JPH03174306A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JPH03174306A
JPH03174306A JP1311738A JP31173889A JPH03174306A JP H03174306 A JPH03174306 A JP H03174306A JP 1311738 A JP1311738 A JP 1311738A JP 31173889 A JP31173889 A JP 31173889A JP H03174306 A JPH03174306 A JP H03174306A
Authority
JP
Japan
Prior art keywords
target
film
oxide superconductor
laser
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1311738A
Other languages
Japanese (ja)
Inventor
Kazunori Onabe
和憲 尾鍋
Nobuyuki Sadakata
伸行 定方
Tsukasa Kono
河野 宰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIYOUDENDOU HATSUDEN KANREN KIKI ZAIRYO GIJUTSU KENKYU KUMIAI
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Original Assignee
CHIYOUDENDOU HATSUDEN KANREN KIKI ZAIRYO GIJUTSU KENKYU KUMIAI
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIYOUDENDOU HATSUDEN KANREN KIKI ZAIRYO GIJUTSU KENKYU KUMIAI, Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai filed Critical CHIYOUDENDOU HATSUDEN KANREN KIKI ZAIRYO GIJUTSU KENKYU KUMIAI
Priority to JP1311738A priority Critical patent/JPH03174306A/en
Publication of JPH03174306A publication Critical patent/JPH03174306A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To form a film of an oxide superconductor having stable quality and thickness over the wide range of the surface of a substrate by swinging a target during irradiation with laser beams when an oxide superconducting film is produced by vapor deposition with laser. CONSTITUTION:A target 3 made of an oxide superconductor or similar in compsn. to the superconductor is set in a vapor deposition chamber 1a and irradiated with laser beams generated from laser 7. By this irradiation, a surface part of the target 3 is scooped off and the generated particles are deposited on a substrate 2 set near the target 3 to produce an oxide superconductor. In this method, the target 3 is swung in at least one of perpendicular, transverse and oblique directions during irradiation with laser beams and a film of the oxide superconductor is formed.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、超電導マグネット、超電導送電、医療用i
′a、超電導エネルギー佇蔵、超電導素子用などとして
応用開発が進められている酸化物超電導体の製造方法に
関する。
[Detailed Description of the Invention] "Industrial Application Field" This invention is applicable to superconducting magnets, superconducting power transmission, medical i
This invention relates to a method for manufacturing oxide superconductors, which are currently being developed for applications such as superconducting energy storage and superconducting devices.

「従来の技術」 従来、酸化物系の超電導体を製造する方法として、真空
蒸着法、スパッタリング法、レーザ蒸着法、MIl法(
分子線エピタキシー法)、CVD法(化学気相成長法)
、IVD法(イオン気相成長法)などの成膜法が知られ
ている。また、これらの各種の成膜方法において、均質
で超電導特性の良好な酸化物超電導膜を製造できる方法
として、真空成膜プロセスを用い、熱あるいは高周波プ
ラズマ、イオンビームなどのエネルギーをターゲットに
Jl<1射してターゲットから叩き出された粒子を基板
上に堆積させる技術が主流となっている。
"Conventional technology" Conventionally, methods for producing oxide-based superconductors include vacuum evaporation, sputtering, laser evaporation, and MIl (
molecular beam epitaxy method), CVD method (chemical vapor deposition method)
, IVD (ion vapor deposition) and other film forming methods are known. In addition, among these various film forming methods, a vacuum film forming process is used as a method for manufacturing an oxide superconducting film that is homogeneous and has good superconducting properties, and Jl< The mainstream technology is to deposit particles ejected from a target by a single shot onto a substrate.

このような各種の成膜法において、緻密な膜の生成が可
能であって、成膜速度の速い技術として、レーザ蒸着法
が注目されている。このレーザ蒸着法は、目的とする酸
化物超電導体の組成と同一あるいは近似した組成のター
ゲットを用い、このターゲットにレーザビームを照射し
てターゲットの表面部分をえぐり取り、この粒子を基材
上に堆積させることで酸化物超電導体を製造する方法で
あり、他の成膜法に比較して以下に説明する利点がある
ことで知られている。
Among these various film-forming methods, laser evaporation is attracting attention as a technique that can produce dense films and has a high film-forming rate. This laser vapor deposition method uses a target with a composition that is the same as or similar to the composition of the target oxide superconductor, irradiates the target with a laser beam to scoop out the surface part of the target, and deposits the particles onto the base material. This is a method of manufacturing oxide superconductors by deposition, and is known to have the following advantages compared to other film formation methods.

■通常のスパッタリング法ではターゲット組成と生成膜
の組成がかなりずれる領内があるか、レーザ蒸着法にお
いては、用いたターゲットの組成と生成膜の組成とのず
れが少ないので、目的の組成の酸化物超電導膜を得やす
い利点かある。
■ In normal sputtering methods, there is a region where the composition of the target and the composition of the produced film are quite different, or in laser evaporation method, there is a small difference between the composition of the target used and the composition of the produced film, so the oxide of the desired composition can be produced. This has the advantage that it is easy to obtain superconducting films.

■通常のスパッタリング法においては、厚さ1μm程度
の酸化物超電導膜を製造するためにIO時11fJ程度
の処理時111ノを必要とするが、レーザ蒸着法におい
ては厚さ数μm程度の酸化物超電導膜を1時間程度で製
造できる利点がある。
■In the normal sputtering method, a processing time of about 11 fJ at IO is required to produce an oxide superconducting film with a thickness of about 1 μm, but in the laser evaporation method, an oxide superconducting film with a thickness of about several μm is required. This method has the advantage that a superconducting film can be manufactured in about one hour.

■蒸着法やスパッタリング法においては、蒸発源や電極
などを真空雰囲気中に配置する必要があるが、レーザ譜
着法で1よ、レーザ光を処理装置の外部から導くことが
でき、レーザ発行装置などを処理装置の外部に設けるこ
とができるので、処理装置の内部を質の良い真空条件に
保つことが容易であって、種々の気相雰囲気で成膜でき
る利点がある。
■In the evaporation method and sputtering method, it is necessary to place the evaporation source and electrodes in a vacuum atmosphere, but with the laser notation method, the laser beam can be guided from outside the processing equipment, and the laser emitting device etc. can be provided outside the processing apparatus, so it is easy to maintain a high-quality vacuum condition inside the processing apparatus, and there is an advantage that films can be formed in various gaseous atmospheres.

「発明が解決しようとする課題」 前述のレーザ蒸着法で基材上に酸化物超電導体の膜を形
成する場合、ターゲット表面の1箇所にレーザビームを
集光照射してその部分から粒子を叩き出すので、叩き出
された粒子はターゲットから放射状Iこ広がりつつ拡散
して基Hに接近し、基材の表面に衝突して堆積する。従
って基材表面fこおいて、ターゲットから遠い部分と近
い部分で堆積する粒子数に差が生じ、基材上に形成され
る膜の質や厚さに不均一性を引き起こす問題があった。
"Problem to be Solved by the Invention" When forming an oxide superconductor film on a substrate using the laser vapor deposition method described above, a laser beam is focused on one spot on the target surface to knock out particles from that spot. As a result, the ejected particles spread out radially from the target, diffuse, approach the base H, collide with the surface of the base material, and are deposited. Therefore, on the base material surface f, there is a difference in the number of particles deposited on a part far from the target and a part close to the target, which causes a problem of causing non-uniformity in the quality and thickness of the film formed on the base material.

そして、このようζこ膜質と膜厚が不均一になると、超
電導特性の優れた膜を碁打上の狭い範囲にしか形成でき
ない問題がある。
When the film quality and thickness become non-uniform, there is a problem that a film with excellent superconducting properties can only be formed in a narrow range on the board.

本発明は前記課題を解決するためになされたもので、基
材表面の広い範囲にわたり膜質や膜厚の安定した酸化物
超電導体の模を形成することができるt!J遣方法を提
供することを目的とする。
The present invention was made to solve the above problems, and it is possible to form an oxide superconductor pattern with stable film quality and thickness over a wide range of the surface of a base material. The purpose is to provide a way to send money.

「課題を解決するための手段」 本発明は前記課題を解決するために、蒸着処理室内Iこ
酸化物超電導体または酸化物超電導体と近似組成のター
ゲットを設置し、このターゲットにレーザビームを照射
してターゲットの表面部分をえぐり取り、発生させた粒
子をターゲットの近傍に設置した基材上に堆積させて酸
化物超電導体を製造する方法において、レーザビームを
照射中のターゲットを上下方向と左右方向と斜め方向の
少なくとも1つの方向に橋動さU・て成膜するものであ
る。
"Means for Solving the Problems" In order to solve the problems described above, the present invention installs an oxide superconductor or a target having a composition similar to the oxide superconductor in a vapor deposition chamber, and irradiates this target with a laser beam. In the method of manufacturing oxide superconductors by gouging out the surface part of the target and depositing the generated particles on a base material placed near the target, the target is irradiated with a laser beam in the vertical and horizontal directions. The film is formed by moving the bridge in at least one of the direction and the diagonal direction.

「作用 」 レーザビームをターゲットに照射して成膜する際にター
ゲットを周動させることでターゲットから叩き出された
粒子の流れを基材表面の広い範囲に振り分けつつ地積さ
せることができ、基材上に(よ厚さと質の均一化した酸
化物超電導体の膜が生成する。また、ターゲットから叩
き出された粒子が碁打上の広い範囲に堆積するので、膜
厚が均一で膜質の整った大面積の酸化物超電導体の膜を
生成できる。更に、レーザ蒸着法で成膜するので、成膜
時間が短くなるとともに、緻密な酸化物超電導体の膜が
生成する。
"Function" When forming a film by irradiating the target with a laser beam, by rotating the target, the flow of particles ejected from the target can be distributed over a wide range of the base material surface and deposited on the base material. An oxide superconductor film with a uniform thickness and quality is formed on the top of the Go board.In addition, the particles ejected from the target are deposited over a wide area on the board, resulting in a film with a uniform thickness and quality. A large-area oxide superconductor film can be produced.Furthermore, since the film is formed by laser evaporation, the film formation time is shortened and a dense oxide superconductor film is produced.

「実施例」 第1図は本発明方法を実施するために使用する装置の一
例を示すもので、■は処理室4を示し、この処理容器!
の内部の蒸着処理室1aには基板2とターゲット3が設
置されている。
"Example" Fig. 1 shows an example of the apparatus used to carry out the method of the present invention, where ■ indicates the processing chamber 4, and this processing container!
A substrate 2 and a target 3 are installed in a vapor deposition processing chamber 1a inside.

処理室″a1は排気孔1bを介して図示略の真空排気装
置に接続されて内部を真空排気できるようになっている
The processing chamber "a1" is connected to a vacuum evacuation device (not shown) via an exhaust hole 1b so that the inside can be evacuated.

蒸着処理室1aの底部には基台4が設けられ、この基台
4の上面に基板(基材)2が水平に設置されるとともに
、基板2の斜め上方側に、支持板5によって支持された
ターゲット3カ(傾斜状態で設けられている。
A base 4 is provided at the bottom of the vapor deposition chamber 1a, and a substrate (substrate) 2 is installed horizontally on the top surface of the base 4, and is supported by a support plate 5 diagonally above the substrate 2. 3 targets (installed in an inclined position).

前記ターゲット3は、形成しようとする酸化物超電導体
の膜と同等または近似した組成、あるいは、成膜中に退
避しやすい成分を多く含有させた複合酸化物の焼結体、
または、酸化物超電導体のバルクなどから形成されてい
る。現在知られている臨界温度の高い酸化物超電導体と
して具体的には、Y −13a−Cu−0系、B1−9
 r−Ca−Cu−0系、T I−n a−Ca−Cu
−0系などがあるので、ターゲット3としてこれらの系
のものなどを用いることができる。なお、酸化物面rr
i導体を構成する元素の中で蒸気圧が高く、蒸着の際に
飛散しやすい元素らあるので、このような元素を含むタ
ーゲット3を使用する場合(よ、蒸気圧の高い元素を目
的とする所定の割合よりも多く含むターゲットを用いれ
ば良い。
The target 3 is a sintered body of a composite oxide having a composition equivalent to or similar to that of the oxide superconductor film to be formed, or containing a large amount of components that are easily evacuated during film formation.
Alternatively, it is formed from the bulk of an oxide superconductor. Specifically, currently known oxide superconductors with high critical temperatures include Y-13a-Cu-0 series, B1-9
r-Ca-Cu-0 system, T I-na-Ca-Cu
Since there are -0 series, etc., those of these series can be used as the target 3. Note that the oxide surface rr
Among the elements that make up the i-conductor, some elements have high vapor pressure and are easily scattered during vapor deposition. A target containing more than a predetermined ratio may be used.

前記基台4は加熱ヒータを内蔵したもので、基板2を所
望の温度に加熱できるようになっている。
The base 4 has a built-in heater, and can heat the substrate 2 to a desired temperature.

前記支持板5は、その中心部分を通過し、基板3と平行
な中心線5aを中心として、所要の角度(例えば900
)回動自在Iこ支持されている。なお、前記支持板5は
その近傍に設置された図示略のモータなどの駆動装置に
よって中心軸5aを中心に一定の速度であるいは間欠的
に橢動運動できるようになっている。
The support plate 5 passes through its central portion and is tilted at a required angle (for example, 900 degrees
) It is rotatably supported. The support plate 5 can be slid at a constant speed or intermittently about the central axis 5a by a drive device such as a motor (not shown) installed near the support plate 5.

一方、処理容器1の側方には、レーザ発光装置7と第1
反射1Bと集光レンズ9と第2反射鏡10が設けられ、
レーザ発光装置7が発生さ仕たレーザビームを処理容器
lの側壁に取り付けられた透明窓!1を介してターゲッ
ト3に集光照射できるようになっている。レーザ発光装
置7はターゲット3から構成粒子を叩き出すことができ
るものであれば、YAGレーザ、CO,レーザ、エキシ
マレーザなどのいずれのものを使用しても良い。
On the other hand, on the side of the processing container 1, a laser emitting device 7 and a first
A reflection 1B, a condensing lens 9, and a second reflection mirror 10 are provided,
The laser beam generated by the laser emitting device 7 is transmitted through a transparent window attached to the side wall of the processing container l! It is possible to irradiate the target 3 with focused light through the lens 1. As the laser emitting device 7, any device such as a YAG laser, a CO laser, an excimer laser, etc. may be used as long as it can eject constituent particles from the target 3.

また、処理容器1の上方にはレーザ発光装置12と集光
レンズ!3が設けられ、処理室41の天井壁に取り付け
られた透明窓14を介してレーザビームを基板2に集光
照射し、基板2を加熱できるようになっている。
Also, above the processing container 1 is a laser emitting device 12 and a condensing lens! 3 is provided so that the substrate 2 can be heated by concentrating a laser beam on the substrate 2 through a transparent window 14 attached to the ceiling wall of the processing chamber 41.

次に第1図に示す装置を用いて本発明方法を実施する場
合について説明する。
Next, the case where the method of the present invention is implemented using the apparatus shown in FIG. 1 will be explained.

基板2とターゲット3を蒸着処理室la内に第1図に示
すようにセットしたならば、蒸着処理室laを真空排気
する。ここで必要に応じて蒸着処理室1aに酸素ガスを
導入して蒸着処理室1aを酸素雰囲気としても良い。ま
た、基台4の加熱ヒータを作動させるか、あるいは、レ
ーザ発光装置!2からレーザビームを基板2に照射して
基板2を所望の温度に加熱する。
After the substrate 2 and target 3 are set in the vapor deposition chamber la as shown in FIG. 1, the vapor deposition chamber la is evacuated. Here, if necessary, oxygen gas may be introduced into the vapor deposition processing chamber 1a to create an oxygen atmosphere in the vapor deposition processing chamber 1a. Also, operate the heater on the base 4, or operate the laser emitting device! 2 irradiates the substrate 2 with a laser beam to heat the substrate 2 to a desired temperature.

次1こレーザ発光装置7から発生させたレーザビームを
第1反射鏡8と集光レンズ9と第2反射鏡10と透明窓
IIを介して蒸着処理室la内に導き、ターゲット3の
表面に集光照射する。この際に、集光レンズ9の位置調
節を行ってターゲット3の表向にレーザビームの焦点を
合わせる。
Next, the laser beam generated from the laser emitting device 7 is guided into the vapor deposition chamber la through the first reflecting mirror 8, the condensing lens 9, the second reflecting mirror 10, and the transparent window II, and is directed onto the surface of the target 3. Emits focused light. At this time, the position of the condensing lens 9 is adjusted to focus the laser beam on the surface of the target 3.

レーダ1ビームが照射されたターゲット3は表面部分が
えぐり取られるか蒸発よれて構成粒子が叩き出され、そ
の粒子は第1図のR1線で示すよう1こ放射状に広がり
つつ飛散して基板2の表面に堆積する。そして、この堆
積の際に、支持板5を第1図あるいは第2図示の矢印a
方向に所定の速度で往復!出動連動させる。すると、タ
ーゲット3から叩き出された粒子の広がりは更に広い範
囲に広がって基材2の表面に達する。このように粒子の
広がりを拡大しながら基材2上に成膜すると、基材2の
表面の広い範囲に粒子を均一に堆積させることができる
ので、基材2上に厚さと質の均一な堆積層を形成できる
The surface of the target 3 irradiated with the radar 1 beam is gouged out or evaporated to knock out its constituent particles, which spread radially and scatter as shown by the R1 line in FIG. deposits on the surface of During this deposition, the support plate 5 is moved by the arrow a shown in FIG.
Go back and forth at a predetermined speed in the direction! Coordinate dispatch. Then, the particles ejected from the target 3 spread over a wider range and reach the surface of the base material 2. By forming a film on the base material 2 while expanding the spread of the particles in this way, the particles can be deposited uniformly over a wide range of the surface of the base material 2, so that the film can be deposited on the base material 2 with uniform thickness and quality. Can form a deposited layer.

なお、ターゲット3の展動運動は、連続的であっても間
欠的であっても差し支えない。更にターゲット3を退動
させる際の振幅はターゲット3からの発生粒子を基板2
の表面全部に均一に到達できるようにすることが必要で
ある。
Note that the rolling motion of the target 3 may be continuous or intermittent. Furthermore, the amplitude when retracting the target 3 is such that the particles generated from the target 3 are transferred to the substrate 2.
It is necessary to be able to reach all surfaces uniformly.

前述のように粒子が堆積された基板2は加熱されている
ので、堆積された膜は堆積と同時に熱処理される。従っ
て熱処理後に基材上に酸化物超電導体の膜を形成してな
る酸化物超電導体力(得られる。なお、熱処理が十分で
ないときは、蒸着処刑後に別個に熱処理を行い、生成さ
れた酸化物超電導体の膜の結晶構造を整えるようにして
も良い。
Since the substrate 2 on which the particles are deposited is heated as described above, the deposited film is heat-treated at the same time as the deposition. Therefore, an oxide superconductor can be obtained by forming an oxide superconductor film on the base material after heat treatment.If the heat treatment is not sufficient, heat treatment may be performed separately after the vapor deposition, and the produced oxide superconductor The crystal structure of the body's membranes may be adjusted.

また、前述のようにターゲット3から叩き出された粒子
は、十分に活性化された状態であるので、基板2上に緻
密に堆積する。また、堆積された膜は熱処理されるので
、緻密で結晶構造の整った優れた超電導特性を発揮する
酸化物超電導体の膜が得られる。
Moreover, since the particles ejected from the target 3 as described above are in a sufficiently activated state, they are densely deposited on the substrate 2. Furthermore, since the deposited film is heat-treated, an oxide superconductor film with a dense, well-organized crystal structure and excellent superconducting properties can be obtained.

ところで、第1図の2点鎖線に示すように基台4の左右
に送出ローラ20と巻取ローラ21を設け、送出ローラ
20から送り出したテープ状の基材を基台4に送り、巻
取ローラ2Iで巻取りつつレーザ蒸着を行うようにする
ならば、長尺の基材上に酸化物超電導体の模を有する超
電導導体を製造することができる。
By the way, as shown by the two-dot chain line in FIG. 1, a delivery roller 20 and a take-up roller 21 are provided on the left and right sides of the base 4, and the tape-shaped base material sent out from the delivery roller 20 is sent to the base 4 and taken up. If laser vapor deposition is performed while winding with the roller 2I, a superconducting conductor having a pattern of an oxide superconductor can be manufactured on a long base material.

前記長尺の超電導導体を製造する場合、前述の場合と同
様にターゲット3を揺動させつつ蒸着することで長尺の
基材の全長全面にわたり特性の良好な酸化物超電導体の
膜を形成することができる。
When manufacturing the long superconducting conductor, a film of oxide superconductor with good properties is formed over the entire length of the long base material by vapor deposition while swinging the target 3 as in the case described above. be able to.

また、ターゲット3を1出動させることで幅の広いテー
プ状の基材であっても表面全部に均一な厚さと組成の酸
化物超電導体の膜を生成させることができる。
Further, by discharging one target 3, an oxide superconductor film having a uniform thickness and composition can be generated on the entire surface of a wide tape-shaped base material.

ところで前記実施例では、ターゲット3を図面中の矢印
a方向に揺動させる例について説明したが、ターゲット
3の揺動方向は矢印a方向に限らず、左右上下あるいは
斜め方向のいずれでも良い。
By the way, in the embodiment described above, an example in which the target 3 is swung in the direction of the arrow a in the drawings has been described, but the swiveling direction of the target 3 is not limited to the direction of the arrow a, but may be any of the left, right, up, down, or diagonal directions.

「製造例」 第1図に示す構成の蒸着装置を用い、基板としてS r
T io 、製の縦1(1+a、横10am、厚さ0.
51m1の基板を用いるとともに、ターゲットとしてY
 o、mBa+、sc uso ?−5なる組成の酸化
物超電導体からなる円板状ターゲットを用いた。また、
蒸着処理室の内部をlO°’Torr1.:排気し、基
板を640℃に加熱しつつレーザ蒸着を行った。ターゲ
ット照射用のレーザビームには波長193nmのArF
レーザを用いた。また、成膜時、ターゲットを第1図の
矢印a方向に±45°  1087回サイクルで揺動さ
せつつ成膜処理を行った。
"Manufacturing Example" Using a vapor deposition apparatus configured as shown in Fig. 1, S r
Made by Tio, length 1 (1+a, width 10am, thickness 0.
A 51 m1 substrate was used, and Y was used as a target.
o, mBa+, sc uso? A disk-shaped target made of an oxide superconductor having a composition of -5 was used. Also,
The inside of the vapor deposition chamber is heated to 10°' Torr1. : Laser deposition was performed while exhausting the air and heating the substrate to 640°C. The laser beam for target irradiation uses ArF with a wavelength of 193 nm.
A laser was used. Further, during film formation, the film formation process was carried out while the target was oscillated in the direction of arrow a in FIG. 1 at a cycle of ±45° 1087 times.

以上の処理によって基板上に厚さ1.0μ曽の酸化物超
電導体の膜を形成した酸化物超電導体を得ることができ
た。
Through the above treatment, an oxide superconductor in which a 1.0 μm thick oxide superconductor film was formed on the substrate could be obtained.

得られた酸化物超電導体について、臨界温度を測定する
とともに、液体窒素で冷却して臨界電流密度を測定した
The critical temperature of the obtained oxide superconductor was measured, and the critical current density was measured after cooling with liquid nitrogen.

臨界温度       88  K 臨界電流密度2.Oxl O’A/am”、(77に、
OT)以上のように本発明方法を実施することで優れた
臨界温度と臨界電流密度を示す酸化物超電導体を得るこ
とができた。
Critical temperature: 88 K Critical current density: 2. Oxl O'A/am", (77,
OT) By implementing the method of the present invention as described above, an oxide superconductor exhibiting excellent critical temperature and critical current density could be obtained.

「発明の効果」 以上説明したように本発明は、レーザビームをターゲッ
トに照射してターゲットの表面の粒子の叩き出しを行っ
て基材上に酸化物超電導体の膜の堆積を行う際に、ター
ゲットを揺動させるので、ターゲット表面の広い範囲に
粒子全十分に衝突させて堆積させることができ、基材上
の広い範囲に、厚さと質の均一な緻密な酸化物超電導体
の膜を形成できる効果がある。
"Effects of the Invention" As explained above, the present invention provides the following advantages when depositing an oxide superconductor film on a substrate by irradiating the target with a laser beam to knock out particles on the surface of the target. Since the target is oscillated, all the particles can be fully collided and deposited over a wide range of the target surface, forming a dense oxide superconductor film with uniform thickness and quality over a wide range of the base material. There is an effect that can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施に用いて好適なレーザ蒸着装
置の一例を示す構成図、第2図はターゲットと基板の位
置関係を示す説明図である。 1・・・処理容替、11・・蒸着処理室、tb・・・排
気孔、2・・・基板、3・・・ターゲット、4・・・基
台、5・・・支持板、7.12・・・レーザ発光装置、
8・・・第1反射鏡、9.13・・・集光レンズ、IO
・・・第2反射鏡、11゜14・・・透明窓。
FIG. 1 is a configuration diagram showing an example of a laser evaporation apparatus suitable for carrying out the method of the present invention, and FIG. 2 is an explanatory diagram showing the positional relationship between a target and a substrate. 1... Processing container exchange, 11... Vapor deposition processing chamber, tb... Exhaust hole, 2... Substrate, 3... Target, 4... Base, 5... Support plate, 7. 12... Laser emitting device,
8... First reflecting mirror, 9.13... Condensing lens, IO
...Second reflecting mirror, 11°14...Transparent window.

Claims (1)

【特許請求の範囲】 蒸着処理室内に酸化物超電導体または酸化物超電導体と
近似組成のターゲットを設置し、このターゲットにレー
ザビームを照射してターゲットの表面部分をえぐり取り
、発生させた粒子をターゲットの近傍に設置した基材上
に堆積させて酸化物超電導体を製造する方法において、 レーザビームを照射中のターゲットを上下方向と左右方
向と斜め方向の少なくとも一つの方向に揺動させて成膜
することを特徴とする酸化物超電導体の製造方法。
[Claims] An oxide superconductor or a target having a composition similar to that of the oxide superconductor is installed in a vapor deposition chamber, and the target is irradiated with a laser beam to gouge out the surface of the target to remove the generated particles. In a method of manufacturing oxide superconductors by depositing them on a base material placed near a target, the target being irradiated with a laser beam is oscillated in at least one of the vertical, horizontal, and diagonal directions. A method for producing an oxide superconductor characterized by forming a film.
JP1311738A 1989-11-30 1989-11-30 Production of oxide superconductor Pending JPH03174306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1311738A JPH03174306A (en) 1989-11-30 1989-11-30 Production of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1311738A JPH03174306A (en) 1989-11-30 1989-11-30 Production of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH03174306A true JPH03174306A (en) 1991-07-29

Family

ID=18020881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1311738A Pending JPH03174306A (en) 1989-11-30 1989-11-30 Production of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH03174306A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0702416A1 (en) * 1994-09-16 1996-03-20 Sumitomo Electric Industries, Ltd Method and apparatus for depositing superconducting layer onto the substrate surface via off-axis laser ablation
JP2003105530A (en) * 2001-09-27 2003-04-09 Vacuum Products Kk Laser abrasion device
JP2006009072A (en) * 2004-06-24 2006-01-12 Toyota Central Res & Dev Lab Inc Method for reforming surface of substrate and device for reforming surface of substrate
JP2011012349A (en) * 2010-10-01 2011-01-20 Hochiki Corp Thin film deposition apparatus and thin film deposition method using the same
JP4621333B2 (en) * 2000-06-01 2011-01-26 ホーチキ株式会社 Thin film formation method
JP2013122065A (en) * 2011-12-09 2013-06-20 Sumitomo Electric Ind Ltd Method and apparatus for depositing functional thin film
CN107032298A (en) * 2017-04-12 2017-08-11 河海大学常州校区 The method and device of circular nano particle micro-structural is prepared based on ultrahigh-order mode

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0702416A1 (en) * 1994-09-16 1996-03-20 Sumitomo Electric Industries, Ltd Method and apparatus for depositing superconducting layer onto the substrate surface via off-axis laser ablation
JP4621333B2 (en) * 2000-06-01 2011-01-26 ホーチキ株式会社 Thin film formation method
JP2003105530A (en) * 2001-09-27 2003-04-09 Vacuum Products Kk Laser abrasion device
JP2006009072A (en) * 2004-06-24 2006-01-12 Toyota Central Res & Dev Lab Inc Method for reforming surface of substrate and device for reforming surface of substrate
JP2011012349A (en) * 2010-10-01 2011-01-20 Hochiki Corp Thin film deposition apparatus and thin film deposition method using the same
JP2013122065A (en) * 2011-12-09 2013-06-20 Sumitomo Electric Ind Ltd Method and apparatus for depositing functional thin film
CN107032298A (en) * 2017-04-12 2017-08-11 河海大学常州校区 The method and device of circular nano particle micro-structural is prepared based on ultrahigh-order mode

Similar Documents

Publication Publication Date Title
US6037313A (en) Method and apparatus for depositing superconducting layer onto the substrate surface via off-axis laser ablation
JPH03174306A (en) Production of oxide superconductor
WO2004042110A1 (en) Method of forming film on substrate
JPH03174307A (en) Production of oxide superconductor
JPH01309956A (en) Production of oxide superconductor
JPH03174305A (en) Production of oxide superconductor
JPH03122283A (en) Apparatus for coating surface of base sheet
Manoravi et al. Pulsed laser ablation—thin film deposition of polyethylene oxide
JP3080096B2 (en) Fabrication method of large area thin film
JP2001140059A (en) Film deposition method by laser evaporation
JPH03226565A (en) Laser vapor deposition
JP3187043B2 (en) Method for producing oxide superconductor by physical vapor deposition
JPH0885865A (en) Formation of thin film by laser vapor depositing method
JP2525910B2 (en) Laser excited thin film formation method
JPH07331422A (en) Laser abrasion device
JPH02197565A (en) Target for laser vapor deposition apparatus
JPH0227790A (en) Manufacture of wiring board and its device
JPH01255669A (en) Formation of multicomponent material film by beam sputtering
JPH01319673A (en) Laser beam sputtering method
JPH0446082A (en) Formation of high-quality oxide superconducting thin film
JPH01149426A (en) Manufacture of semiconductor device
JPH06220633A (en) Deposited thin film forming device
JP3299769B2 (en) Superconductor manufacturing method
JPS63262457A (en) Preparation of boron nitride film
JPH02104660A (en) Laser-beam sputtering method