JPH08225931A - Formation of thin film by laser vapor deposition method - Google Patents

Formation of thin film by laser vapor deposition method

Info

Publication number
JPH08225931A
JPH08225931A JP7053610A JP5361095A JPH08225931A JP H08225931 A JPH08225931 A JP H08225931A JP 7053610 A JP7053610 A JP 7053610A JP 5361095 A JP5361095 A JP 5361095A JP H08225931 A JPH08225931 A JP H08225931A
Authority
JP
Japan
Prior art keywords
target
substrate
thin film
irradiated
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7053610A
Other languages
Japanese (ja)
Other versions
JP3610617B2 (en
Inventor
Ryuki Nagaishi
竜起 永石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP05361095A priority Critical patent/JP3610617B2/en
Publication of JPH08225931A publication Critical patent/JPH08225931A/en
Application granted granted Critical
Publication of JP3610617B2 publication Critical patent/JP3610617B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE: To form a high quality oxide superconductor thin film having scarecely fine grain on the surface by a laser vapor deposition method. CONSTITUTION: The laser beam 10 irradiates a target 5 in an airtight chamber 40 adjustable for the pressure and the atmosphere in the inner part. Then, the oxide superconductor thin film is grown on the film forming surface of a substrate 6 arranged so as to be vertical to the irradiated surface of the target 5 and so that the angle between the straight line connecting the nearest point of the irradiated part on the irradiated surface of the target 5 to the substrate with the neareast point of the film forming surface of the substrate 6 to the target and the normal line stood to the nearest point of the irradiate part on the irradiating surface of the target 5 to the substrate 6, becomes <=11 deg..

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザ蒸着法による薄
膜の作製方法に関する。より詳細には、本発明は、レー
ザ蒸着法により高品質の酸化物超電導薄膜等の薄膜を成
膜する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thin film by a laser vapor deposition method. More specifically, the present invention relates to a method for forming a high quality thin film such as an oxide superconducting thin film by a laser deposition method.

【0002】[0002]

【従来の技術】レーザ蒸着法は、減圧下でターゲットに
高エネルギのレーザビームを照射し、蒸着物を発生させ
て基板上に薄膜を成長させる方法である。レーザ蒸着法
には、薄膜の組成の制御が容易で、成膜速度が高い等の
利点がある。また、一切の電磁場を必要としないので、
蒸着物中に荷電粒子が含まれていても、それが影響を受
けることがない。従って、高品質の薄膜を作製するのに
適した方法と考えられている。
2. Description of the Related Art A laser vapor deposition method is a method of irradiating a target with a high-energy laser beam under reduced pressure to generate a deposit and grow a thin film on a substrate. The laser vapor deposition method has advantages that the composition of the thin film can be easily controlled and that the film formation rate is high. Also, since it does not require any electromagnetic field,
The presence of charged particles in the deposit will not be affected. Therefore, it is considered to be a suitable method for producing a high quality thin film.

【0003】一方、酸化物超電導体は多元系の複合酸化
物であり、組成比が僅かでも適正値から外れると超電導
特性が大幅に低下する。上記のように、レーザ蒸着法で
は、成膜する薄膜の組成の制御が容易であるので、レー
ザ蒸着法を使用して特性の優れた酸化物超電導薄膜を作
製することが研究されている。例えば、社団法人電気学
会による光・量子デバイス研究会資料(資料番号OQD
−92−53)pp.69-77(1992年10月28日)には、エキシマ
レーザを使用したレーザ蒸着法により、高品質のY−Ba
−Cu−O系酸化物超電導薄膜を成膜する方法が開示され
ている。
On the other hand, the oxide superconductor is a multi-component complex oxide, and even if the composition ratio is a little off, the superconducting properties are significantly deteriorated. As described above, since the composition of the thin film to be formed is easily controlled by the laser vapor deposition method, research has been conducted on producing an oxide superconducting thin film having excellent characteristics by using the laser vapor deposition method. For example, the material of the Optical and Quantum Device Research Group by the Institute of Electrical Engineers of Japan (Document number OQD
-92-53) pp.69-77 (October 28, 1992), a high-quality Y-Ba was produced by a laser deposition method using an excimer laser.
A method of forming a -Cu-O-based oxide superconducting thin film is disclosed.

【0004】レーザ蒸着法で薄膜を作製する場合は、上
記の文献に示されているように、内部を高真空に排気可
能で、任意の雰囲気ガスを導入できるチャンバ内に基板
およびターゲットを互いに平行に配置し、チャンバ外部
に配置したレーザ装置の発するレーザ光を光学手段によ
り誘導し、必要に応じて集光してターゲットに照射して
いた。
When a thin film is formed by the laser deposition method, as shown in the above-mentioned document, the substrate and the target are parallel to each other in a chamber in which the inside can be evacuated to a high vacuum and an arbitrary atmospheric gas can be introduced. The laser light emitted from the laser device arranged outside the chamber is guided by the optical means, and is condensed as necessary to irradiate the target.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
文献で述べられているようにレーザ蒸着法で成膜した薄
膜の表面には微粒子が存在し、平滑性を損なっている。
このような酸化物超電導薄膜は、特性も一様でないので
超電導デバイスに応用することが難しい。そこで、本発
明の目的は、レーザ蒸着法により、表面が平滑な高品質
の酸化物超電導体等の薄膜を成膜する方法を提供するこ
とにある。
However, as described in the above-mentioned document, fine particles are present on the surface of the thin film formed by the laser vapor deposition method, and the smoothness is impaired.
Such an oxide superconducting thin film is difficult to apply to a superconducting device because the characteristics are not uniform. Therefore, an object of the present invention is to provide a method for forming a thin film of a high quality oxide superconductor having a smooth surface by a laser deposition method.

【0006】[0006]

【課題を解決するための手段】本発明に従うと、内部の
圧力および雰囲気が調整可能な気密チャンバ内でターゲ
ットにレーザ光を照射して、ターゲットの被照射面に垂
直に配置した基板の成膜面上にターゲットを構成する材
料に基づく薄膜を成長させる方法であって、ターゲット
の被照射面の被照射部の最も基板に近い点と、基板成膜
面のターゲットに最も近い点とを結ぶ直線が、ターゲッ
トの被照射面の被照射部の最も基板に近い点に立つ法線
との間でなす角が11°以下となるようターゲットおよび
基板を配置して成膜を行うことを特徴とするレーザ蒸着
法による薄膜の作製方法が提供される。
According to the present invention, a target is irradiated with laser light in an airtight chamber whose internal pressure and atmosphere can be adjusted to form a film on a substrate which is arranged perpendicularly to the surface to be irradiated of the target. A method for growing a thin film based on a material forming a target on a surface, which is a straight line connecting a point on the irradiated surface of the target closest to the substrate and a point on the substrate deposition surface closest to the target. Is characterized in that the target and the substrate are arranged so that the angle formed between the target surface and the normal line of the irradiated portion of the target that is located at a point closest to the substrate is 11 ° or less A method for forming a thin film by a laser deposition method is provided.

【0007】[0007]

【作用】本発明の方法は、レーザ蒸着法により基板上に
薄膜を成膜する際に、基板をターゲットの被照射面に垂
直に、且つ被照射部に近接させて配置させる。これによ
り、表面の微粒子が少ない高品質な薄膜を成膜する。本
発明者等の研究によれば、レーザ蒸着法で成膜された薄
膜の表面に存在する微粒子は、薄膜の析出物ではなく、
レーザ光によりターゲットから直接溶融物として発生し
た粒子が飛来して付着したものである。従って、ターゲ
ットからの粒子が、到達し難い位置に基板を配置するこ
とにより、薄膜表面の微粒子を減少させることが可能で
ある。
According to the method of the present invention, when a thin film is formed on the substrate by the laser vapor deposition method, the substrate is arranged perpendicularly to the irradiation surface of the target and close to the irradiation portion. As a result, a high-quality thin film with few fine particles on the surface is formed. According to the research conducted by the present inventors, the fine particles present on the surface of the thin film formed by the laser vapor deposition method are not precipitates of the thin film,
Particles generated as a melt directly from the target by the laser light fly and adhere. Therefore, it is possible to reduce fine particles on the surface of the thin film by disposing the substrate at a position where particles from the target are hard to reach.

【0008】基板成膜面をターゲットの被照射面に垂直
にし、且つ被照射面における法線に近接させることによ
り、ターゲットの被照射面の被照射部から基板を臨む角
度が、ターゲットの被照射面に対して垂直に近くなる。
つまり、ターゲットの被照射面の被照射部から基板を臨
む角度範囲が小さくなる。ターゲットからの蒸着物は、
分子や原子レベルの大きさであるので、チャンバ内の雰
囲気ガスと衝突し、ブラウン運動を行う。従って、ター
ゲットの被照射面の被照射部から基板を臨む角度が、タ
ーゲットの被照射面に対して垂直に近く、即ち、蒸着物
の初期進行方向が基板の成膜面とほぼ平行であっても、
ブラウン運動により基板の成膜面に蒸着物が付着する。
By making the substrate film formation surface perpendicular to the irradiation surface of the target and close to the normal to the irradiation surface of the target, the angle at which the substrate is viewed from the irradiation portion of the irradiation surface of the target is the irradiation target of the target. It becomes almost perpendicular to the plane.
In other words, the angle range of the target surface to be irradiated from the irradiated portion facing the substrate is reduced. The deposit from the target is
Since the size is at the molecular or atomic level, it collides with the atmospheric gas in the chamber and performs Brownian motion. Therefore, the angle of the irradiated surface of the target that faces the irradiated portion of the target is nearly perpendicular to the irradiated surface of the target, that is, the initial traveling direction of the vapor deposition is substantially parallel to the deposition surface of the substrate. Also,
Due to the Brownian motion, the deposit adheres to the film forming surface of the substrate.

【0009】一方、ターゲットからの溶融物の粒子は、
ターゲットからの蒸着物よりははるかに大きい質量を有
するため、雰囲気ガスとの衝突によるブラウン運動が起
こらない。即ち、溶融物の初期進行方向が基板の成膜面
とほぼ平行ならば、基板成膜面上を通過する。また、溶
融物の初期進行方向が基板の成膜面に対して大きな角度
をなす場合には、溶融物は基板まで到達しない。従っ
て、上記の本発明に従って配置された基板の成膜面に
は、ターゲットからの溶融物の粒子は付着し難く、蒸着
物は十分に付着することができる。本発明の方法では、
ターゲットの被照射面の被照射部から、基板のターゲッ
トの被照射面に最も近い部分を臨む角度が、11°以下で
あることが好ましい。
On the other hand, the particles of the melt from the target are
Since it has a much larger mass than the deposit from the target, Brownian motion due to collision with ambient gas does not occur. That is, if the initial advancing direction of the melt is substantially parallel to the film formation surface of the substrate, it passes over the substrate film formation surface. Further, when the initial traveling direction of the melt forms a large angle with the film formation surface of the substrate, the melt does not reach the substrate. Therefore, the particles of the melt from the target are less likely to adhere to the film formation surface of the substrate arranged according to the present invention described above, and the deposit can be sufficiently adhered. In the method of the present invention,
It is preferable that the angle from the irradiated portion of the target irradiated surface to the portion of the substrate closest to the target irradiated surface be 11 ° or less.

【0010】本発明の方法で使用する酸化物超電導体
は、Y1Ba2Cu37-X、Bi2Sr2Ca2Cu3x 、Tl2Ba2Ca2Cu3
x 等の高温酸化物超電導体が好ましく、また、レーザ
としてはエキシマレーザ、YAGレーザの高調波等を使
用することが好ましい。
The oxide superconductors used in the method of the present invention are Y 1 Ba 2 Cu 3 O 7-X , Bi 2 Sr 2 Ca 2 Cu 3 O x , Tl 2 Ba 2 Ca 2 Cu 3
A high-temperature oxide superconductor such as O x is preferable, and as the laser, it is preferable to use a harmonic wave of an excimer laser or a YAG laser.

【0011】以下、本発明を実施例によりさらに詳しく
説明するが、以下の開示は本発明の単なる実施例に過ぎ
ず、本発明の技術的範囲をなんら制限するものではな
い。
Hereinafter, the present invention will be described in more detail with reference to examples, but the following disclosure is merely examples of the present invention and does not limit the technical scope of the present invention.

【0012】[0012]

【実施例】図1(a)に、本発明の方法を実施するレーザ
蒸着装置の一例の概略図を示す。図1(a)のレーザ蒸着
装置は、レーザ装置1と、気密チャンバ40と、レーザ装
置1が発振したレーザ光10を集光し、チャンバ40内に誘
導するミラー2およびレンズ3とを具備する。気密チャ
ンバ40は、レーザ光10が入射する入射窓41、排気口42お
よびガス導入口43を備え、内部の圧力および雰囲気を任
意に変更することが可能である。また、気密チャンバ40
の内部には、モータ47により搭載したターゲット5を回
転することが可能なターゲットホルダ45が、入射窓41か
ら入射したレーザ光10がターゲット5の回転軸からやや
外れた部位に当たるような位置に配置されている。さら
に、気密チャンバ40の内部には、基板6をターゲット5
に対し垂直に搭載する基板ホルダ46が備えられる。基板
ホルダ46は、モータ48により基板6を回転させることが
可能であり、且つ基板6の位置を軸方向および軸に対し
垂直な方向にに移動させることも可能である。基板ホル
ダ46には、ヒータ(不図示)が内蔵され、基板6を加熱
できる。
EXAMPLE FIG. 1 (a) shows a schematic view of an example of a laser vapor deposition apparatus for carrying out the method of the present invention. The laser vapor deposition apparatus shown in FIG. 1A includes a laser apparatus 1, an airtight chamber 40, a mirror 2 and a lens 3 that collect the laser light 10 oscillated by the laser apparatus 1 and guide it into the chamber 40. . The hermetic chamber 40 includes an entrance window 41 through which the laser light 10 enters, an exhaust port 42, and a gas introduction port 43, and the pressure and atmosphere inside can be arbitrarily changed. Also, the airtight chamber 40
A target holder 45 capable of rotating the target 5 mounted by a motor 47 is disposed inside the position such that the laser light 10 incident from the incident window 41 hits a portion slightly off the rotation axis of the target 5. Has been done. Furthermore, the substrate 6 is placed inside the airtight chamber 40 as the target 5.
A substrate holder 46 that is mounted perpendicularly to is provided. The substrate holder 46 can rotate the substrate 6 by a motor 48, and can also move the position of the substrate 6 in the axial direction and in the direction perpendicular to the axis. A heater (not shown) is built in the substrate holder 46 to heat the substrate 6.

【0013】レーザ装置1の発振したレーザ光10は、ミ
ラー2により反射され、レンズ3を透過し、入射窓41を
経てターゲット7上に集光される。レーザ光10がターゲ
ット5に照射されると、被照射面にほぼ垂直にプルーム
とよばれる発光が発生する。上記の装置では、ターゲッ
ト5を回転させながらレーザ光10を照射することで、タ
ーゲット5全体が使用されるようにしている。また、基
板6を回転させることにより、均一な薄膜が成膜される
ようにしている。
The laser light 10 oscillated by the laser device 1 is reflected by the mirror 2, passes through the lens 3, and is focused on the target 7 through the entrance window 41. When the laser light 10 is irradiated on the target 5, light emission called a plume is generated almost perpendicularly to the surface to be irradiated. In the above apparatus, the target 5 as a whole is used by irradiating the laser light 10 while rotating the target 5. Also, by rotating the substrate 6, a uniform thin film is formed.

【0014】上記のレーザ蒸着装置を使用して、ターゲ
ットの被照射面の被照射部の最も基板に近い点と、基板
成膜面のターゲットに最も近い点とを結ぶ直線が、ター
ゲットの被照射面の被照射部の最も基板に近い点に立つ
法線との間でなす角を変えて酸化物超電導薄膜を成膜し
た。具体的には、ターゲットの被照射面の被照射部の最
も基板に近い点に立つ法線と基板成膜面との間の距離を
変えて成膜を行った。本実施例では、基板6には、直径
76mm、厚さ0.4 mmの円板上のSi単結晶基板を使用し、タ
ーゲット5には、直径76mm、厚さ5mmの円板上のY1Ba2
Cu37-X酸化物超電導体の焼結体を使用した。以下、成
膜工程を説明する。
Using the above laser vapor deposition apparatus, a straight line connecting a point on the irradiated surface of the target closest to the substrate and a point on the film forming surface of the substrate closest to the target is irradiated with the target. The oxide superconducting thin film was formed by changing the angle formed between the irradiated portion of the surface and the normal line standing at the point closest to the substrate. Specifically, film formation was performed by changing the distance between the normal line of the target surface of the target surface to be irradiated closest to the substrate and the substrate film formation surface. In this embodiment, the substrate 6 has a diameter
A Si single crystal substrate with a disc of 76 mm and a thickness of 0.4 mm is used, and the target 5 is Y 1 Ba 2 on a disc with a diameter of 76 mm and a thickness of 5 mm.
A sintered body of Cu 3 O 7-X oxide superconductor was used. The film forming process will be described below.

【0015】最初に、ターゲット5をターゲットホルダ
45に、基板6を基板ホルダ46にセットした。気密チャン
バ40の内部を1×10-6Torrに排気してからO2 を導入
し、圧力を1Torrに調整した。基板6とターゲット5と
は、図1(b)に概略的に示すよう、基板6の成膜面とタ
ーゲット5の被照射面とが互いに垂直で、それぞれの中
心に立つ法線が直交するように配置した。
First, the target 5 is attached to the target holder.
The substrate 6 was set on the substrate holder 46 at 45. The inside of the airtight chamber 40 was evacuated to 1 × 10 −6 Torr and then O 2 was introduced to adjust the pressure to 1 Torr. As schematically shown in FIG. 1B, the substrate 6 and the target 5 are arranged such that the film formation surface of the substrate 6 and the irradiated surface of the target 5 are perpendicular to each other and the normal lines standing at the centers thereof are orthogonal to each other. Placed in.

【0016】ターゲット5の被照射面のレーザ光10が照
射される位置で最も基板に近い点に立つ法線と基板成膜
面との間の距離dは0、2.5 mm、5mm、10mm、15mmおよ
び20mmとした。ターゲットの被照射面の被照射部の最も
基板に近い点と、基板成膜面のターゲットに最も近い点
とを結ぶ直線が、ターゲットの被照射面の被照射部の最
も基板に近い点に立つ法線との間でなす角は、本実施例
において、上記距離dが、0のときは0°、2.5 mmのと
きは3°、5.0 mmのときは6°、10mmのときは11°、15
mmのときは17°、20mmのときは23°であった。また、直
径76mmの基板全体に均一な膜厚の薄膜を成膜するため
に、基板を回転し、さらに、レーザ光をターゲット上で
直線走査した。他の共通な成膜条件を以下に示す。 基板表面温度 350 ℃ 基板中心−ターゲット間距離 90 mm 酸素圧力 1 Torr レーザエネルギ(ターゲット上)330 mJ/パルス レーザ照射面積 4 × 1 mm2 レーザパルスレート 30 Hz
The distance d between the normal line standing at the point closest to the substrate at the position where the laser light 10 is irradiated on the surface to be irradiated of the target 5 and the substrate film-forming surface is 0, 2.5 mm, 5 mm, 10 mm, 15 mm. And 20 mm. A straight line connecting a point of the irradiated surface of the target closest to the substrate and a point of the substrate deposition surface closest to the target stands at a point of the irradiated portion of the target irradiated surface closest to the substrate. In this embodiment, the angle formed with the normal is 0 ° when the distance d is 0, 3 ° when the distance d is 2.5 mm, 6 ° when the distance d is 5.0 mm, and 11 ° when the distance is 10 mm. 15
It was 17 ° at mm and 23 ° at 20 mm. Further, in order to form a thin film having a uniform film thickness on the entire substrate having a diameter of 76 mm, the substrate was rotated, and laser light was linearly scanned on the target. Other common film forming conditions are shown below. Substrate surface temperature 350 ° C Distance between substrate center and target 90 mm Oxygen pressure 1 Torr Laser energy (on target) 330 mJ / pulse Laser irradiation area 4 × 1 mm 2 Laser pulse rate 30 Hz

【0017】各酸化物超電導薄膜は、300nm の厚さまで
成長させた。成膜後の各酸化物超電導薄膜の表面を走査
型電子顕微鏡を使用して1000倍で観察し、表面の微粒子
の密度を求めた。結果を以下に示す。
Each oxide superconducting thin film was grown to a thickness of 300 nm. The surface of each oxide superconducting thin film after film formation was observed at 1000 times using a scanning electron microscope, and the density of fine particles on the surface was determined. The results are shown below.

【表1】 角度(°) 0 3 6 11 17 23 距離d(mm) 0 2.5 5 10 15 20 密度(×104 個/cm2) 10 12 10 33 72 80[Table 1] Angle (°) 0 3 6 11 17 23 Distance d (mm) 0 2.5 5 10 15 20 Density (× 10 4 pieces / cm 2 ) 10 12 10 33 72 80

【0018】その結果、ターゲットの被照射面の被照射
部の最も基板に近い点と、基板成膜面のターゲットに最
も近い点とを結ぶ直線が、ターゲットの被照射面の被照
射部の最も基板に近い点に立つ法線との間でなす角を11
°以下とする、本発明の方法で成膜された酸化物超電導
薄膜の表面には、明らかに微粒子が少ないことが確認さ
れた。
As a result, the straight line connecting the point on the irradiated surface of the target closest to the substrate and the point on the substrate film forming surface closest to the target is the maximum of the irradiated portion on the irradiated surface of the target. The angle between the normal line at a point near the substrate and the normal line is 11
It was confirmed that the surface of the oxide superconducting thin film formed by the method of the present invention having a temperature of less than or equal to 0 ° is obviously free of fine particles.

【0019】[0019]

【発明の効果】以上説明したように、本発明の方法によ
れば、表面の微粒子が少ない高品質の酸化物超電導薄膜
が、レーザ蒸着法で成膜可能である。レーザ蒸着法は、
成膜速度が速く、装置が簡単なので、本発明に従えば、
高品質な酸化物超電導薄膜を低コストで作製することが
できる。
As described above, according to the method of the present invention, a high-quality oxide superconducting thin film with few fine particles on the surface can be formed by the laser deposition method. The laser deposition method is
Since the film forming speed is high and the apparatus is simple, according to the present invention,
A high quality oxide superconducting thin film can be manufactured at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は、本発明の方法を実施する装置の概略図
であり、(b)は、実施例における基板とターゲットとの
配置を示す概略図である。
1A is a schematic view of an apparatus for carrying out the method of the present invention, and FIG. 1B is a schematic view showing the arrangement of a substrate and a target in an example.

【符号の説明】[Explanation of symbols]

1 レーザ装置 2 ミラー 3 レンズ 5 ターゲット 6 基板 10 レーザ光 40 気密チャンバ 41 入射窓 42 排気口 43 ガス導入口 45 ターゲットホルダ 46 基板ホルダ 1 Laser Device 2 Mirror 3 Lens 5 Target 6 Substrate 10 Laser Light 40 Airtight Chamber 41 Entrance Window 42 Exhaust Port 43 Gas Inlet 45 Target Holder 46 Substrate Holder

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01B 12/06 ZAA H01B 12/06 ZAA 13/00 565 13/00 565D H01L 39/24 ZAA H01L 39/24 ZAAB ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location H01B 12/06 ZAA H01B 12/06 ZAA 13/00 565 13/00 565D H01L 39/24 ZAA H01L 39 / 24 ZAAB

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内部の圧力および雰囲気が調整可能な気
密チャンバ内でターゲットにレーザ光を照射して、ター
ゲットの被照射面に垂直に配置した基板の成膜面上にタ
ーゲットを構成する材料に基づく薄膜を成長させる方法
であって、ターゲットの被照射面の被照射部の最も基板
に近い点と、基板成膜面のターゲットに最も近い点とを
結ぶ直線が、ターゲットの被照射面の被照射部の最も基
板に近い点に立つ法線との間でなす角が11°以下となる
ようターゲットおよび基板を配置して成膜を行うことを
特徴とするレーザ蒸着法による薄膜の作製方法。
1. A material constituting a target is formed by irradiating a target with laser light in an airtight chamber in which an internal pressure and an atmosphere can be adjusted, and forming a target on a film formation surface of a substrate arranged perpendicularly to a surface to be irradiated of the target. In the method for growing a thin film based on the target, a straight line connecting a point on the irradiated surface of the target closest to the substrate and a point on the film forming surface of the substrate closest to the target is A method for producing a thin film by a laser vapor deposition method, which comprises arranging a target and a substrate so that an angle formed between the irradiation part and a normal line standing at a point closest to the substrate is 11 ° or less.
JP05361095A 1995-02-17 1995-02-17 Thin film fabrication method by laser deposition Expired - Fee Related JP3610617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05361095A JP3610617B2 (en) 1995-02-17 1995-02-17 Thin film fabrication method by laser deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05361095A JP3610617B2 (en) 1995-02-17 1995-02-17 Thin film fabrication method by laser deposition

Publications (2)

Publication Number Publication Date
JPH08225931A true JPH08225931A (en) 1996-09-03
JP3610617B2 JP3610617B2 (en) 2005-01-19

Family

ID=12947677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05361095A Expired - Fee Related JP3610617B2 (en) 1995-02-17 1995-02-17 Thin film fabrication method by laser deposition

Country Status (1)

Country Link
JP (1) JP3610617B2 (en)

Also Published As

Publication number Publication date
JP3610617B2 (en) 2005-01-19

Similar Documents

Publication Publication Date Title
US7985635B2 (en) Laser process
JPH0870144A (en) Manufacture of superconductor parts
US5660746A (en) Dual-laser process for film deposition
KR100276963B1 (en) Method and apparatus for depositing superconducting layer on substrate surface by off-axis laser fusing method
US6527967B1 (en) Thin piece forming method
US20110027928A1 (en) PULSED LASER DEPOSITION OF HIGH QUALITY PHOTOLUMINESCENT GaN FILMS
US5264412A (en) Laser ablation method for forming oxide superconducting thin films using a homogenized laser beam
JPH08225931A (en) Formation of thin film by laser vapor deposition method
JPH0885865A (en) Formation of thin film by laser vapor depositing method
JPH03174306A (en) Production of oxide superconductor
JP3399184B2 (en) Method of forming thin film by laser evaporation method
JP3080096B2 (en) Fabrication method of large area thin film
JPH08225930A (en) Formation of thin film by laser vapor deposition method and device thereof
JP2001140059A (en) Film deposition method by laser evaporation
JPH11246965A (en) Formation of thin film by laser vapor deposition method and laser vapor deposition device used for the method
JPH04182317A (en) Formation of oxide superconducting thin film
JPH04337445A (en) Manufacture of microsection
JPH0338833A (en) Wiring correction apparatus
JP2922058B2 (en) Thin film making method and thin film making equipment
JPH0446082A (en) Formation of high-quality oxide superconducting thin film
JPH03287760A (en) Production of thin film with large area
JPH08333674A (en) Formation of large surface area thin film by laser deposition method and device therefor
CN2245620Y (en) Laser automatic granular removing device for coating system
JPH03174305A (en) Production of oxide superconductor
JPH07224376A (en) Formation of thin film by laser application method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041011

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees