JPH0434281B2 - - Google Patents

Info

Publication number
JPH0434281B2
JPH0434281B2 JP6977686A JP6977686A JPH0434281B2 JP H0434281 B2 JPH0434281 B2 JP H0434281B2 JP 6977686 A JP6977686 A JP 6977686A JP 6977686 A JP6977686 A JP 6977686A JP H0434281 B2 JPH0434281 B2 JP H0434281B2
Authority
JP
Japan
Prior art keywords
magnetic field
electromagnet
core
air
tubular member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6977686A
Other languages
Japanese (ja)
Other versions
JPS62229807A (en
Inventor
Takeshi Takayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP6977686A priority Critical patent/JPS62229807A/en
Publication of JPS62229807A publication Critical patent/JPS62229807A/en
Publication of JPH0434281B2 publication Critical patent/JPH0434281B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electromagnets (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は空芯電磁石に関し、特に、弱集束型シ
ンクロトロン、弱集束型蓄積リング等の周回軌道
を持つ磁気共振型加速器に用いられるパータベイ
タ用の空芯電磁石に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to an air-core electromagnet, particularly for perturbators used in magnetic resonance accelerators with orbits such as weakly focused synchrotrons and weakly focused storage rings. Regarding air core electromagnets.

(従来の技術) 従来のパータベイタは周回軌道を備える磁気共
振型加速器の平衡軌道の一部(あるいは全部)を
変位させるものであり、双極磁場を発生してい
る。また、一般にパータベイタは外部磁場のない
位置におかれるため、フエライトのように電気的
に絶縁性の強磁性体が磁気回路として用いられ
る。ところで、加速器を弱集束型の円型構造とし
て小型化した場合、パータベイタに磁性体を使用
することができず、一方、パータベイタにはより
高速の動作が要求される。
(Prior Art) A conventional perturbator displaces a part (or all) of the equilibrium orbit of a magnetic resonance accelerator having an orbit, and generates a dipole magnetic field. Furthermore, since the perturbator is generally placed in a position without an external magnetic field, an electrically insulating ferromagnetic material such as ferrite is used as the magnetic circuit. By the way, when the accelerator is miniaturized as a weakly focused circular structure, a magnetic material cannot be used for the pertervater, and on the other hand, the pertervater is required to operate at a higher speed.

平衡軌道近傍に振動しながら回転する荷電粒子
にパータベイタにより共鳴振動を起こし、これを
荷電粒子の入射に利用することでパータベイタの
作動速度及び磁場強度を低くしている。上述のパ
ータベイタには8極磁場を形成する空芯8極電磁
石が用いられている。ここで、第5図〜第7図を
参照して、従来の8極電磁石について説明する。
The perturbator causes resonant vibrations in charged particles rotating while vibrating near the equilibrium orbit, and this is used for the injection of charged particles, thereby reducing the operating speed and magnetic field strength of the perturbator. The above-described perturbator uses an air-core octupole electromagnet that forms an octupole magnetic field. Here, a conventional octupole electromagnet will be explained with reference to FIGS. 5 to 7.

第5図の8極電磁石の場合、所定の長さの円管
状のヨーク4の内壁面に8個対称に取り付けられ
た磁芯5にコイル6が巻回された磁極7が8コ形
成されている。これら磁極7のコイル6に所定方
向の電流を流して、図示のようにN、S極を形成
し、実線矢印のように磁場を形成する。
In the case of the 8-pole electromagnet shown in FIG. 5, eight magnetic poles 7 are formed, each having a coil 6 wound around eight magnetic cores 5, which are attached symmetrically to the inner wall surface of a cylindrical yoke 4 of a predetermined length. There is. A current is passed in a predetermined direction through the coils 6 of these magnetic poles 7 to form N and S poles as shown in the figure, thereby forming a magnetic field as shown by solid arrows.

第6図の8極電磁石の場合、円管状ヨーク4に
コイル6を装置して、各コイル6にそれぞれ交互
に向きが異なる電流を加えて、実線矢印のように
磁場を形成する。
In the case of the octupole electromagnet shown in FIG. 6, coils 6 are installed in the cylindrical yoke 4, and currents having different directions are applied to each coil 6 alternately to form a magnetic field as shown by the solid arrows.

第7図の空芯8極電磁石の場合、所定の円周上
に予め定められた角度間隔で複数のコイル6を配
置し、このコイル6にそれぞれ交互に向きが異な
る電流を加えて、実線矢印のように磁場を形成す
る。
In the case of the air-core octupole electromagnet shown in FIG. 7, a plurality of coils 6 are arranged at predetermined angular intervals on a predetermined circumference, and currents in different directions are applied to the coils 6 alternately, and the solid line arrows form a magnetic field like this.

(発明が解決しようとする問題点) ところで、第5図及び第6図に示す8極電磁石
の場合、ヨーク等に強磁性体を用いているので、
外部磁場が与えられている場合に外部磁場を乱し
てしまうという問題点がある。さらに、強い外部
磁場がある場合には、強磁性体が飽和するため所
定の磁場を発生しないという問題点がある。
(Problems to be Solved by the Invention) By the way, in the case of the octupole electromagnet shown in FIGS. 5 and 6, a ferromagnetic material is used for the yoke, etc.
There is a problem in that when an external magnetic field is applied, it disturbs the external magnetic field. Furthermore, when there is a strong external magnetic field, there is a problem in that the ferromagnetic material is saturated and a predetermined magnetic field is not generated.

また、第7図に示す空芯電磁石の場合、磁場が
外部に漏れてしまうという問題点がある。
Further, in the case of the air-core electromagnet shown in FIG. 7, there is a problem that the magnetic field leaks to the outside.

(問題点を解決するための手段) 本発明の空芯電磁石は、導電性の管状部材と、
該管状部材内部に前記管状部材の中心軸の周りに
等角度間隔に、しかも該中心軸から等距離に配設
された複数の電線路とを備え、該複数の電線路に
は同方向に電流が流され、前記管状部材には前記
電線路と逆向きに電流が流され、前記管状部材内
に磁場を形成するようにしたことを特徴としてい
る。
(Means for Solving the Problems) The air-core electromagnet of the present invention includes a conductive tubular member,
A plurality of electric lines are provided inside the tubular member at equal angular intervals around the central axis of the tubular member and at equal distances from the central axis, and the plurality of electric lines are provided with a current in the same direction. is passed through the tubular member in the opposite direction to the electric line, thereby forming a magnetic field within the tubular member.

(実施例) 以下本発明について実施例によつて説明する。(Example) The present invention will be explained below with reference to Examples.

第1図を参照して、導電性の円管部材1は断面
略1/4円状の部材(以下1/4円管部材という)11
が4つのスペーサ(絶縁体)12を介して図示の
ように連結することによつて成形される。円管部
材1の中心軸線13を中心として、中心軸線13
の周りに等角度間隔にしかも中心軸線13から等
距離に電線路(以下コイルという)2が中心軸線
13と平行に合計4本配設されている。即ち、図
示のようにX軸、Y軸をとればX軸に対して45度
回転した位置に配設され、各コイル2はそれぞれ
各1/4円管部材11と対応するようになつている。
なお、円管部材1とコイル2とは直列に接続され
る。
Referring to FIG. 1, a conductive circular tube member 1 is a member 11 having an approximately 1/4 circular cross section (hereinafter referred to as 1/4 circular tube member).
are connected through four spacers (insulators) 12 as shown in the figure. With the center axis 13 of the circular tube member 1 as the center, the center axis 13
A total of four electric lines (hereinafter referred to as coils) 2 are arranged parallel to the central axis 13 at equal angular intervals around the central axis 13 and at equal distances from the central axis 13 . That is, as shown in the figure, if the X-axis and Y-axis are taken, the coils 2 are arranged at positions rotated by 45 degrees with respect to the X-axis, and each coil 2 corresponds to each 1/4 circular pipe member 11. .
Note that the circular tube member 1 and the coil 2 are connected in series.

各コイル2には同一方向に電流が流され、円管
部材1には逆方向に電流が流される。例えば、コ
イル2は直流電源の(+)側に接続され、円管部
材1は(−)側に接続される。
A current is passed through each coil 2 in the same direction, and a current is passed through the circular tube member 1 in the opposite direction. For example, the coil 2 is connected to the (+) side of the DC power supply, and the circular tube member 1 is connected to the (-) side.

上述のように電流を流すと、第1図に実線矢印
で示すように磁場(8極磁場)が発生する。即
ち、この空芯電磁石の中心部では8極磁場を主成
分とする磁場が発生する。また、円管部材1の内
壁近傍では8極磁場の性質はなくなる。また、円
管部材1の外部へ磁束が漏れることはない。な
お、中心部では16極、24極等の8の整数倍である
誤差磁場が発生するけれども、これらの誤差磁場
は8極磁場に比べて極めて微弱である。また、管
状部材の断面形状は長方形あるいは他の多角形と
してもよく、また、管状部材の分割数を多くし、
コイルの数を多くしてもよい。また、コイルの位
置は使用する磁場領域が円筒でなければ対称性は
必要ない。
When a current is passed as described above, a magnetic field (octupole magnetic field) is generated as shown by the solid line arrows in FIG. That is, at the center of this air-core electromagnet, a magnetic field whose main component is an octupole magnetic field is generated. Further, near the inner wall of the circular tube member 1, the property of the octupole magnetic field disappears. Further, magnetic flux does not leak to the outside of the circular tube member 1. Note that although error magnetic fields that are integral multiples of 8, such as 16 poles and 24 poles, are generated at the center, these error magnetic fields are extremely weak compared to the 8-pole magnetic field. Further, the cross-sectional shape of the tubular member may be a rectangle or other polygon, and the number of divisions of the tubular member may be increased.
The number of coils may be increased. Further, the position of the coil does not need to be symmetrical unless the magnetic field region used is cylindrical.

ところで、第2図に示すように管状部材とし
て、断面四角形のものを用いて、空芯電磁石をト
ロイダルの一部として形成してもよい。この場
合、図示のように管状部材3は4分割され、また
管状部材3内に配設されるコイルは図中上下方向
では対称であるが、左右非対称として磁場分布を
調整する。
Incidentally, as shown in FIG. 2, the air-core electromagnet may be formed as a part of the toroid by using a tubular member having a square cross section. In this case, the tubular member 3 is divided into four parts as shown in the figure, and although the coils disposed within the tubular member 3 are symmetrical in the vertical direction in the figure, the magnetic field distribution is adjusted by making them asymmetrical.

第3図及び第4図にはそれぞれ空芯4極電磁石
及び空芯6極電磁石の一例を示す。
FIGS. 3 and 4 show examples of an air-core quadrupole electromagnet and an air-core hexapole electromagnet, respectively.

第3図に示すように空芯4極電磁石の場合、円
管部材1は2分割されており、各分割部分に対応
して、コイル2が中心軸線13に平行に、Y軸上
に中心軸線13から等距離に配設されている。即
ち、X軸に対して90度回転した位置に配設されて
いる。
As shown in FIG. 3, in the case of an air-core quadrupole electromagnet, the circular tube member 1 is divided into two parts, and the coil 2 is arranged parallel to the central axis line 13 on the Y-axis, corresponding to each divided part. It is arranged equidistantly from 13. That is, it is arranged at a position rotated by 90 degrees with respect to the X axis.

また、第4図に示すように空芯6極電磁石の場
合、円管部材1は3分割されており、各分割部分
に対応して、コイル2が中心軸線13に平行に、
コイル2が120度の角度間隔で、中心軸線13か
ら等距離に配設されている。
Further, as shown in FIG. 4, in the case of an air-core six-pole electromagnet, the circular tube member 1 is divided into three parts, and the coil 2 is parallel to the central axis 13, corresponding to each divided part.
The coils 2 are arranged equidistantly from the central axis 13 at angular intervals of 120 degrees.

(発明の効果) 以上説明したように本発明による空芯電磁石で
は主磁場が与えられている場合に主磁場を乱すこ
となく、主磁場に重畳して磁場を発生することが
でき、この重畳磁場が空芯電磁石の外部に漏れる
ことはない。
(Effects of the Invention) As explained above, the air-core electromagnet according to the present invention can generate a magnetic field superimposed on the main magnetic field without disturbing the main magnetic field when the main magnetic field is applied, and this superimposed magnetic field will not leak to the outside of the air-core electromagnet.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例である空芯8極電磁
石を概略的に示す断面図、第2図は空芯8極電磁
石の他の例を示す斜視図、第3図は本発明による
空芯4極電磁石を概略的に示す断面図、第4図は
本発明による空芯6極電磁石を概略的に示す断面
図、第5図及び第6図は従来の8極電磁石を概略
的に示す断面図、第7図は従来の空芯8極電磁石
を概略的に示す断面図である。 1……円管部材、2……コイル、3……管状部
材、4……円管状ヨーク、5……磁芯、6……コ
イル、7……磁極。
FIG. 1 is a sectional view schematically showing an air-core octupole electromagnet according to an embodiment of the present invention, FIG. 2 is a perspective view showing another example of an air-core octupole electromagnet, and FIG. 3 is a cross-sectional view schematically showing an air-core octupole electromagnet according to the present invention. FIG. 4 is a cross-sectional view schematically showing an air-core quadrupole electromagnet, FIG. 4 is a cross-sectional view schematically showing an air-core six-pole electromagnet according to the present invention, and FIGS. 5 and 6 are schematic cross-sectional views of a conventional octupole electromagnet. FIG. 7 is a cross-sectional view schematically showing a conventional air-core octupole electromagnet. DESCRIPTION OF SYMBOLS 1... Circular tube member, 2... Coil, 3... Tubular member, 4... Circular tubular yoke, 5... Magnetic core, 6... Coil, 7... Magnetic pole.

Claims (1)

【特許請求の範囲】[Claims] 1 導電性の管状部材と、該管状部材内部に前記
管状部材の中心軸の周りに配設された複数の電線
路とを備え、該複数の電線路には同方向に電流が
流され、前記管状部材には前記電線路と逆向きに
電流が流され、前記管状部材内に磁場を形成する
ようにしたことを特徴とする空芯電磁石。
1 comprising an electrically conductive tubular member and a plurality of electric lines disposed inside the tubular member around the central axis of the tubular member, a current is passed in the same direction through the plurality of electric lines, and the An air-core electromagnet characterized in that a current is passed through the tubular member in a direction opposite to the electric line to form a magnetic field within the tubular member.
JP6977686A 1986-03-29 1986-03-29 Air-core electromagnet Granted JPS62229807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6977686A JPS62229807A (en) 1986-03-29 1986-03-29 Air-core electromagnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6977686A JPS62229807A (en) 1986-03-29 1986-03-29 Air-core electromagnet

Publications (2)

Publication Number Publication Date
JPS62229807A JPS62229807A (en) 1987-10-08
JPH0434281B2 true JPH0434281B2 (en) 1992-06-05

Family

ID=13412518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6977686A Granted JPS62229807A (en) 1986-03-29 1986-03-29 Air-core electromagnet

Country Status (1)

Country Link
JP (1) JPS62229807A (en)

Also Published As

Publication number Publication date
JPS62229807A (en) 1987-10-08

Similar Documents

Publication Publication Date Title
JP3369512B2 (en) Small single-phase electromagnetic drive
EP0258891B2 (en) Deflection yoke apparatus with means for reducing unwanted radiation
US4359706A (en) Magnet pole pieces and pole piece extensions and shields
CA1331481C (en) Periodic permanent magnet structure for use in electronic devices
JPS61168904A (en) Magnetic apparatus and use thereof
JPS6091600A (en) Structure of ferromagnetic unit of ion source formed by permanent magnet and solenoid
JPH0378592B2 (en)
US7619375B2 (en) Electromagnetic wave generating device
US5786694A (en) Gradient coil system for use in a diagnostic magnetic resonance apparatus
US4153889A (en) Method and device for generating a magnetic field of a potential with electric current components distributed according to a derivative of the potential
US4095202A (en) Coil for producing a homogeneous magnetic field in a cylindrical space
JPH0434281B2 (en)
GB2294120A (en) Eddy current-less pole tips for MRI magnets
US5027098A (en) Saddle type dipolar coil eliminating only sextupole components of magnetic field
CN218585653U (en) Charged particle beam deflection shaft-combining device
JP7249906B2 (en) Superconducting coil and superconducting magnet device
JPS61216410A (en) Core type uniform field magnetic
JP2500305Y2 (en) Gradient magnetic field generating coil
JPH0448597A (en) Steering electromagnetic apparatus
JPH0341967B2 (en)
JPS5873850A (en) Method and apparatus for generating magnetic field
RU2009519C1 (en) System of electrical coils for exciting gradient magnetic
CN114270059A (en) Magnetic bearing device with annular design
CN113299466A (en) Hollow iron core
JPH0822900A (en) Electromagnet for charged particle accumulating ring

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term