを
収束する。ステアリング電磁石は、電子ビームの設計軌
道からのずれを修正する。ステアリング電磁石HSは水
平方向のずれ、ステアリング電磁石VSは垂直方向のず
れ、ステアリング電磁石VHSは水平及び垂直方向のず
れを修正する。六極電磁石Sは、電子エネルギのばらつ
きによる不安定性を解消する。
The bending electromagnet B bends the traveling direction of the electron beam to form a circular orbit. The quadrupole electromagnet Q focuses the electron beam. The steering electromagnet corrects the deviation of the electron beam from the designed trajectory. The steering electromagnet HS corrects the horizontal deviation, the steering electromagnet VS corrects the vertical deviation, and the steering electromagnet VHS corrects the horizontal and vertical deviations. The sextupole electromagnet S eliminates instability due to variations in electron energy.

【0004】図4(B)は、四極電磁石の電子軌道に垂
直な断面を示す。電子軌道53が紙面に垂直な方向に形
成される。電子軌道53の周囲に、4本の磁極51が4
回回転対称に、かつ各磁極51の中心軸が電子軌道面
(図の水平方向)に対して45°の角度をなすように配
置されている。各磁極51には、それぞれコイル52が
巻かれている。
FIG. 4B shows a cross section perpendicular to the electron orbit of the quadrupole electromagnet. The electron orbit 53 is formed in the direction perpendicular to the paper surface. There are four magnetic poles 51 around the electron orbit 53.
The magnetic poles 51 are arranged in rotational symmetry so that the central axis of each magnetic pole 51 forms an angle of 45 ° with the electron orbital plane (horizontal direction in the drawing). A coil 52 is wound around each magnetic pole 51.

【0005】コイル52に、隣り合う磁極51が互いに
逆極性になるように電流を流す。4本の磁極51により
形成される磁場は、電子軌道53の位置では0である
が、図の水平軸上あるいは垂直軸上では、電子軌道53
からの距離に比例した大きさとなる。磁界の向きは、電
子軌道53の両側で反対向きになる。
A current is applied to the coil 52 so that the adjacent magnetic poles 51 have opposite polarities. The magnetic field formed by the four magnetic poles 51 is 0 at the position of the electron orbit 53, but the electron orbit 53 is on the horizontal axis or the vertical axis in the figure.
The size is proportional to the distance from. The directions of the magnetic fields are opposite on both sides of the electron orbit 53.

【0006】図4(C)は、六極電磁石の電子軌道に垂
直な断面を示す。電子軌道53の周囲に、6本の磁極5
4が6回回転対称に、かつ一対の対向する磁極54が電
子軌道面に対して垂直になるように配置されている。各
磁極54には、それぞれコイル55が巻かれている。
FIG. 4C shows a cross section perpendicular to the electron orbit of the sextupole electromagnet. 6 magnetic poles 5 around the electron orbit 53
4 is arranged so as to be 6-fold rotationally symmetrical, and the pair of opposed magnetic poles 54 are arranged perpendicular to the electron orbit plane. A coil 55 is wound around each magnetic pole 54.

【0007】コイル55に、隣り合う磁極54が互いに
逆極性になるように電流を流す。6本の磁極51により
形成される磁場は、電子軌道53の位置では0である
が、図の水平軸上では、電子軌道53からの距離の2乗
に比例した大きさとなる。磁場の向きは、電子軌道53
の両側で同じ向きとなる。
A current is applied to the coil 55 so that the adjacent magnetic poles 54 have opposite polarities. The magnetic field formed by the six magnetic poles 51 is 0 at the position of the electron orbit 53, but has a magnitude proportional to the square of the distance from the electron orbit 53 on the horizontal axis of the figure. The direction of the magnetic field is the electron orbit 53
Both sides have the same orientation.

【0008】[0008]

【発明が解決しようとする課題】上記説明のように、安
定な電子軌道を形成するために、電子ビームを収束する
ための四極電磁石と、電子エネルギのばらつきによる不
安定性を解消するための六極電磁石とを配置する必要が
ある。このため、特に小型の電子蓄積リングでは、各電
磁石の設置スペースの確保が問題になる。
As described above, in order to form a stable electron orbit, a quadrupole electromagnet for converging an electron beam and a hexapole for eliminating instability due to variations in electron energy. It is necessary to arrange with an electromagnet. Therefore, especially in a small-sized electron storage ring, securing a space for installing each electromagnet becomes a problem.

【0009】本発明の目的は、安定な電子軌道を形成す
るために必要な電磁石の数を減少し、小型の電子蓄積リ
ングを提供することである。
An object of the present invention is to reduce the number of electromagnets required to form a stable electron orbit and to provide a compact electron storage ring.

【0010】[0010]

【課題を解決するための手段】本発明の荷電粒子蓄積リ
ング用電磁石は、荷電粒子が通過する軌道空間の周囲に
4回回転対称状に配置された4つの磁極と、前記4つの
磁極のうち、所定の隣り合う一対の磁極に、該一対の磁
極が互いに逆極性になるように第1の強さの起磁力を発
生し、かつ、他の一対の磁極に、該他の一対の磁極がそ
れぞれ隣り合う前記一対の磁極と逆極性となるように、
前記第1の強さよりも所定量弱い第2の強さの起磁力を
発生するための起磁力発生手段とを含む。
An electromagnet for a charged particle storage ring according to the present invention has four magnetic poles arranged in a rotationally symmetrical manner four times around an orbital space through which charged particles pass, and among the four magnetic poles. , A predetermined pair of adjacent magnetic poles generates a magnetomotive force of the first strength so that the pair of magnetic poles have opposite polarities, and the other pair of magnetic poles has the other pair of magnetic poles. In order to have the opposite polarity to the pair of adjacent magnetic poles,
And a magnetomotive force generating means for generating a magnetomotive force having a second strength, which is weaker by a predetermined amount than the first strength.

【0011】[0011]

【作用】4つの磁極のうち所定の隣り合う一対の磁極に
発生する起磁力の強さをA+B、他の一対の磁極に発生
する起磁力の強さをA−B(A>B)とする。起磁力の
強さAの成分は、4つの磁極の隣り合う磁極が逆極性と
なるように働く。このため、起磁力の強さAの成分は四
極磁場成分を発生する。
The strength of the magnetomotive force generated in the predetermined pair of adjacent magnetic poles among the four magnetic poles is A + B, and the strength of the magnetomotive force generated in the other pair of magnetic poles is AB (A> B). . The component of the strength A of the magnetomotive force works so that adjacent magnetic poles of the four magnetic poles have opposite polarities. Therefore, the component of the magnetomotive force strength A generates a quadrupole magnetic field component.

【0012】起磁力の強さBの成分は、強さA+Bの起
磁力を発生する磁極においては、強さAの起磁力と同極
性の磁場を発生する。また、強さA−Bの起磁力を発生
する磁極においては、強さAの起磁力と逆極性の磁場を
発生する。すなわち、強さBの起磁力により一対の磁極
間及び他の一対の磁極間に発生する磁場の向きは同じ向
きになる。これは、二極磁場成分、六極磁場成分及びそ
れよりも高次の磁場成分を含む。六極磁場成分以外の磁
場成分が荷電粒子に与える影響は、ほぼ無視できる量か
または他のステアリング電磁石等で相殺できる。このた
め、六極磁場成分のみが有効に荷電粒子に作用する。
The component of the strength B of the magnetomotive force generates a magnetic field having the same polarity as the magnetomotive force of the strength A in the magnetic pole generating the magnetomotive force of the strength A + B. Further, in the magnetic pole that generates the magnetomotive force of the strength A-B, a magnetic field having the opposite polarity to the magnetomotive force of the strength A is generated. That is, the direction of the magnetic field generated between the pair of magnetic poles and the other pair of magnetic poles due to the magnetomotive force of the strength B is the same. This includes a dipole magnetic field component, a sextupole magnetic field component, and higher-order magnetic field components. The influence of the magnetic field components other than the sextupole magnetic field component on the charged particles can be canceled out by a substantially negligible amount or by another steering electromagnet or the like. Therefore, only the sextupole magnetic field component effectively acts on the charged particles.

【0013】このように、四極電磁石のみで、四極磁場
と六極磁場を同時に荷電粒子に作用させることができ
る。このため、単独の六極電磁石を配置する必要がな
く、荷電粒子蓄積リングを小型化、経済化することが可
能になる。
Thus, the quadrupole magnetic field and the sextupole magnetic field can simultaneously act on the charged particles using only the quadrupole electromagnet. For this reason, it is not necessary to dispose a single sextupole electromagnet, and the charged particle storage ring can be made compact and economical.

【0014】[0014]

【実施例】図1を参照して、本発明の実施例による四極
電磁石について説明する。図1(A)は、四極電磁石の
電子軌道に垂直な断面を示す。紙面に垂直な方向に電子
軌道10が形成される。電子軌道10は、図1(A)の
水平面内で周回軌道を形成する。以下、この水平な周回
軌道面をメディアンプレーンと呼ぶ。
EXAMPLE A quadrupole electromagnet according to an example of the present invention will be described with reference to FIG. FIG. 1A shows a cross section perpendicular to the electron orbit of the quadrupole electromagnet. The electron orbit 10 is formed in the direction perpendicular to the paper surface. The electron orbit 10 forms a circular orbit in the horizontal plane of FIG. Hereinafter, this horizontal orbital plane is called a median plane.

【0015】電子軌道10の回りに4つの磁極1a〜1
dが、電子軌道10を中心軸として4回回転対称に、か
つ各磁極の中心軸がメディアンプレーンに対して45°
に交わるように配置され、4つの磁極1a〜1dに囲ま
れた電子軌道空間11を形成している。各磁極1a〜1
dの電子軌道空間11に面する端部の反対側の端部は、
環状の磁性部材4によって相互に接続されており、磁路
を形成している。なお、実際の電子ビームは、理論上の
電子軌道10すなわち電子軌道空間11の中心点からわ
ずかにずれた位置を通過する。
Four magnetic poles 1a to 1 around the electron orbit 10.
d is rotationally symmetrical four times with the electron orbit 10 as the central axis, and the central axis of each magnetic pole is 45 ° with respect to the median plane.
And an electron orbit space 11 surrounded by four magnetic poles 1a to 1d. Each magnetic pole 1a-1
The end opposite to the end facing the electron orbit space 11 of d is
The magnetic members 4 are annularly connected to each other to form a magnetic path. The actual electron beam passes through a position slightly deviated from the theoretical electron orbit 10, that is, the center point of the electron orbit space 11.

【0016】各磁極1a〜1dには、それぞれ四極磁場
用コイル2a〜2d、及び六極磁場用コイル3a〜3d
が巻かれている。次に、このように構成された四極電磁
石によって発生する磁場について説明する。
The magnetic poles 1a to 1d have quadrupole magnetic field coils 2a to 2d and hexapole magnetic field coils 3a to 3d, respectively.
Is wound. Next, the magnetic field generated by the quadrupole electromagnet configured as described above will be described.

【0017】図1(B)は、四極磁場用コイル2a〜2
dにのみ電流を流して四極磁場を発生した場合を示す。
四極磁場用コイル2a〜2dに、互いに隣り合う磁極が
逆極性になり、各コイルにより発生する起磁力が等しく
なるように所定の電流を流す。
FIG. 1B shows the quadrupole magnetic field coils 2a-2.
A case where a quadrupole magnetic field is generated by passing a current only through d is shown.
A predetermined current is passed through the quadrupole magnetic field coils 2a to 2d so that adjacent magnetic poles have opposite polarities and the magnetomotive forces generated by the coils are equal.

【0018】図1(B)では、磁極1a、1cがS極、
磁極1b、1dがN極になる場合を示している。電子軌
道空間11には、図の矢印で示すような磁場が発生す
る。電子軌道空間11の中心点の磁場の強さは0であ
る。メディアンプレーン内で電子軌道に垂直な方向すな
わち図1(B)の水平軸方向、あるいはメディアンプレ
ーンに垂直な方向すなわち図1(B)の垂直軸方向で
は、中心点からの距離にほぼ比例して磁場が強くなる。
また、磁場の向きは中心点の両側で互いに逆向きであ
る。
In FIG. 1B, the magnetic poles 1a and 1c are S poles,
The case where the magnetic poles 1b and 1d are N poles is shown. In the electron orbit space 11, a magnetic field shown by an arrow in the figure is generated. The strength of the magnetic field at the center of the electron orbit space 11 is zero. In the direction perpendicular to the electron orbit in the median plane, that is, in the horizontal axis direction in FIG. 1B, or in the direction perpendicular to the median plane, that is, in the vertical axis direction in FIG. 1B, almost proportional to the distance from the center point. The magnetic field becomes stronger.
The directions of the magnetic fields are opposite to each other on both sides of the center point.

【0019】図1(C)は、六極磁場用コイル3a〜3
dにのみ電流を流して六極磁場を発生した場合を示す。
メディアンプレーンの上側の2個、及び下側の2個の磁
極がそれぞれ同一極性になるように六極磁場用コイル3
a〜3dに電流を流す。各六極磁場用コイル3a〜3d
が発生する起磁力は等しい。
FIG. 1C shows a hexapole magnetic field coil 3a-3.
The case where a hexapole magnetic field is generated by passing a current only through d is shown.
The hexapole magnetic field coil 3 so that the upper two magnetic poles and the lower two magnetic poles of the median plane have the same polarity.
A current is passed through a to 3d. Each hexapole magnetic field coil 3a to 3d
Generated magnetomotive force is equal.

【0020】図1(C)では、磁極1a、1dがS極、
磁極1b、1cがN極になる場合を示している。電子軌
道空間11内に図の矢印に示すように、下から上に向か
う磁場が発生する。
In FIG. 1C, the magnetic poles 1a and 1d are S poles,
The case where the magnetic poles 1b and 1c are N poles is shown. In the electron orbit space 11, as shown by the arrow in the figure, a magnetic field from the bottom to the top is generated.

【0021】図3(A)は、四極磁場用コイル2a〜2
d及び六極磁場用コイル3a〜3dの接続方法の一例を
回路図で示す。四極磁場用コイル2a〜2dの直列回路
が直流電源12に接続され、六極磁場用コイル3a〜3
dの直列回路が直流電源13に接続されている。図中の
矢印の向きは、起磁力の向きを表す。例えば、右向きが
磁極をS極にしようとする起磁力、左向きが磁極をN極
にしようとする起磁力を表す。
FIG. 3A shows quadrupole magnetic field coils 2a-2.
FIG. 3 is a circuit diagram showing an example of a method for connecting the d and the hexapole magnetic field coils 3a to 3d. A series circuit of quadrupole magnetic field coils 2a to 2d is connected to the DC power supply 12, and hexapole magnetic field coils 3a to 3d.
The series circuit of d is connected to the DC power supply 13. The direction of the arrow in the figure represents the direction of magnetomotive force. For example, the rightward direction represents the magnetomotive force that attempts to make the magnetic pole an S pole, and the leftward direction represents the magnetomotive force that attempts to make the magnetic pole an N pole.

【0022】すなわち、コイル2aと3aは共に起磁力
の向きが等しく、磁極1aはS極となる。コイル2bと
3bは共に起磁力の向きが等しく、磁極1bはN極とな
る。コイル2cと3cとは、起磁力の向きが互いに逆向
きである。通常の電子蓄積リングにおいては、四極磁場
の強さは六極磁場の強さよりも大きいため、コイル2c
の起磁力がコイル3cの起磁力よりも大きい。このため
磁極1cはS極となる。ただし、磁極1cに発生する起
磁力は、磁極1aに発生する起磁力よりも弱い。同様
に、コイル2dと3dにより、磁極1dはN極となり、
その起磁力は磁極1bに発生する起磁力よりも弱い。
That is, the coils 2a and 3a both have the same magnetomotive force direction, and the magnetic pole 1a becomes the S pole. The coils 2b and 3b both have the same magnetomotive force direction, and the magnetic pole 1b is an N pole. The coils 2c and 3c have magnetomotive forces in opposite directions. In an ordinary electron storage ring, the strength of the quadrupole magnetic field is greater than the strength of the hexapole magnetic field, so the coil 2c
Is larger than the magnetomotive force of the coil 3c. Therefore, the magnetic pole 1c becomes the S pole. However, the magnetomotive force generated in the magnetic pole 1c is weaker than the magnetomotive force generated in the magnetic pole 1a. Similarly, due to the coils 2d and 3d, the magnetic pole 1d becomes an N pole,
The magnetomotive force is weaker than the magnetomotive force generated in the magnetic pole 1b.

【0023】図2は、図1(C)に示す磁場の水平軸方
向の磁束密度を示す。横軸は中心点からの距離を単位c
mで表し、縦軸は磁束密度を単位ガウスで表す。図2の
曲線pは、電子軌道10から各磁極1a〜1dの先端ま
での長さ(ボア半径)約4.47cm、起磁力226A
T(アンペアターン)の条件でシミュレーションにより
求めた磁束密度を示す。
FIG. 2 shows the magnetic flux density in the horizontal axis direction of the magnetic field shown in FIG. The horizontal axis is the distance from the center point c
The vertical axis represents the magnetic flux density in Gauss. The curve p in FIG. 2 indicates a length (bore radius) from the electron orbit 10 to the tips of the magnetic poles 1a to 1d of about 4.47 cm and a magnetomotive force of 226A.
The magnetic flux density obtained by simulation under the condition of T (ampere turn) is shown.

【0024】中心点の磁束密度は約70ガウスであり、
中心点からの距離が増加すると磁束密度は距離のほぼ2
乗に比例して増加する。すなわち、磁束密度を示す曲線
はほぼ放物線となる。理想的な六極磁場においては、図
2の点線qで示すように、中心点の磁束密度が0であ
り、磁束密度は中心点からの距離の2次関数になる。従
って、図2に示す磁束密度は、理想的な六極磁場に約7
0ガウスの二極磁場成分を加えたものにほぼ等しい。ま
た、放物線からの差分は、十極磁場成分以上の高次の磁
場成分が現れているためである。
The magnetic flux density at the center point is about 70 Gauss,
When the distance from the center point increases, the magnetic flux density becomes almost 2 of the distance.
It increases in proportion to the square. That is, the curve showing the magnetic flux density is almost a parabola. In an ideal sextupole magnetic field, the magnetic flux density at the center point is 0, as shown by the dotted line q in FIG. 2, and the magnetic flux density is a quadratic function of the distance from the center point. Therefore, the magnetic flux density shown in FIG.
It is almost equal to the addition of the 0 Gauss dipole magnetic field component. Further, the difference from the parabola is because a high-order magnetic field component equal to or higher than the decpolar magnetic field component appears.

【0025】このように、四極電磁石に六極磁場用コイ
ルを追加することにより、四極電磁石を使用して二極磁
場成分を含んだ六極磁場を発生することができる。磁極
が磁気飽和するまでの線型領域で使用する場合は、四極
磁場用コイル2a〜2dと六極磁場用コイル3a〜3d
に同時に電流を流したとき、電子軌道空間11内に発生
する磁束密度は、それぞれのコイルに単独で電流を流し
たときの磁束密度を線型に足し合わせた値となる。
As described above, by adding the coil for the hexapole magnetic field to the quadrupole electromagnet, the hexapole magnetic field containing the dipole magnetic field component can be generated using the quadrupole electromagnet. When used in a linear region until the magnetic pole is magnetically saturated, the quadrupole magnetic field coils 2a to 2d and the hexapole magnetic field coils 3a to 3d are used.
When a current is simultaneously applied to the coils, the magnetic flux density generated in the electron orbit space 11 has a value obtained by linearly adding the magnetic flux densities when the currents are independently applied to the respective coils.

【0026】従って、図1(A)に示すように四極電磁
石に四極磁場用コイル2a〜2dと六極磁場用コイル3
a〜3dを設けることにより、四極磁場成分と六極磁場
成分とを有する磁場を発生することができる。
Therefore, as shown in FIG. 1 (A), the quadrupole electromagnet has quadrupole magnetic field coils 2a to 2d and a hexapole magnetic field coil 3.
By providing a to 3d, it is possible to generate a magnetic field having a quadrupole magnetic field component and a hexapole magnetic field component.

【0027】なお、上記構成の四極電磁石で発生した磁
場は、図2に示すように二極磁場成分を有する。電子ビ
ームは、この二極磁場成分によって進行方向を曲げられ
るが、二極磁場成分が通常の設計許容範囲に収まれば、
ステアリング磁石で電子ビーム位置を調整することによ
って二極磁場成分による影響を相殺することができる。
また、十極磁場成分以上の高次の磁場成分は、ほとんど
無視できる大きさである。
The magnetic field generated by the quadrupole electromagnet having the above structure has a dipole magnetic field component as shown in FIG. The electron beam is bent in its traveling direction by this dipole magnetic field component, but if the dipole magnetic field component falls within the normal design allowable range,
By adjusting the electron beam position with the steering magnet, the influence of the bipolar magnetic field component can be offset.
Further, the high-order magnetic field components above the dodecapole magnetic field component are almost negligible.

【0028】このように、上記実施例による四極電磁石
を電子蓄積リングに配置することにより、六極電磁石を
設ける必要がなくなる。このため、電子蓄積リングをよ
り小型化、経済化することが可能になる。
As described above, by disposing the quadrupole electromagnet according to the above embodiment in the electron storage ring, it is not necessary to provide the hexapole electromagnet. Therefore, the electron storage ring can be made smaller and economical.

【0029】上記実施例では、一つの磁極に四極磁場用
コイルと六極磁場用コイルを別々に設ける場合について
説明したが、一つの磁極に一種類のコイルを設けて同様
の磁場を発生することもできる。以下に、一種類のコイ
ルで同様の磁場を発生する方法について説明する。
In the above embodiment, the case where the quadrupole magnetic field coil and the hexapole magnetic field coil are separately provided in one magnetic pole has been described, but one kind of coil is provided in one magnetic pole to generate the same magnetic field. You can also Hereinafter, a method of generating a similar magnetic field with one type of coil will be described.

【0030】図1(B)、(C)に示す磁場を足し合わ
せると、磁極1a、1bにおいて四極磁場用コイル2
a、2bと六極磁場用コイル3a、3bによる起磁力が
強め合い、磁極1c、1dにおいて四極磁場用コイル2
c、2dと六極磁場用コイル3c、3dによる起磁力が
弱め合う。従って、一つの磁極にそれぞれ一種類のコイ
ルを設け、このコイルにより、磁極1a、1bでは上記
の強め合った場合の起磁力を発生し、磁極1c、1dで
は上記の弱め合った場合の起磁力を発生することによ
り、同様の磁場を発生することができる。
When the magnetic fields shown in FIGS. 1B and 1C are added together, the quadrupole magnetic field coil 2 is formed at the magnetic poles 1a and 1b.
a and 2b and the magnetomotive forces of the sextupole magnetic field coils 3a and 3b strengthen each other, and the quadrupole magnetic field coil 2 is formed in the magnetic poles 1c and 1d.
The magnetomotive forces generated by the c and 2d and the sextupole magnetic field coils 3c and 3d weaken each other. Therefore, one kind of coil is provided for each magnetic pole, and this coil generates the magnetomotive force in the magnetic poles 1a and 1b when the above magnetic fields are strengthened and the magnetomotive force in the magnetic poles 1c and 1d when the magnetic field is weakened. By generating, a similar magnetic field can be generated.

【0031】以下、一つの磁極に一種類のコイルを設け
る場合のコイルの接続方法について説明する。図3
(B)は、コイルの巻数を変えて所望の起磁力を発生す
る方法を示す。磁極1a、1bに巻くコイル2a、2b
の巻数よりも磁極1c、1dに巻くコイル2c、2dの
巻数を少なくする。これらの4つの磁極のコイルを所定
の向きに直列に接続した直列回路を直流電源12に接続
する。この直列回路に電流を流すことにより所定の起磁
力を発生することができる。
Hereinafter, a method of connecting the coils when one type of coil is provided for one magnetic pole will be described. FIG.
(B) shows a method of generating a desired magnetomotive force by changing the number of turns of the coil. Coils 2a and 2b wound around the magnetic poles 1a and 1b
The number of turns of the coils 2c and 2d wound around the magnetic poles 1c and 1d is smaller than the number of turns of. A series circuit in which these four magnetic pole coils are connected in series in a predetermined direction is connected to the DC power supply 12. A predetermined magnetomotive force can be generated by passing an electric current through this series circuit.

【0032】図3(C)は、直流電源を2つ準備し、コ
イルに流す電流を制御することにより、所望の起磁力を
発生する方法を示す。磁極1a、1bに巻かれた同一巻
数のコイル2a、2bを所定の向きに接続した直列回路
を直流電源12aに接続する。磁極1c、1dに巻かれ
た同一巻数のコイル2c、2dを所定の向きに接続した
直列回路を直流電源12bに接続する。コイル2a、2
bの組と、コイル2c、2dの組の巻数は同一でもよい
し、同一でなくてもよい。コイル2a、2bの直列回路
とコイル2c、2dの直列回路にコイルの巻数との関係
から求まる所定の電流を流すことにより、所望の起磁力
を発生することができる。
FIG. 3C shows a method for generating a desired magnetomotive force by preparing two DC power supplies and controlling the current flowing through the coil. A series circuit in which coils 2a and 2b having the same number of turns wound around the magnetic poles 1a and 1b are connected in a predetermined direction is connected to the DC power supply 12a. A series circuit in which coils 2c and 2d having the same number of turns wound around the magnetic poles 1c and 1d are connected in a predetermined direction is connected to the DC power supply 12b. Coils 2a, 2
The number of turns of the b group and the number of turns of the coils 2c and 2d may or may not be the same. A desired magnetomotive force can be generated by passing a predetermined current obtained from the relationship between the number of turns of the coil in the series circuit of the coils 2a and 2b and the series circuit of the coils 2c and 2d.

【0033】上記実施例では、電子を周回させるための
電子蓄積リングを例に説明したが、電子以外の荷電粒子
を周回させる荷電粒子蓄積リングにも適用できる。以上
実施例に沿って本発明を説明したが、本発明はこれらに
制限されるものではない。例えば、種々の変更、改良、
組み合わせ等が可能なことは当業者に自明であろう。
In the above embodiment, the electron storage ring for orbiting electrons has been described as an example, but the present invention can be applied to a charged particle storage ring for orbiting charged particles other than electrons. Although the present invention has been described above with reference to the embodiments, the present invention is not limited thereto. For example, various changes, improvements,
It will be apparent to those skilled in the art that combinations and the like are possible.

【0034】[0034]

【発明の効果】以上説明したように、本発明によれば、
四極電磁石で六極電磁石の機能を実現することができる
ため、電子蓄積リングを小型化かつ経済化することがで
きる。
As described above, according to the present invention,
Since the function of the hexapole electromagnet can be realized by the quadrupole electromagnet, the electron storage ring can be downsized and made economical.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による四極電磁石の断面図であ
る。
FIG. 1 is a sectional view of a quadrupole electromagnet according to an embodiment of the present invention.

【図2】本発明の実施例による四極電磁石によって発生
した六極磁場の磁束密度の分布を示すグラフである。
FIG. 2 is a graph showing a distribution of magnetic flux density of a sextupole magnetic field generated by a quadrupole electromagnet according to an embodiment of the present invention.

【図3】本発明の実施例による四極電磁石の各磁極に巻
かれるコイルの接続方法を示す回路図である。
FIG. 3 is a circuit diagram showing a method for connecting a coil wound around each magnetic pole of a quadrupole electromagnet according to an embodiment of the present invention.

【図4】従来例による電子蓄積リングの一部の平面図、
四極電磁石及び六極電磁石の断面図である。
FIG. 4 is a plan view of a part of an electron storage ring according to a conventional example,
It is sectional drawing of a quadrupole electromagnet and a sextupole electromagnet.

【符号の説明】[Explanation of symbols]

1a〜1d 磁極 2a〜2d 四極磁場用コイル 3a〜3d 六極磁場用コイル 4 磁性部材 10 電子軌道 11 電子軌道空間 12、12a、12b、13 直流電源 50、53 電子軌道 51、54 磁極 52、55 コイル B 偏向電磁石 Q 四極電磁石 S 六極電磁石 VHS、HS、VS ステアリング電磁石 1a-1d magnetic pole 2a-2d quadrupole magnetic field coil 3a-3d hexapole magnetic field coil 4 magnetic member 10 electron orbit 11 electron orbit space 12, 12a, 12b, 13 DC power supply 50, 53 electron orbit 51, 54 magnetic pole 52, 55 Coil B Bending electromagnet Q Quadrupole electromagnet S Hexapole electromagnet VHS, HS, VS Steering electromagnet

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 荷電粒子が通過する軌道空間の周囲に4
回回転対称状に配置された4つの磁極と、 前記4つの磁極のうち、所定の隣り合う一対の磁極(1
a、1b)に、該一対の磁極が互いに逆極性になるよう
に第1の強さの起磁力を発生し、かつ、他の一対の磁極
(1c、1d)に、該他の一対の磁極がそれぞれ隣り合
う前記一対の磁極と逆極性となるように、前記第1の強
さよりも所定量弱い第2の強さの起磁力を発生するため
の起磁力発生手段とを含む荷電粒子蓄積リング用電磁
石。
1. A space around an orbital space through which charged particles pass
Four magnetic poles arranged in rotational symmetry, and a predetermined pair of adjacent magnetic poles (1
a, 1b), a magnetomotive force of the first strength is generated so that the pair of magnetic poles have opposite polarities, and the other pair of magnetic poles (1c, 1d) has the other pair of magnetic poles. A charged particle storage ring including a magnetomotive force generating means for generating a magnetomotive force having a second strength, which is weaker by a predetermined amount than the first strength, such that each has a polarity opposite to that of the pair of adjacent magnetic poles. Electromagnet.
【請求項2】 前記起磁力発生手段は、 前記4つの磁極にそれぞれ巻かれた同一巻数の4つの第
1のコイル(2a〜2d)と、 前記4つの第1のコイルに、前記4つの磁極の互いに隣
り合う磁極が逆極性となるように起磁力を発生する向き
に電流を流すための、前記4つの第1のコイルを所定の
向きに直列に接続する第1の手段と、 前記4つの磁極にそれぞれ巻かれた同一巻数の4つの第
2のコイル(3a〜3d)と、 前記一対の磁極に発生する起磁力の向きが前記第1のコ
イルにより発生する起磁力の向きと同じ向きになり、前
記他の一対の磁極に発生する起磁力の向きが前記第1の
コイルにより発生する起磁力の向きと逆向きになるよう
に、前記第2のコイルに電流を流すための、前記4つの
第2のコイルを所定の向きに直列に接続する第2の手段
とを含む請求項1記載の荷電粒子蓄積リング用電磁石。
2. The magnetomotive force generating means includes four first coils (2a to 2d) wound around the four magnetic poles and having the same number of turns, and the four magnetic poles provided on the four first coils. A first means for connecting the four first coils in series in a predetermined direction in order to cause a current to flow in a direction in which a magnetomotive force is generated so that adjacent magnetic poles have opposite polarities; Four second coils (3a to 3d) having the same number of turns respectively wound around the magnetic poles, and the direction of the magnetomotive force generated in the pair of magnetic poles is the same as the direction of the magnetomotive force generated by the first coil. In order to flow a current through the second coil such that the direction of the magnetomotive force generated in the other pair of magnetic poles is opposite to the direction of the magnetomotive force generated by the first coil, Connect two second coils in series in a predetermined direction A charged particle storage ring electromagnet of claim 1, further comprising a second means.
【請求項3】 前記起磁力発生手段は、 前記一対の磁極にそれぞれ巻かれた同一巻数の2つの第
1のコイルと、 前記2つの第1のコイルに、前記一対の磁極が互いに逆
極性となるように起磁力を発生する向きに電流を流すた
めの、前記2つの第1のコイルを所定の向きに直列に接
続する第1の手段と、 前記他の一対の磁極にそれぞれ巻かれた同一巻数の2つ
の第2のコイルと、 前記2つの第2のコイルに、前記他の一対の磁極が互い
に逆極性となるように起磁力を発生する向きに電流を流
すための、前記2つの第2のコイルを所定の向きに直列
に接続する第2の手段とを含む請求項1記載の荷電粒子
蓄積リング用電磁石。
3. The magnetomotive force generating means includes two first coils having the same number of turns respectively wound on the pair of magnetic poles, and the pair of magnetic poles having mutually opposite polarities on the two first coils. And a first means for connecting the two first coils in series in a predetermined direction for passing a current in a direction in which a magnetomotive force is generated, and the same means respectively wound around the other pair of magnetic poles. Two second coils with two turns, and the two second coils for passing a current in a direction in which magnetomotive force is generated so that the other pair of magnetic poles have opposite polarities to each other. The electromagnet for a charged particle storage ring according to claim 1, further comprising second means for connecting the two coils in series in a predetermined direction.
【請求項4】 前記起磁力発生手段は、 前記一対の磁極にそれぞれ巻かれた同一巻数の2つの第
1のコイルと、 前記他の一対の磁極にそれぞれ巻かれた前記第1のコイ
ルよりも巻数の少ない同一巻数の2つの第2のコイル
と、 前記2つの第1及び第2のコイルに、前記4つの磁極の
互いに隣り合う磁極が逆極性となるように起磁力を発生
する向きに電流を流すための、前記2つの第1及び第2
のコイルを所定の向きに直列に接続する手段とを含む請
求項1記載の荷電粒子蓄積リング用電磁石。
4. The magnetomotive force generating means is more than the two first coils wound around the pair of magnetic poles and having the same number of turns, and the first coils wound around the other pair of magnetic poles, respectively. In the two second coils having the same number of turns with a small number of turns and the two first and second coils, a current is generated in a direction in which a magnetomotive force is generated so that adjacent magnetic poles of the four magnetic poles have opposite polarities. The two first and second for flowing
2. A charged particle storage ring electromagnet according to claim 1, further comprising means for connecting the coils in series in a predetermined direction.
JP6156245A 1994-07-07 1994-07-07 Electromagnet for charged particle accumulating ring Pending JPH0822900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6156245A JPH0822900A (en) 1994-07-07 1994-07-07 Electromagnet for charged particle accumulating ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6156245A JPH0822900A (en) 1994-07-07 1994-07-07 Electromagnet for charged particle accumulating ring

Publications (1)

Publication Number Publication Date
JPH0822900A true JPH0822900A (en) 1996-01-23

Family

ID=15623558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6156245A Pending JPH0822900A (en) 1994-07-07 1994-07-07 Electromagnet for charged particle accumulating ring

Country Status (1)

Country Link
JP (1) JPH0822900A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7495058B2 (en) 2003-05-28 2009-02-24 Dainippon Ink And Chemicals, Inc. Water-base coating material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62213099A (en) * 1986-03-13 1987-09-18 株式会社東芝 Accelerator
JPH04322099A (en) * 1991-04-22 1992-11-12 Mitsubishi Electric Corp Charged particle device
JPH06132098A (en) * 1992-10-16 1994-05-13 Mitsubishi Electric Corp Ring, ring four-pole electromagent and control device thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62213099A (en) * 1986-03-13 1987-09-18 株式会社東芝 Accelerator
JPH04322099A (en) * 1991-04-22 1992-11-12 Mitsubishi Electric Corp Charged particle device
JPH06132098A (en) * 1992-10-16 1994-05-13 Mitsubishi Electric Corp Ring, ring four-pole electromagent and control device thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7495058B2 (en) 2003-05-28 2009-02-24 Dainippon Ink And Chemicals, Inc. Water-base coating material

Similar Documents

Publication Publication Date Title
JP2908220B2 (en) Normal conduction type bending electromagnet
JP2896188B2 (en) Bending magnets for charged particle devices
US5334893A (en) Monophase electromagnetic rotary actuator of travel between 60 and 120 degrees
US6351049B1 (en) Ball joint type magnetic bearing for tilting body
US6384500B1 (en) Magnetic centering bearing with high-amplitude tilt control
EP1239709A2 (en) Septum electromagnet for deflecting and splitting a beam, electromagnet for deflecting and splitting a beam, and method for deflecting a beam
EP1261103A1 (en) Brushless dc motor
JP3014161B2 (en) Charged particle device
JPH0822900A (en) Electromagnet for charged particle accumulating ring
JPS5951446A (en) Method of varying deflection of locus of charge particle beam
JP2980226B2 (en) Electromagnet for charged particle storage ring
JP3007544B2 (en) Bending magnet
JPH02270308A (en) Superconducting deflection electromagnet and excitation method thereof
JP3065988B2 (en) Normal conduction type bending electromagnet
JPH051893Y2 (en)
JPH0448597A (en) Steering electromagnetic apparatus
JPH05275058A (en) Wien filter
JPH0434281B2 (en)
JP2662527B2 (en) High frequency quadrupole accelerator
KR0147040B1 (en) 6pole electromagnet of accelerator
JP3198616B2 (en) Convergence correction device and deflection device using the correction device
JPS62269100A (en) Q magnet
JPH11144899A (en) Electromagnetic apparatus for charged particle
JPH07107879B2 (en) Charged particle device
JPH04345800A (en) Deflecting electromagnet

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19991207