JPH03287760A - Production of thin film with large area - Google Patents

Production of thin film with large area

Info

Publication number
JPH03287760A
JPH03287760A JP8775690A JP8775690A JPH03287760A JP H03287760 A JPH03287760 A JP H03287760A JP 8775690 A JP8775690 A JP 8775690A JP 8775690 A JP8775690 A JP 8775690A JP H03287760 A JPH03287760 A JP H03287760A
Authority
JP
Japan
Prior art keywords
target
substrate
laser
film
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8775690A
Other languages
Japanese (ja)
Inventor
Ryuki Nagaishi
竜起 永石
Hideo Itozaki
糸崎 秀夫
Shusuke Nakanishi
秀典 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP8775690A priority Critical patent/JPH03287760A/en
Publication of JPH03287760A publication Critical patent/JPH03287760A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a homogeneous vapor deposited film on a substrate surface of large area by carrying out irradiation while scanning a laser light across the surface of a raw-material target at the time of forming a thin oxide film on the substrate surface by a laser vapor deposition method. CONSTITUTION:A substrate 2 in a vacuum chamber 1 is heated by means of a heater 4 and, while blowing O2 gas against the surface, e.g. of a target 5 made of YBa2Cu3Ox sintered compact through a nozzle 6, the target material is evaporated by irradiating the surface of the target 5 with a laser light from a laser device 10 which is concentrated by a lens 9, reflected by a mirror 8, and passed through an entrance window, by which a thin film of YBa2Cu3Ox is formed on the surface of the substrate 2. At this time, the angle of the mirror 8 is continuously changed by means of a control device 11 and irradiation is carried out while scanning the focus of the concentrated laser light across the whole surface of the target 5, by which the homogeneous thin YBa2Cu3Ox film can be vapor deposited to a uniform thickness onto the whole surface of the substrate 2 even if this substrate 2 is of a large area.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、大面積薄膜の作製方法に関する。より詳細に
はレーザ蒸着法を用いて大面積薄膜を作製する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing large area thin films. More specifically, the present invention relates to a method for producing a large-area thin film using a laser vapor deposition method.

従来の技術 薄膜の作製には、各種の方法が使用されるが、レーザ蒸
着法は、組成の制御がやり易く、成膜速度が速い等の利
点がある。また、−切の電磁場を必要としないので、高
品質の薄膜を作製するのに適した方法と考えられている
BACKGROUND OF THE INVENTION Various methods are used to produce thin films, but the laser deposition method has advantages such as easy control of composition and fast film formation rate. Furthermore, because it does not require a negative electromagnetic field, it is considered to be a suitable method for producing high-quality thin films.

従来、レーザ蒸着法で薄膜を作製する場合は、内部を高
真空に排気可能で、任意の雰囲気ガスを導入できる成膜
室内に基板およびターゲットを配置し、成膜室外部に配
置したレーザ装置の発するレーザ光を光学手段により誘
導し、ターゲットに照射していた。
Conventionally, when producing thin films using laser evaporation, the substrate and target are placed inside a deposition chamber that can be evacuated to a high vacuum and any atmospheric gas can be introduced, and the laser device is placed outside the deposition chamber. The emitted laser light was guided by optical means and irradiated onto the target.

発明が解決しようとする課題 しかしながら、レーザ光は、装置の制約上有限の大きさ
であるため、成膜可能な薄膜の大きさもそれによって制
限されていた。
Problems to be Solved by the Invention However, since laser light has a finite size due to equipment limitations, the size of the thin film that can be formed is also limited thereby.

すなわち、レーザ蒸着法で薄膜を作製する場合には、レ
ーザ光をターゲットに照射した時に発生するロウツク様
の形状をしたプルームと呼ばれるプラズマ状態の先端部
で成膜を行う。これは、プルームの先端には、酸化され
た活性な成膜粒子が多く存在するため、この部分で成膜
を行うと特性の良好な薄膜が得られるためである。とこ
ろが、プルームの先端は、非常に微小であるため、従来
、レーザ蒸着法で作製された薄膜は、膜厚の分布が大き
くかつ膜質の分布も顕著であった。
That is, when producing a thin film by laser vapor deposition, the film is formed at the tip of a plasma state called a plume, which is shaped like a candle and is generated when a target is irradiated with laser light. This is because there are many oxidized and active film-forming particles at the tip of the plume, and a thin film with good properties can be obtained by forming a film at this part. However, since the tip of the plume is extremely small, thin films conventionally produced by laser evaporation have a wide distribution of film thickness and a remarkable distribution of film quality.

そこで本発明の目的は、レーザ蒸着法の短所である小面
積不均一成膜の問題を解決し、レーザ蒸着法で、大面積
且つ膜厚および膜質分−布の少ない薄膜を作製する方法
を提供することにある。
Therefore, the purpose of the present invention is to solve the problem of non-uniform film formation in a small area, which is a disadvantage of the laser evaporation method, and to provide a method for producing a thin film with a large area and a small film thickness and film quality distribution using the laser evaporation method. It's about doing.

課題を解決するための手段 本発明に従うと、ターゲットにレーザ光を照射して、前
記ターゲットに対向して配置した基板上に薄膜を堆積さ
せて作製するレーザ蒸着法により大面積の薄膜を作製す
る方法において、前記レーザ光を前記ターゲット上で走
査しながら照射することを特徴とする大面積薄膜の作製
方法が提供される。
Means for Solving the Problems According to the present invention, a large-area thin film is fabricated by a laser evaporation method in which a target is irradiated with laser light and a thin film is deposited on a substrate placed opposite the target. A method for producing a large-area thin film is provided, the method comprising irradiating the laser beam while scanning the target.

作用 本発明の方法は、成膜室内に固定されたターゲットに、
照射位置を変えながら、レーザ光を連続的または断続的
に照射するところにその主要な特徴がある。ターゲット
のレーザ光が照射された位置には、その上側にプルーム
といわれる活性な成膜粒子の集まりであるプラズマが発
生し、その先端はターゲットに対向して配置された基板
に達する。レーザ蒸着法では、プルームの先端で実際の
成膜が行われる。照射位置を変えながらターゲットにレ
ーザ光を照射すると、基板上のプルームの位置も一緒に
移動する。従って、本発明の方法では大面積の均一な薄
膜が作製できる。本発明の方法では、レーザ光の走査面
積程度の面積の均一な薄膜を作製できる。
Function: The method of the present invention includes a target fixed in a film forming chamber,
Its main feature is that the laser beam is irradiated continuously or intermittently while changing the irradiation position. Plasma, which is a collection of active film-forming particles called a plume, is generated above the position of the target that is irradiated with the laser beam, and its tip reaches the substrate placed opposite the target. In the laser deposition method, the actual film is deposited at the tip of the plume. When a target is irradiated with laser light while changing the irradiation position, the position of the plume on the substrate also moves. Therefore, according to the method of the present invention, a uniform thin film with a large area can be produced. According to the method of the present invention, a uniform thin film having an area comparable to the scanning area of a laser beam can be produced.

レーザ蒸着法では、通常レーザ装置の発するレーザ光を
レンズ等により集光し、ミラー等の光学手段で誘導して
照射する。従って、レーザ光をターゲット上で走査する
には、上記のミラーに例えば所定の速度で向きを変える
ミラーを使用する。
In the laser vapor deposition method, laser light emitted by a laser device is usually focused by a lens or the like, and guided by an optical means such as a mirror for irradiation. Therefore, in order to scan the target with laser light, a mirror that changes direction at a predetermined speed, for example, is used as the above-mentioned mirror.

特に、レーザがパルス発振のレーザの場合は、レーザの
パルスと同期して所定の角度だけ向きを変えるミラーを
使用することが好ましい。
In particular, when the laser is a pulsed laser, it is preferable to use a mirror that changes direction by a predetermined angle in synchronization with the laser pulse.

上記のミラーは、上記のレンズの近傍に配置し、ターゲ
ットからできるだけ遠ざけて配置することが好ましい。
It is preferable that the mirror is placed near the lens and as far away from the target as possible.

なぜなら、ミラーがターゲットの近傍に配置されている
と、レーザ光のターゲットへの入射角の変化が大きいか
らである。入射角の変化が大きいと、ターゲット上での
レーザ光の照射面積が大きく変化し、それに伴いエネル
ギー密度が変化して、ターゲットの照射される位置によ
り、成膜条件が異なってしまうからである。
This is because when the mirror is placed near the target, the angle of incidence of the laser beam on the target changes greatly. This is because if the change in the incident angle is large, the irradiation area of the laser beam on the target changes greatly, and the energy density changes accordingly, causing the film forming conditions to differ depending on the irradiated position of the target.

以下、本発明を実施例によりさらに詳しく説明するが、
以下の開示は本発明の単なる実施例に過ぎず、本発明の
技術的範囲を何ら制限するものではない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The following disclosure is merely an example of the present invention and does not limit the technical scope of the present invention in any way.

実施例 第1図に本発明の方法を実施するレーザ蒸着装置の一例
を示す。第1図のレーザ蒸着装置では、レーザ装置10
で発生され、集光レンズ9を通りミラー8で反射された
レーザ光はチャンバ1のレーザ入射窓7に入射し、チャ
ンバl内に保持されている原料ターゲット5を照射する
。本実施例の装置では、レーザ装置10はパルスレーザ
光を発振し、ミラー8は制御装置11により、パルス毎
に角度を変え、パルス光を1パルスずつターゲット5上
の所定の位置に順に照射してい(。チャンバ1の内部は
高真空に排気可能で、基板ホルダ3に基板2がターゲッ
ト5に対向するように固定されている。
Embodiment FIG. 1 shows an example of a laser vapor deposition apparatus for carrying out the method of the present invention. In the laser vapor deposition apparatus shown in FIG.
The laser light generated by the laser beam, passed through the condensing lens 9 and reflected by the mirror 8, enters the laser entrance window 7 of the chamber 1, and irradiates the raw material target 5 held in the chamber 1. In the apparatus of this embodiment, the laser device 10 oscillates pulsed laser light, and the mirror 8 changes the angle for each pulse under the control of the control device 11, and sequentially irradiates the pulsed light onto a predetermined position on the target 5 one pulse at a time. (The inside of the chamber 1 can be evacuated to a high vacuum, and the substrate 2 is fixed to the substrate holder 3 so as to face the target 5.

基板ホルダ3内には、基板2を加熱するヒータ4が備え
られている。また、ターゲット5の近傍に酸素を含むガ
スを供給するノズル6が備えられている。
A heater 4 for heating the substrate 2 is provided inside the substrate holder 3 . Further, a nozzle 6 for supplying a gas containing oxygen is provided near the target 5.

上記のレーザ蒸着装置を使用し、本発明の方法で、ya
a2cu3 ox酸化物超電導薄膜を作製した。
Using the above laser vapor deposition apparatus and the method of the present invention, ya
An a2cu3ox oxide superconducting thin film was fabricated.

基板2には、MgO単結晶基板および5rTiOs単結
晶基板を用い、基板温度は650 ”l:がら750 
tとした。ターゲット5には、直径8 cm□)YBa
、l:u30゜の焼結体を用いた。また、基板2とター
ゲット5間の距離は7 cmとした。チャンバ1の内部
を1×1O−6Torrに排気したのち酸素ガスを導入
し100mTorrにした。
For the substrate 2, an MgO single crystal substrate and a 5rTiOs single crystal substrate were used, and the substrate temperature was 650"l: 750"
It was set as t. Target 5 has a diameter of 8 cm□) YBa
, l: A sintered body of u30° was used. Further, the distance between the substrate 2 and the target 5 was 7 cm. After the inside of the chamber 1 was evacuated to 1×1 O −6 Torr, oxygen gas was introduced to bring the pressure to 100 mTorr.

レーザは、波長193nmのエキシマレーザを使用し、
レーザ出力は3,5J/cat、レーザ光の照射面積を
2X4mm2とし、パルス周波数を5Hzとした。
The laser uses an excimer laser with a wavelength of 193 nm.
The laser output was 3.5 J/cat, the laser beam irradiation area was 2 x 4 mm2, and the pulse frequency was 5 Hz.

ミラー8は誘電体薄膜をコーティングした鏡面ガラスで
波長193nmのレーザ光を99%以上反射し得るもの
であり、制御装置11により上下左右に±20゜方向を
変えることが可能である。
The mirror 8 is a mirror glass coated with a dielectric thin film and can reflect 99% or more of a laser beam having a wavelength of 193 nm, and can be changed in direction by ±20° vertically and horizontally by a control device 11.

ターゲット5とミラー8の間の水平距離を30cmとし
、制御装置11によりミラー8の角度を1°/秒で連続
的に変化させ、ターゲット5の3x3cutの領域をレ
ーザ光で照射した。第2図に、本実施例でレーザ光を走
査させた軌跡を示す。
The horizontal distance between the target 5 and the mirror 8 was set to 30 cm, the angle of the mirror 8 was continuously changed at 1°/second by the control device 11, and a 3×3 cut area of the target 5 was irradiated with laser light. FIG. 2 shows the trajectory of the laser beam scanned in this embodiment.

上記の条件で、30分間成膜を行ない、得られた酸化物
超電導薄膜の膜厚分布と超電導特性の測定を行なった。
Film formation was carried out for 30 minutes under the above conditions, and the film thickness distribution and superconducting properties of the obtained oxide superconducting thin film were measured.

その結果、本発明の方法で作製した酸化物超電導薄膜の
膜厚分布は、35x35mm”の範囲で±10%であっ
た。一方、他の成膜条件は等しくして、レーザ光をター
ゲットの一点に照射する従来の方法の場合の膜厚分布は
1010X10”の範囲で±10%であった。本発明の
方法で作製した酸化物超電導薄膜の臨界温度と膜厚の測
定結果を、第1表に示す。
As a result, the film thickness distribution of the oxide superconducting thin film produced by the method of the present invention was ±10% in the range of 35 x 35 mm.On the other hand, with other film forming conditions being the same, the laser beam was applied to a single point on the target. The film thickness distribution in the case of the conventional method of irradiating the film was ±10% in the range of 1010×10”. Table 1 shows the measurement results of the critical temperature and film thickness of the oxide superconducting thin film produced by the method of the present invention.

第1表 発明の詳細 な説明したように本発明に従うと、従来よりも大面積で
膜厚分布の少ない薄膜を作製することが可能である。こ
れは、本発明の方法に独特な、レーザ光をターゲット上
で走査してレーザ蒸着を行なう効果である。
According to the present invention as described in detail in Table 1, it is possible to fabricate a thin film with a larger area and a smaller thickness distribution than before. This is an effect unique to the method of the present invention in which the laser beam is scanned over the target to perform laser deposition.

10・・・レーザ装置 11・・・ミラー制御装置10... Laser device 11...Mirror control device

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の方法を実現するレーザ蒸着装置の一
例の概略図である。 第2図は、本実施例でレーザ光をターゲット上で走査さ
せた軌跡を示すものである。
FIG. 1 is a schematic diagram of an example of a laser deposition apparatus that implements the method of the present invention. FIG. 2 shows the locus of the laser beam scanned over the target in this embodiment.

Claims (1)

【特許請求の範囲】[Claims]  ターゲットにレーザ光を照射して、前記ターゲットに
対向して配置した基板上に薄膜を堆積させて作製するレ
ーザ蒸着法により大面積の薄膜を作製する方法において
、前記レーザ光を前記ターゲット上で走査しながら照射
することを特徴とする大面積薄膜の作製方法。
In a method for producing a large-area thin film by a laser evaporation method in which a target is irradiated with a laser beam and a thin film is deposited on a substrate placed opposite to the target, the laser beam is scanned on the target. A method for producing a large-area thin film, characterized by irradiating the film while irradiating the film.
JP8775690A 1990-04-02 1990-04-02 Production of thin film with large area Pending JPH03287760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8775690A JPH03287760A (en) 1990-04-02 1990-04-02 Production of thin film with large area

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8775690A JPH03287760A (en) 1990-04-02 1990-04-02 Production of thin film with large area

Publications (1)

Publication Number Publication Date
JPH03287760A true JPH03287760A (en) 1991-12-18

Family

ID=13923791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8775690A Pending JPH03287760A (en) 1990-04-02 1990-04-02 Production of thin film with large area

Country Status (1)

Country Link
JP (1) JPH03287760A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007052195A (en) * 2005-08-17 2007-03-01 Toei Sangyo Kk Method for manufacturing brush and its utilization

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007052195A (en) * 2005-08-17 2007-03-01 Toei Sangyo Kk Method for manufacturing brush and its utilization

Similar Documents

Publication Publication Date Title
US5660746A (en) Dual-laser process for film deposition
JPH0870144A (en) Manufacture of superconductor parts
US5084300A (en) Apparatus for the ablation of material from a target and coating method and apparatus
US6063455A (en) Apparatus for manufacturing diamond film having a large area and method thereof
JPH03287760A (en) Production of thin film with large area
JPH04104901A (en) Production of oxide superconducting thin film
JP3080096B2 (en) Fabrication method of large area thin film
JPH0441665A (en) Production of thin film by vapor deposition with laser
JPH03174306A (en) Production of oxide superconductor
JPH04295851A (en) Photomask correcting device
JPH06226084A (en) Formation of solid-state laser crystal thin film and device for forming solid-state laser crystal thin film
JPH0441666A (en) Production of thin film by vapor deposition with laser
JPH0885865A (en) Formation of thin film by laser vapor depositing method
JPH03174307A (en) Production of oxide superconductor
JPH0446082A (en) Formation of high-quality oxide superconducting thin film
JPH04212214A (en) Manufacture of oxide superconductive thin film
JPH11246965A (en) Formation of thin film by laser vapor deposition method and laser vapor deposition device used for the method
JP3610617B2 (en) Thin film fabrication method by laser deposition
JP2853164B2 (en) Manufacturing method of oxide superconducting film
KR100403799B1 (en) Manufacturing apparatus of high temperature superconductive thin film
JPH01255669A (en) Formation of multicomponent material film by beam sputtering
JP3399184B2 (en) Method of forming thin film by laser evaporation method
KR100393184B1 (en) Apparatus for fabricating a high-tc superconducting film using pulsed laser deposition and method thereof
JPH04187581A (en) Preparation of oxide superconducting thin film heving large area
JPH04214862A (en) Film forming apparatus