JPH08211085A - Flow velocity measuring device - Google Patents

Flow velocity measuring device

Info

Publication number
JPH08211085A
JPH08211085A JP16665695A JP16665695A JPH08211085A JP H08211085 A JPH08211085 A JP H08211085A JP 16665695 A JP16665695 A JP 16665695A JP 16665695 A JP16665695 A JP 16665695A JP H08211085 A JPH08211085 A JP H08211085A
Authority
JP
Japan
Prior art keywords
flow velocity
magnetic field
measuring device
detection
windings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16665695A
Other languages
Japanese (ja)
Inventor
Kaneyuki Oota
金幸 太田
Kazumoto Futaki
一元 二木
Akio Nagamune
章生 長棟
Shinichi Nishioka
信一 西岡
Hiroharu Katou
宏晴 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP16665695A priority Critical patent/JPH08211085A/en
Publication of JPH08211085A publication Critical patent/JPH08211085A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE: To obtain a velocity measuring device which can detect the flow velocity of a high-temperature object such as molten metal stably, sensitively, continuously and in non-contact state. CONSTITUTION: This device is arranged over a moving conductive object 201 to be measured in a manner that its central axis will be vertical against the face of the object 201, and it is provided with an exciting winding 203b for generating a DC magnetic field vertical to the object 201 and a pair of detecting windings 203a and 203c that are arranged on its both sides in a manner that they will be parallel to the moving direction of the conductor and symmetrical to the center line of the winding 203b and detect the magnetic fluxes of the same direction respectively. Further, it is provided with an E-shaped bobbin 202 that is formed of non-magnetic material and holds respective windings and a measuring means that measures the flow velocity of the object 201 based on the voltage of differential signals outputted from the windings 203a and 203c.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は連続鋳造プロセスにおい
て溶鋼を鋳込む鋳型内溶鋼流の表面の流速を測定する流
速測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow velocity measuring device for measuring the flow velocity on the surface of a molten steel flow in a mold for casting molten steel in a continuous casting process.

【0002】[0002]

【従来の技術】連続鋳造ラインにおいては、図13に示
されるように溶鋼3はタンディッシュ1よりノズル2を
通して銅製の鋳型4中に注ぎ込まれ鋳造される。鋳型中
に注ぎ込まれた溶鋼は、鋳型壁面に当たり上昇流7と下
降流8とに分かれる。上昇流は表面で流れ9a,9bを
作るが、ここで表面の溶鋼流動の左右のバランスが崩れ
ると、渦が発生し溶鋼表面上に撒いたパウダー5を巻き
込んだ流れ11を生成する。また、表面の溶鋼流動が過
大になると、溶鋼表面のパウダー5の一部10を削り込
む。何れにおいても鋳片中に介在物が捕捉され、製品欠
陥の原因となる。この理由から、鋳型内溶鋼流動を安定
化させることは極めて重要な課題であり、特に溶鋼表面
近傍の流速を連続的に計測することが強く求められてい
る。
2. Description of the Related Art In a continuous casting line, molten steel 3 is poured from a tundish 1 through a nozzle 2 and cast into a copper mold 4 as shown in FIG. The molten steel poured into the mold hits the wall surface of the mold and is divided into an upflow 7 and a downflow 8. The ascending flow forms flows 9a and 9b on the surface, but if the left and right balance of the molten steel flow on the surface is lost here, a vortex is generated and a flow 11 in which the powder 5 sprinkled on the molten steel surface is entrained is generated. Further, when the molten steel flow on the surface becomes excessive, a part 10 of the powder 5 on the molten steel surface is ground. In either case, inclusions are trapped in the slab, causing product defects. For this reason, stabilizing the molten steel flow in the mold is a very important issue, and in particular, continuous measurement of the flow velocity near the molten steel surface is strongly required.

【0003】従来、溶鋼の流速測定装置は、例えば特開
平5−60774号公報において提案されているような
接触型の計測が主であった。この流速測定装置は、図1
4に示されるようにファインセラミックス製の棒12を
溶鋼14に浸漬して、その棒12が溶鋼流動により受け
る圧力を、受圧センサ13により検出して、流速を測定
するものである。この測定装置では高温の溶鋼14にセ
ラミックス製の棒12を浸漬させるため、長時間の連続
測定が不可能であった。
Heretofore, the flow velocity measuring apparatus for molten steel has mainly been a contact type measurement as proposed in, for example, JP-A-5-60774. This flow velocity measuring device is shown in FIG.
As shown in FIG. 4, the rod 12 made of fine ceramics is immersed in the molten steel 14, and the pressure received by the molten steel flow on the rod 12 is detected by the pressure receiving sensor 13 to measure the flow velocity. In this measuring device, the ceramic rod 12 is immersed in the high temperature molten steel 14, so that continuous measurement for a long time is impossible.

【0004】これに対して、磁気を用いて非接触で速度
を計測できることが知られている。図15に示されるよ
うに均等な磁場中で導体15が動くと、その導体中にE
=v×Bなる速度起電力が生じる。この速度起電力によ
り、導体中に渦電流Jvが誘起され、導体上に誘導磁場Bv
が発生して、元の磁場は導体の速度方向に引きずられる
ようにBからB’へと歪む。このように磁場が導体の運
動により歪む効果を以下磁場の速度効果と呼ぶ。この速
度効果による歪みの程度は導体の速度に対応して変化す
るので、歪み量を測ることで対象導体の速度を知ること
ができる。
On the other hand, it is known that the velocity can be measured in a non-contact manner using magnetism. When the conductor 15 moves in a uniform magnetic field as shown in FIG.
= V × B, a velocity electromotive force is generated. This velocity electromotive force induces an eddy current Jv in the conductor, which induces an induced magnetic field Bv on the conductor.
Occurs, the original magnetic field is distorted from B to B ′ so as to be dragged in the velocity direction of the conductor. The effect of the magnetic field being distorted by the movement of the conductor in this way is hereinafter referred to as the velocity effect of the magnetic field. Since the degree of strain due to this speed effect changes corresponding to the speed of the conductor, the speed of the target conductor can be known by measuring the amount of strain.

【0005】このような磁気を用いて非接触で速度を計
測する装置としては例えば特開平2−311766号公
報があった。この流速測定装置は図16(a)に示され
るように、溶鋼の流れ18と平行に1次コイル19を配
置し、その水平方向両側に2つの2次コイル20a,2
0bを配置したものである。1次コイル19に交流電流
を供給して溶鋼面と平行な交流磁場17を溶鋼表面に印
加し、2次コイル20a,20bにより対象面と平行な
磁場を検出する。導体が静止しているときには磁場は1
次コイル19を挟んで対称となり、2つの2次コイルの
起電力に差はなく出力は0である。導体が動いている場
合には、図16(b)のように速度効果により磁場は導
体の速度方向に歪み、励磁コイル19を挟んで対称でな
くなるため、2つの2次コイルに生じる起電力に差が生
じ、磁場の歪み量、即ち速度に対応した信号が2つの2
次コイル20a,20bの差分信号として得られる。
Japanese Patent Laid-Open No. 2-311766 discloses, for example, a device for non-contact measurement of velocity using such magnetism. As shown in FIG. 16 (a), this flow velocity measuring device has a primary coil 19 arranged in parallel with the molten steel flow 18, and two secondary coils 20 a, 2 on both sides in the horizontal direction.
0b is arranged. An alternating current is supplied to the primary coil 19 to apply an alternating magnetic field 17 parallel to the molten steel surface to the molten steel surface, and the secondary coils 20a and 20b detect a magnetic field parallel to the target surface. The magnetic field is 1 when the conductor is stationary
It becomes symmetrical with the secondary coil 19 in between, and there is no difference in the electromotive forces of the two secondary coils, and the output is zero. When the conductor is moving, the magnetic field is distorted in the speed direction of the conductor due to the velocity effect as shown in FIG. 16B, and the magnetic field is no longer symmetrical with respect to the exciting coil 19, so that the electromotive force generated in the two secondary coils is increased. A difference is generated, and the signal corresponding to the amount of distortion of the magnetic field, that is, the velocity
It is obtained as a differential signal between the next coils 20a and 20b.

【0006】また、磁気による方法では、装置と測定対
象物との距離により速度感度が変化するが、特開平2−
311766号公報において提案されている流速測定装
置においては、装置と測定対象物との距離を、対象面と
平行な磁場を検出する2次コイルの片方の出力電圧によ
り測定して、それにより補正を行っていた。
In the magnetic method, the velocity sensitivity changes depending on the distance between the device and the object to be measured.
In the flow velocity measuring device proposed in Japanese Patent No. 311766, the distance between the device and the object to be measured is measured by the output voltage of one of the secondary coils for detecting the magnetic field parallel to the target surface, and the correction is performed accordingly. I was going.

【0007】また、磁気を用いて速度を計測する別の流
速測定装置として特開昭61−223564号公報にお
いて提案されているものがある。これは、図17(a)
に示されるように、測定対象に対しE型コアと巻線とか
ら成るE型の励磁装置21を、各磁極の開放端が導体側
を向き、更に3つの磁極21a,21b,21cが対象
面と平行となるように配置し、リング状の磁心を持った
磁気センサ22をE型の励磁装置の中心の磁極21cを
囲むように配置したものである。そして、E型の励磁装
置21にそれぞれ隣り合う磁極に反対向きの磁場を生じ
るよう直流電流を流す。導体24が運動すると速度効果
により導体中に渦電流が流れるが、この渦電流により導
体中に、中心の磁極21cと左右の磁極21a,21b
との間にそれぞれ正負逆の磁極N2,S2を生じる。こ
の磁極N2,S2から生じる磁場の対象面に対し水平な
成分を、先のリング状の磁気センサ22を用いて検出
し、それにより流速を検出するものである。
Another flow velocity measuring device for measuring velocity using magnetism is proposed in Japanese Patent Application Laid-Open No. 61-223564. This is shown in FIG.
As shown in Fig. 3, an E-shaped exciter 21 including an E-shaped core and a winding is attached to the object to be measured, and the open ends of the magnetic poles face the conductor side, and the three magnetic poles 21a, 21b, and 21c are the target surfaces. The magnetic sensor 22 having a ring-shaped magnetic core is arranged so as to be parallel to the magnetic pole 22c surrounding the magnetic pole 21c at the center of the E-type exciter. Then, a direct current is passed through the E-shaped exciter 21 so as to generate magnetic fields in the opposite directions to the adjacent magnetic poles. When the conductor 24 moves, an eddy current flows in the conductor due to the velocity effect. Due to this eddy current, the central magnetic pole 21c and the left and right magnetic poles 21a and 21b are formed.
Magnetic poles N2 and S2 having positive and negative polarities are generated between and. The horizontal component of the magnetic field generated from the magnetic poles N2 and S2 with respect to the target surface is detected using the ring-shaped magnetic sensor 22 described above, and the flow velocity is detected thereby.

【0008】また、磁気を用いて速度を計測する別の流
速測定装置として特開平5−297012号公報に提案
されているものがある。これは、図18に示されるよう
に、1次コイル151を測定対象152に対して垂直に
配置し、1次コイル151に交流電流を供給し、磁界1
53を生じさせ、1次コイル151を挟んで両側に測定
対象152に対して垂直に2次コイル154a,154
bを配置し、1次コイル151、2次コイル154a,
154bを巻いた鉄心155,156a,156bを備
えたものである。そして流速は2次コイル154a,1
54bに生じた起電力の位相から検出する。
Another flow velocity measuring device for measuring velocity using magnetism is proposed in Japanese Patent Laid-Open No. 5-297012. As shown in FIG. 18, the primary coil 151 is arranged perpendicular to the measurement object 152, an alternating current is supplied to the primary coil 151, and the magnetic field 1
53, and the secondary coils 154a and 154 are vertically disposed on both sides of the primary coil 151 with respect to the measuring object 152.
b, the primary coil 151, the secondary coil 154a,
It is provided with iron cores 155, 156a, 156b wound with 154b. And the flow velocity is the secondary coil 154a, 1
It is detected from the phase of the electromotive force generated in 54b.

【0009】[0009]

【発明が解決しようとする課題】しかし、従来の磁気を
用いた非接触の流速測定装置においては以下のような課
題が指摘される。 (1) 水平方向に磁場を励磁する方法を採用した測定
装置においては、対象との距離が離れると磁場が大きく
減衰し、検出能が下がる。また、速度効果は磁場を対象
に垂直に印加したときに最大となるので、効率が悪い。 (2) また、上記の励磁装置と検出装置とが分離して
いると、温度変化によって装置の熱変形が生じて、励磁
装置と検出装置との間隔が変化しやすく、それにより信
号に流速と対応しない温度ドリフトによる擬似信号が重
畳してしまう。 (3) 励磁・検出に磁心を用いた測定装置では、電磁
攪拌等を有する鋳造機において鋳型内の流速を計測しよ
うとするとき、磁心が磁気飽和してしまい感度良く流速
の測定ができない。 (4) 測定対象に平行に配置された2次コイルに発生
する起電力を検出し、その検出後の電圧の差をとり流速
の測定をする方法を採用した測定装置では、磁場を検出
する点での励磁磁場の大きさが大きく、それに比べ、速
度効果による磁場歪みが小さいため、電圧の検出精度が
流速の検出精度に影響し、十分な検出精度が得られな
い。 (5) 2次コイルに発生する起電力の位相の差から流
速を測定する方法を採用した測定装置では、位相を精度
良く検出することが困難であり、その検出精度が流速の
検出精度に影響し、十分な検出精度が得られない。
However, the following problems are pointed out in the conventional non-contact velocity measuring device using magnetism. (1) In a measuring device that employs a method of exciting a magnetic field in the horizontal direction, the magnetic field is greatly attenuated and the detectability is lowered as the distance from the target increases. In addition, the velocity effect becomes maximum when the magnetic field is vertically applied to the target, which is inefficient. (2) Further, when the exciting device and the detecting device are separated from each other, thermal deformation of the device occurs due to temperature change, and the interval between the exciting device and the detecting device is apt to change, which causes the flow velocity to be changed in the signal. False signals due to unsupported temperature drift will be superimposed. (3) In a measuring device using a magnetic core for excitation / detection, when trying to measure the flow velocity in a mold in a casting machine having electromagnetic stirring or the like, the magnetic core is magnetically saturated and the flow velocity cannot be measured with good sensitivity. (4) A magnetic field is detected in a measuring device that employs a method of detecting an electromotive force generated in a secondary coil arranged in parallel with a measurement target and measuring a flow velocity by calculating a voltage difference after the detection. Since the magnitude of the exciting magnetic field is large and the magnetic field distortion due to the velocity effect is small, the voltage detection accuracy affects the flow velocity detection accuracy, and sufficient detection accuracy cannot be obtained. (5) It is difficult to accurately detect the phase with the measuring device that employs the method of measuring the flow velocity from the phase difference of the electromotive force generated in the secondary coil, and the detection precision affects the detection precision of the flow velocity. However, sufficient detection accuracy cannot be obtained.

【0010】[0010]

【課題を解決するための手段】本発明の一つの態様に係
る流速測定装置は、移動する導電性の測定対象物の上
に、対象面に対しその中心軸が垂直となるように配置さ
れ、測定対象物に垂直な交流磁界を生成する励磁巻線
と、その両側に導体の移動方向と平行に、かつ励磁巻線
に対し左右対称に、それぞれが同じ向きの磁束を検出す
るように配置された一対の検出巻線と、非磁性体から構
成され、各巻線を保持する保持部材と、一対の検出巻線
の出力の差分信号の電圧から測定対象物の流速を測定す
る測定手段とを有する。本発明の他の態様に係る流速測
定装置は、上記の装置において、励磁巻線に供給される
励磁電流の周波数として外乱磁場の周波数から離れた周
波数を選択し、そして、測定手段は、励磁電流の周波数
を中心周波数とし、一対の検出巻線の差分後の出力を入
力するバンドパスフィルタと、バンドパスフィルタの出
力を同期又は位相検波する検波器とを備え、その検波電
圧に基づいて流速を求める。
A flow velocity measuring apparatus according to one aspect of the present invention is arranged on a moving conductive measuring object such that its central axis is perpendicular to the object plane, Exciting windings that generate an alternating magnetic field perpendicular to the object to be measured are arranged on both sides of the exciting windings, parallel to the moving direction of the conductor and symmetrical to the exciting windings, so that the magnetic fluxes in the same direction are detected. A pair of detection windings, a holding member that is made of a non-magnetic material and holds each winding, and a measuring unit that measures the flow velocity of the measurement object from the voltage of the differential signal of the output of the pair of detection windings. . A flow velocity measuring device according to another aspect of the present invention, in the above device, selects a frequency apart from the frequency of the disturbance magnetic field as the frequency of the exciting current supplied to the exciting winding, and the measuring means is the exciting current. The center frequency is the frequency of, and a bandpass filter that inputs the output after the difference between the pair of detection windings and a detector that synchronizes or phase-detects the output of the bandpass filter are provided, and the flow velocity is determined based on the detected voltage. Ask.

【0011】[0011]

【作用】本発明の一つの態様による流速測定装置におい
ては、励磁用巻線に交流電流が供給され、測定対象物に
対して垂直な磁束が発生する。この磁束は測定対象物を
介して戻ってくるが、この戻ってきた磁束を一対の検出
用巻線がそれぞれ検出する。その流速に対応して測定対
象物中に発生する渦電流により磁場が歪み、一対の検出
用巻線の位置における磁束に差が出て、その差分信号が
変化する。この変化量は対象の流速に対応しており、こ
の変化量から対象の流速を測定することができる。従っ
て、測定手段は、その一対の検出用巻線の出力電圧の差
に基いて測定対象物の流速を測定する。また、本発明の
他の態様による流速測定装置においては、一対の検出巻
線の差分後の出力がバンドパスフィルタを通過して励磁
電流と同一の周波数成分が取り出され、検波器において
同期又は位相検波される。そして、その検波電圧に基づ
いて流速が求められる。
In the flow velocity measuring device according to one aspect of the present invention, an alternating current is supplied to the exciting winding to generate a magnetic flux perpendicular to the object to be measured. This magnetic flux returns via the object to be measured, and the pair of detection windings detect the returned magnetic flux. The magnetic field is distorted by the eddy current generated in the measurement object corresponding to the flow velocity, and a difference occurs between the magnetic fluxes at the positions of the pair of detection windings, and the difference signal changes. This change amount corresponds to the flow velocity of the target, and the flow velocity of the target can be measured from this change amount. Therefore, the measuring means measures the flow velocity of the measurement object based on the difference between the output voltages of the pair of detection windings. Further, in the flow velocity measuring device according to another aspect of the present invention, the output after the difference between the pair of detection windings passes through the bandpass filter to extract the same frequency component as the exciting current, and the synchronization or phase is detected in the detector. Is detected. Then, the flow velocity is obtained based on the detected voltage.

【0012】[0012]

【実施例】次に、本発明の実施例を説明にするのに先立
って、本発明の流速測定装置の動作原理を説明する。 (1)励磁・検出方法 本発明に係る流速計測装置のセンサヘッド200は、図
1に示されるように、中心の脚204bを中心として左
右対称形のE型の形状をしたセラミックス製のボビン2
02に対し、中心の脚204bに励磁用巻線203bを
巻き、両端の脚204a,cに検出用巻線203a,c
をそれぞれが同じ向きの磁束を検出するように巻いたも
のである。このセンサヘッド200を移動する導電性の
測定対象物201の上に、脚の開いた面が対象面に向
き、かつ各脚が対象面の移動方向に対し平行に並ぶよう
に配置する。なお、流速の方向は予め分かっている場合
が多い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Prior to describing the embodiments of the present invention, the operating principle of the flow velocity measuring apparatus of the present invention will be described. (1) Excitation / Detection Method As shown in FIG. 1, the sensor head 200 of the flow velocity measuring device according to the present invention is a ceramic bobbin 2 having a symmetrical E-shape centered on the center leg 204b.
02, the winding 203b for excitation is wound around the leg 204b at the center, and the windings 203a, c for detection are provided at the legs 204a, c at both ends.
Are wound so that each detects the magnetic flux in the same direction. The sensor head 200 is arranged on the moving conductive object 201 to be measured so that the open surface of the leg faces the target surface and the legs are arranged in parallel to the moving direction of the target surface. The direction of the flow velocity is often known in advance.

【0013】このようにE型のボビン202を脚の開い
た面が対象面に向けられ、中心の脚に励磁用巻線203
bを施して励磁することにより、導体面に垂直に磁場を
励磁することができる。先に述べたように、速度効果は
v×Bで表されるので、対象の速度と磁場とが垂直とな
っているときに最大となる。ここで測定する流速は対象
面と平行なので、磁場を対象面と垂直に励磁すれば、水
平に励磁する場合よりも速度効果が大きくなり、速度検
出感度も大きくなる。
In this way, the E-shaped bobbin 202 has the leg open surface facing the target surface, and the excitation winding 203 is attached to the center leg.
By applying b and exciting, a magnetic field can be excited perpendicularly to the conductor surface. As described above, the velocity effect is represented by v × B, and thus becomes maximum when the velocity of interest and the magnetic field are perpendicular to each other. Since the flow velocity measured here is parallel to the target surface, when the magnetic field is excited perpendicularly to the target surface, the velocity effect becomes larger and the velocity detection sensitivity also becomes larger than when excited horizontally.

【0014】次に速度効果による磁場歪みの検出方法に
ついて説明する。図2(a)のように導体33停止して
いれば、磁場は中心の脚を中心として左右対象であり、
左右の検出巻線の出力は等しく、その差分は0となる。
導体33が動くと、図2(b)に示されるように、その
流速に対応して導体中に発生する渦電流により磁場が歪
み、両端の各検出巻き線位置での磁束に差が出て、その
差分信号が変化する。この変化量は対象の流速に対応し
ており、この変化量から、対象の流速を測定することが
できる。またこの時、磁束量の変化は、流れの下流側と
上流側の検出巻き線とでは逆方向で、外乱ノイズや励磁
装置からの直接磁場は、2つの検出巻線位置で同じた
め、2つの検出巻線の出力の差分をとれば、余分な信号
のみを除外することができ、流速に対応した歪み量のみ
を更にS/N良く検出することが可能となる。
Next, a method of detecting the magnetic field distortion due to the velocity effect will be described. If the conductor 33 is stopped as shown in FIG. 2A, the magnetic field is symmetrical with the center leg as the center,
The outputs of the left and right detection windings are equal, and the difference between them is zero.
When the conductor 33 moves, as shown in FIG. 2B, the magnetic field is distorted by the eddy current generated in the conductor corresponding to the flow velocity, and a difference occurs in the magnetic flux at each detection winding position at both ends. , The difference signal changes. This change amount corresponds to the flow velocity of the target, and the flow velocity of the target can be measured from this change amount. At this time, the change in the amount of magnetic flux is in the opposite direction between the detection windings on the downstream side and the upstream side of the flow, and the disturbance noise and the direct magnetic field from the exciter are the same at the two detection winding positions, so that there are two By taking the difference between the outputs of the detection windings, only the extra signal can be excluded, and only the distortion amount corresponding to the flow velocity can be detected with good S / N.

【0015】(2)大きな外乱磁場対策 各巻線203a〜cに磁心を設けると、測定感度が大き
く向上するものの、電磁攪拌のような大きな外乱磁場の
ある環境下で測定する際には、外乱磁場によって、磁心
が磁気飽和したり、2つの検出巻線間で磁心の透磁率が
ばらつき感度差が生じ、測定値に大きなノイズを生じて
しまう。そこで、ここでは磁心を設けずに、非磁性で大
きな外乱磁場の影響を受けないセラミクス製のボビン2
02に各巻線を巻いている。また、励磁電流を交流電流
とし、電磁攪拌等による外乱磁場が交流磁界の場合に
は、励磁電流の周波数をこれらの外乱磁場の周波数から
十分に離し、各検出巻線の差分信号を励磁電流の周波数
を中心周波数とするバンドパスフィルターに通した後
に、同期検波器又は位相検波器により電圧を検出するこ
とにより、こうした大きな外乱磁場の影響を受けずに高
感度で、流速の測定ができる。なお、ここで、速度に対
応した磁場歪み量は、v×Bに比例するので、低周波で
励磁している場合は、磁場の歪み量と、励磁磁場、即
ち、励磁電流の位相は同じとなる。これに対し、検出巻
線の出力電圧と磁場とは−90°の位相差があるため、
位相検波器で検出する際には、低周波の場合は、励磁電
流と−90°ずれた位相を選択すれば良い。しかし、周
波数が高い場合には、測定対象物中での磁場の位相が−
dB/dtに比例する渦電流により変化するので、周波
数ごとに速度による磁場歪み信号が最大となる位相を選
択する必要がある。
(2) Countermeasure against large disturbance magnetic field Although a magnetic core is provided in each of the windings 203a to 203c, the measurement sensitivity is greatly improved, but the disturbance magnetic field is increased when the measurement is performed in an environment with a large disturbance magnetic field such as electromagnetic stirring. As a result, the magnetic core is magnetically saturated, the magnetic permeability of the magnetic core varies between the two detection windings, and a difference in sensitivity occurs, resulting in a large noise in the measured value. Therefore, here, a bobbin 2 made of ceramics, which is not magnetic and is not affected by a large disturbance magnetic field, is provided without a magnetic core.
Each winding is wound around 02. When the exciting current is an alternating current and the disturbance magnetic field due to electromagnetic stirring is an alternating magnetic field, the frequency of the exciting current is sufficiently separated from the frequencies of these disturbing magnetic fields, and the differential signal of each detection winding is set to the exciting current. After passing through a bandpass filter having a frequency as a center frequency, the voltage is detected by a synchronous detector or a phase detector, so that the flow velocity can be measured with high sensitivity without being affected by such a large disturbance magnetic field. Since the magnetic field distortion amount corresponding to the velocity is proportional to v × B, the magnetic field distortion amount and the exciting magnetic field, that is, the phase of the exciting current are the same when exciting at a low frequency. Become. On the other hand, since there is a phase difference of −90 ° between the output voltage of the detection winding and the magnetic field,
When detecting with a phase detector, in the case of a low frequency, it suffices to select a phase shifted by −90 ° from the exciting current. However, when the frequency is high, the phase of the magnetic field in the measured object is −
Since it changes with an eddy current proportional to dB / dt, it is necessary to select the phase that maximizes the magnetic field distortion signal due to velocity for each frequency.

【0016】(3)温度ドリフト 高温の導体の流速を検出しようとするときには、装置の
温度が変化する。この時、励磁巻線と検出巻線とを別々
のボビンに巻いている場合には、各ボビンを何らかの固
定治具により固定する必要がある。この際、高温の導体
の流速を検出しようとする場合には、周囲の温度が変化
すれば、固定治具や固定治具とボビンとの結合部分が、
熱膨張あるいは熱収縮する。ここで熱膨張・熱収縮が左
右の検出コイル47a,bに対して均等に作用すれば、
2つの検出コイルで差分をとるため、熱変形による信号
変化は除外される。しかし、固定していても本来各ボビ
ンはバラバラなので、左右の検出コイル47a,bに対
して熱変形は均等にならず、熱変形による信号変化分が
残る。そのため例えば図3(b)のように片側のボビン
46aのみが大きく熱変形によりずれれば(48a≠4
8b)、片側の検出巻線47bの出力が増加し、導体が
動いていなくても擬似信号を生てしまう。この擬似信号
は温度の上昇・下降に従って増加もしくは下降するドリ
フト状のものである。
(3) Temperature Drift When trying to detect the flow velocity of a hot conductor, the temperature of the device changes. At this time, when the excitation winding and the detection winding are wound on different bobbins, it is necessary to fix each bobbin with some fixing jig. At this time, when trying to detect the flow velocity of the hot conductor, if the surrounding temperature changes, the fixing jig or the connecting portion between the fixing jig and the bobbin will
Thermal expansion or contraction. Here, if the thermal expansion and thermal contraction act equally on the left and right detection coils 47a, 47b,
Since the difference is calculated between the two detection coils, the signal change due to thermal deformation is excluded. However, since the bobbins are originally separated even if they are fixed, the thermal deformation is not uniform for the left and right detection coils 47a and 47b, and a signal change due to the thermal deformation remains. Therefore, if only the bobbin 46a on one side is largely displaced by thermal deformation as shown in FIG. 3B (48a ≠ 4).
8b), the output of the detection winding 47b on one side increases, and a pseudo signal is generated even if the conductor is not moving. This pseudo signal is in the form of a drift that increases or decreases as the temperature rises and falls.

【0017】そこで、図3(b)に示されるように、励
磁コイル47cと2つの検出コイル47a,bとを1つ
のボビンに巻き、一体化する。このようにすれば、熱変
形は左右の検出コイル47a,bに対して均等に作用す
る(48a=48b)ので、2つの検出コイルで差分を
とれば、熱変形による信号変化は除外され、温度ドリフ
トを抑えることができる。しかし、左右の検出コイルの
温度は僅かに異なれば、熱変形が左右で均等にならず温
度ドリフトが残ってしまう。そこで、図4のような冷却
シャーシ49にセンサヘッド200を収納し、左右均等
に空気を吹き込み冷却することにより、装置全体の温度
上昇を抑え、かつ装置の左右の温度不均衡を防止するこ
とができる。また、こうした冷却シャーシ49の材質が
導電性の場合、周囲の温度変化によりシャーシの導電率
が大きく変化し、装置の出力信号に影響を与える。そこ
で、シャーシは、全てあるいは少なくとも装置からの磁
場が通る対象と面した底面を不導体により作成する。
Therefore, as shown in FIG. 3 (b), the exciting coil 47c and the two detecting coils 47a and 47b are wound around one bobbin to be integrated. In this way, the thermal deformation acts equally on the left and right detection coils 47a and 47b (48a = 48b), so if the difference between the two detection coils is taken, the signal change due to the thermal deformation is excluded, and Drift can be suppressed. However, if the temperatures of the left and right detection coils are slightly different, the thermal deformation is not uniform on the left and right, and temperature drift remains. Therefore, the sensor head 200 is housed in the cooling chassis 49 as shown in FIG. 4 and the air is blown evenly on the left and right sides to cool the sensor head 200, thereby suppressing the temperature rise of the entire apparatus and preventing the temperature imbalance on the left and right sides of the apparatus. it can. When the material of the cooling chassis 49 is conductive, the conductivity of the chassis changes significantly due to the change in ambient temperature, which affects the output signal of the device. Therefore, in the chassis, all or at least the bottom surface facing the object through which the magnetic field from the device passes is made of a non-conductor.

【0018】(4)リフトオフ補正 また、流速測定装置と測定対象との距離が変化すると、
速度感度も変化する。そのため、対象の流速が一定で
も、出力信号が変化しノイズとなる。そこで、例えば渦
流距離計の様なもので対象面との距離を測定し、検出用
巻線の磁場の歪み信号をこの距離信号により演算し、速
度感度を補正する。ここで、図5、図6及び図7を用い
てリフトオフ補正の原理を説明する。図5には流速計と
対象面との距離を変えたときの流速計の速度感度の変化
を示した。このように対象面との距離Lと速度感度Gと
は次式のような関係にある。 G=A・exp(−B・L) 従って、距離がLの時の本流速計測装置の磁場歪み信号
をS(L)とすると、そのときの対象の流速vは次式で
計算できる。 v=S(L)/{A・exp(−B・L)} =A’・S(L)・exp(B・L) (ここでA,Bは定数,A’=1/A) この式は例えば図6の示したような補正回路によって実
現できる。これは渦流距離計駆動・検出回路51、指数
特性を持ったアンプ52、乗算器54及びリニアアンプ
53から構成される。
(4) Lift-off correction When the distance between the flow velocity measuring device and the object to be measured changes,
The speed sensitivity also changes. Therefore, even if the target flow velocity is constant, the output signal changes and becomes noise. Therefore, the distance to the target surface is measured with a device such as an eddy current distance meter, and the distortion signal of the magnetic field of the detection winding is calculated from this distance signal to correct the velocity sensitivity. Here, the principle of lift-off correction will be described with reference to FIGS. 5, 6, and 7. FIG. 5 shows the change in velocity sensitivity of the velocity meter when the distance between the velocity meter and the target surface is changed. In this way, the distance L to the target surface and the speed sensitivity G have the following relationship. G = A · exp (−B · L) Therefore, if the magnetic field distortion signal of the present velocity measuring device when the distance is L is S (L), the target velocity v at that time can be calculated by the following equation. v = S (L) / {A · exp (−B · L)} = A ′ · S (L) · exp (B · L) (where A and B are constants, A ′ = 1 / A) The equation can be realized by a correction circuit as shown in FIG. 6, for example. This is composed of an eddy current distance meter drive / detection circuit 51, an amplifier 52 having an exponential characteristic, a multiplier 54 and a linear amplifier 53.

【0019】図7に示されるように、渦流距離計56は
流速測定装置のセンサヘッドの中心の脚204bの前面
に併設する。そして、渦流距離計56及び駆動・検出回
路51により対象面との距離Lを検出する。検出した距
離信号58を指数アンプ52にかけ指数exp(B・
L)を計算する。更に、流速計の励磁・検出回路50の
出力の流速検出信号57と掛け合わせた後、利得が可変
のリニアアンプ53で定数倍する。これにより距離が変
化しても常に一定の速度感度で流速を計測することがで
きる。また、ここでは回路により補正式を実現したが、
流速計の出力及び渦流距離計の出力信号をそれぞれA/
D変換し、その後ソフトウェア的に補正式の計算を行っ
ても良い。なお、ここで指数関数の係数Bは励磁装置の
形状により異なるため、あらかじめ図5のような対象面
との距離−速度感度曲線を計測して求めておく必要があ
る。また、比例定数A即ちリニアアンプ53のゲイン
は、例えば特開平5−60774号公報の棒を浸漬する
方法のような、他の方法で計測した流速信号を用いて予
め調整しておけばよい。
As shown in FIG. 7, the eddy current distance meter 56 is provided in front of the leg 204b at the center of the sensor head of the flow velocity measuring device. Then, the eddy current distance meter 56 and the drive / detection circuit 51 detect the distance L to the target surface. The detected distance signal 58 is applied to the exponential amplifier 52 and exponent exp (B ·
L) is calculated. Further, after being multiplied by the flow velocity detection signal 57 output from the excitation / detection circuit 50 of the flow velocity meter, it is multiplied by a constant by the linear amplifier 53 having a variable gain. As a result, even if the distance changes, the flow velocity can always be measured with a constant velocity sensitivity. Also, here, the correction formula is realized by the circuit,
The output signal of the velocity meter and the output signal of the eddy current distance meter are A /
It is also possible to perform D conversion and then calculate the correction formula by software. Since the coefficient B of the exponential function differs depending on the shape of the exciter, it is necessary to measure the distance-velocity sensitivity curve with the target surface as shown in FIG. 5 in advance. Further, the proportional constant A, that is, the gain of the linear amplifier 53 may be adjusted in advance by using a flow velocity signal measured by another method such as the method of immersing a rod in Japanese Patent Laid-Open No. 60774/1993.

【0020】本発明の測定原理が明らかになったところ
で、次に本発明の実施例を説明する。ここでは、本発明
の一実施例を図1、図4〜図12に基いて説明する。本
実施例に係る流速測定装置は、図1、図4、図7に示さ
れる装置と、図8の測定回路とから構成されている。こ
こで、装置としては、流速測定の基本となるセンサヘッ
ド(図1)、高温環境下で計測する際の空冷シャーシ
(図4)、測定対象面との距離が変化する場合のリフト
オフ補正に用いる渦流距離計(図7)から構成される。
Now that the measurement principle of the present invention has been clarified, examples of the present invention will be described. An embodiment of the present invention will be described here with reference to FIGS. 1 and 4 to 12. The flow velocity measuring device according to the present embodiment is composed of the device shown in FIGS. 1, 4, and 7 and the measuring circuit of FIG. Here, the device is used for a sensor head (FIG. 1), which is the basis of flow velocity measurement, an air-cooled chassis (FIG. 4) for measurement in a high temperature environment, and lift-off correction when the distance to the measurement target surface changes. It consists of an eddy current rangefinder (Fig. 7).

【0021】センサヘッド200は、図1のようにセラ
ミックス製からなる中心の脚を中心として左右対称形の
E型のボビン202と,励磁巻線203b,検出巻線2
03a,cとから構成される。ここでは、ボビン202
としては温度ドリフトを低減させるため、熱膨張率の小
さいセラミックスを採用している。また、センサヘッド
200はその両端の検出巻線203a,cと励磁巻線2
03bとが対象の移動方向と平行となるように配置され
る。
The sensor head 200 has an E-shaped bobbin 202 which is symmetrical with respect to a central leg made of ceramics as shown in FIG. 1, an excitation winding 203b, and a detection winding 2.
03a, c. Here, the bobbin 202
In order to reduce the temperature drift, ceramics with a small coefficient of thermal expansion are used. Further, the sensor head 200 has the detection windings 203a and 203c at both ends thereof and the excitation winding 2
03b is arranged in parallel with the moving direction of the target.

【0022】更に、リフトオフ補正用として、図7に示
されるように、渦流距離計56をセンサヘッド200の
中心の脚204bの前面に配置する。ここでは渦流距離
計56としては特開昭62−30562号公報に提案さ
れているような差動帰還型渦流距離計を用いている。ま
た、高温の環境下で流速を測定する際には、センサヘッ
ド200及び渦流距離計56を図4に示されるような空
冷ボックス49中に配置し、センサヘッド200等を冷
却する。この空冷ボックス49は、セラミクス製で、空
気吹き込み口55a,b,c,dが加工されている。こ
の空冷ボックス49を用いて、空気吹き込み口55a,
b,c,dよりそれぞれ均等に空気を吹き込み、センサ
ヘッド200等を均等に冷却する。
Further, for lift-off correction, as shown in FIG. 7, an eddy current distance meter 56 is arranged in front of the leg 204b at the center of the sensor head 200. Here, as the eddy current range finder 56, a differential feedback type eddy current range finder as proposed in JP-A-62-30562 is used. Further, when measuring the flow velocity under a high temperature environment, the sensor head 200 and the eddy current distance meter 56 are arranged in the air cooling box 49 as shown in FIG. 4 to cool the sensor head 200 and the like. The air-cooling box 49 is made of ceramics and has air blowing ports 55a, b, c, d. Using this air-cooled box 49, an air blowing port 55a,
Air is evenly blown from b, c, and d to uniformly cool the sensor head 200 and the like.

【0023】測定回路は、図8に示されるように、励磁
回路118、検出回路120及びリフトオフ補正回路1
21から構成されている。まず、励磁回路118は、励
磁巻線203bに交流電流を流し、測定対象物に磁場を
励磁する。この励磁は発振器123及び定電流アンプ1
26によってなされる。発振器123により1〜100
0Hzの正弦波を発生させ、定電流アンプ126を介し
て励磁巻線203bに励磁電流を送る。ここで、励磁周
波数としては、あまり高すぎると(1KHz程度以上)
測定対象に生じる渦電流が大きくなり、流速計としてよ
りも渦流距離計としての性質が強くなり、対象表面の波
立ちによるノイズが強くなる。また、周波数があまり低
すぎると(1Hz程度以下)、検出巻線203a,cに
生じる起電力が弱くなり検出感度が落ちる。また、電磁
攪拌等による外乱磁場が交流の場合には、励磁電流の周
波数をこれらの外乱磁場の周波数から十分離す必要があ
る。
As shown in FIG. 8, the measuring circuit includes an exciting circuit 118, a detecting circuit 120 and a lift-off correcting circuit 1.
21. First, the excitation circuit 118 applies an alternating current to the excitation winding 203b to excite a magnetic field on the measurement target. This excitation is performed by the oscillator 123 and the constant current amplifier 1.
Made by 26. 1 to 100 depending on the oscillator 123
A 0 Hz sine wave is generated and an exciting current is sent to the exciting winding 203b via the constant current amplifier 126. Here, if the excitation frequency is too high (about 1 KHz or more)
The eddy current generated in the measurement object becomes large, the property as the eddy current rangefinder becomes stronger than that of the velocity meter, and the noise due to the wave of the target surface becomes stronger. On the other hand, if the frequency is too low (about 1 Hz or less), the electromotive force generated in the detection windings 203a and 203c becomes weak and the detection sensitivity decreases. Further, when the disturbance magnetic field due to electromagnetic stirring or the like is an alternating current, the frequency of the exciting current needs to be sufficiently separated from the frequencies of these disturbance magnetic fields.

【0024】検出巻線203a,cからの出力信号は検
出回路120に入る。ここで2つの検出巻線からの信号
は差分された後、励磁周波数を中心周波数に持つバンド
パスフィルター129を通して、大きな外乱磁場を取り
除いた後に、同期検波器(又は位相検波器)131によ
って、励磁電流と−90°ずれた位相の成分が検波され
る(ここでは低周波を用いたので−90°で良い)。こ
の検波後の信号の大きさが、流速に対応した磁場歪み信
号となる。その後、この磁場歪み信号は、渦流距離計5
6からの対象面との距離信号と共に、リフトオフ補正回
路121によりリフトオフ補正される。リフトオフ補正
回路121の中で、渦流距離計56の出力信号は、距離
計の駆動・検出回路135により距離信号に変換された
後、指数特性アンプ136を通して、磁場歪み信号と乗
算器137により掛け合わされ、利得が可変のリニアア
ンプ138を通して最終的な流速出力信号となる。ここ
で指数特性アンプ136は、例えば折れ線回路により組
み立てることができる。また、先にも述べたように、指
数関数の係数は対象面との距離−速度感度曲線を計測し
てあらかじめ求めておく。また、リニアアンプ138の
ゲインは、他の方法で計測した流速信号を用いてあらか
じめ調整しておく。
Output signals from the detection windings 203a and 203c enter the detection circuit 120. Here, after the signals from the two detection windings are differentiated, a large disturbance magnetic field is removed through a bandpass filter 129 having an excitation frequency as a center frequency, and then excitation is performed by a synchronous detector (or a phase detector) 131. A component having a phase shifted by −90 ° from the current is detected (−90 ° is sufficient because a low frequency is used here). The magnitude of the signal after this detection becomes a magnetic field distortion signal corresponding to the flow velocity. After that, this magnetic field distortion signal is transmitted to the eddy current rangefinder 5
The lift-off correction circuit 121 performs lift-off correction together with the distance signal from 6 to the target surface. In the lift-off correction circuit 121, the output signal of the eddy current range finder 56 is converted into a range signal by the range finder drive / detection circuit 135, and is then multiplied by the magnetic field distortion signal by the multiplier 137 through the exponential characteristic amplifier 136. The final flow velocity output signal is obtained through the linear amplifier 138 having a variable gain. Here, the exponential characteristic amplifier 136 can be assembled by, for example, a broken line circuit. Moreover, as described above, the coefficient of the exponential function is obtained in advance by measuring the distance-speed sensitivity curve with respect to the target surface. Further, the gain of the linear amplifier 138 is adjusted in advance using the flow velocity signal measured by another method.

【0025】次に、上記実施例の測定結果例を図9〜図
12により説明する。図9に低融点合金金属(ウッドメ
タル)の流速を測定した出力例を示す。図9(a)が測
定対象の流速を他の方法により検出した値であり、図9
(b)が上記実施例の速測定装置により検出した流速信
号であり、リフトオフ補正前の生の速度効果による磁場
歪み信号である。このように、対象面との距離が大きく
変化しなければ、特に何の補正もなく測定対象の流速に
追従した信号が得ることができる。
Next, an example of the measurement result of the above embodiment will be described with reference to FIGS. FIG. 9 shows an output example in which the flow velocity of the low melting point alloy metal (wood metal) is measured. FIG. 9A is a value obtained by detecting the flow velocity of the measurement target by another method.
(B) is a flow velocity signal detected by the velocity measuring device of the above embodiment, and is a magnetic field distortion signal due to the raw velocity effect before lift-off correction. Thus, unless the distance to the target surface changes significantly, a signal that follows the flow velocity of the measurement target can be obtained without any particular correction.

【0026】次に、対象面との距離が変動する場合の測
定結果例を図10に示す。図10(a)は渦流距離計に
より計測した距離信号、図10(b)はリフトオフ補正
前の流速計の出力信号である。図10(b)の信号を図
8の補正回路121が図10(a)の信号に基いて補正
した結果が図10(c)である。このように本リフトオ
フ補正方式により対象面との距離が変化しても安定して
流速を計測できることが分かる。
Next, FIG. 10 shows an example of measurement results when the distance to the target surface changes. FIG. 10A shows a distance signal measured by the eddy current distance meter, and FIG. 10B shows an output signal of the anemometer before lift-off correction. FIG. 10C shows the result of the correction circuit 121 of FIG. 8 correcting the signal of FIG. 10B based on the signal of FIG. 10A. Thus, it can be seen that the present lift-off correction method can stably measure the flow velocity even if the distance to the target surface changes.

【0027】図11は本実施例の流速測定装置を連続鋳
造ラインに適用した例を示す。タンディッシュ102の
下面より空却ボックス(図示せず)に入れた本実施例の
センサヘッド200を吊り下げ、湯面上に配置する。
FIG. 11 shows an example in which the flow velocity measuring device of this embodiment is applied to a continuous casting line. The sensor head 200 of this embodiment placed in an empty box (not shown) is hung from the lower surface of the tundish 102 and placed on the surface of the molten metal.

【0028】この場合には、パウダーを通して高温の溶
鋼からの熱放射を受けて周囲温度が大きく変化する。ま
た、この鋳造機には電磁攪拌装置が付いているので、装
置は大きな外乱磁場下にさらされている。ここでは電磁
攪拌の周波数が1Hzであり、本流速測定装置の励磁周
波数は14Hzに設定した。
In this case, the ambient temperature is greatly changed by receiving heat radiation from the high temperature molten steel through the powder. Also, since this casting machine is equipped with an electromagnetic stirring device, the device is exposed to a large disturbance magnetic field. Here, the frequency of electromagnetic stirring was 1 Hz, and the excitation frequency of this flow velocity measuring device was set to 14 Hz.

【0029】図12に図11の流速測定装置により検出
した流速信号を示す。このように本実施例においては、
大きな外乱磁場下でも、また環境の温度変化の元でも安
定して流速を計測できることが分かる。なお、ここでは
センサヘッド200のボビンとしては、E型のセラミッ
クス製のものを用いたが、励磁巻線と検出巻線とを平行
に並べられる1体型のボビンであれば、どんな形のもの
でもよく、図のE型を上下逆にしてE型の開いた部分が
上を向くようにしてもよいし、E型の開いた部分もつな
がった“日”の様な形をしたものでもよい。
FIG. 12 shows a flow velocity signal detected by the flow velocity measuring device of FIG. Thus, in this embodiment,
It can be seen that the flow velocity can be measured stably even under a large disturbance magnetic field and under the temperature change of the environment. Although the bobbin of the sensor head 200 is made of E-type ceramics here, it may be of any shape as long as it is a one-body bobbin in which the excitation winding and the detection winding can be arranged in parallel. Of course, the E shape in the figure may be turned upside down so that the open portion of the E shape faces upward, or the open portion of the E shape may be connected to form a "day" shape.

【0030】[0030]

【発明の効果】本発明の一つの態様によれば、励磁用巻
線に交流電流を供給し、対象面に垂直な交流磁界を発生
させ、磁場の速度効果による磁気歪みを、その両側に配
置された検出巻線により検出して、測定対象物の流速を
測定するようにしたので、対象面から離れた位置でも、
感度良く流速の測定ができる。また、本発明の他の態様
によれば、励磁周波数として外乱磁場の大きい周波数か
ら離れた周波数を選択し、検出コイルの差分後の出力を
励磁電流の周波数を中心周波数とするバンドパスフィル
タに通した後に同期検波又は位相検波により電圧を検出
して流速を測定するようにしたので、大きな外乱磁場の
下でも精度良く流速の計測が可能となる。
According to one aspect of the present invention, an alternating current is supplied to the exciting winding to generate an alternating magnetic field perpendicular to the target surface, and magnetostriction due to the velocity effect of the magnetic field is arranged on both sides of the magnetic field. Since it is designed to measure the flow velocity of the object to be measured by detecting with the detected winding,
The flow velocity can be measured with high sensitivity. According to another aspect of the present invention, a frequency apart from a frequency having a large disturbance magnetic field is selected as the excitation frequency, and the output after the difference of the detection coil is passed through a bandpass filter having the frequency of the excitation current as the center frequency. After that, the voltage is detected by synchronous detection or phase detection to measure the flow velocity, so that the flow velocity can be accurately measured even under a large disturbance magnetic field.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のセンサヘッドの構成を示す図である。FIG. 1 is a diagram showing a configuration of a sensor head of the present invention.

【図2】本発明の流速を測定するための動作原理を示す
図である。
FIG. 2 is a diagram showing an operating principle for measuring a flow velocity according to the present invention.

【図3】温度ドリフトの説明図である。FIG. 3 is an explanatory diagram of temperature drift.

【図4】本発明の冷却ボックスの構成を示した斜視図で
ある。
FIG. 4 is a perspective view showing a configuration of a cooling box of the present invention.

【図5】対象面との距離と速度感度との関係を示した特
性図である。
FIG. 5 is a characteristic diagram showing a relationship between a distance to a target surface and speed sensitivity.

【図6】リフトオフ変動の補正回路の構成を示したブロ
ック図である。
FIG. 6 is a block diagram showing a configuration of a lift-off variation correction circuit.

【図7】渦流距離計の配置例を示した斜視図である。FIG. 7 is a perspective view showing an arrangement example of an eddy current distance meter.

【図8】本発明の一実施例の流速測定装置の回路構成を
示したブロック図である。
FIG. 8 is a block diagram showing a circuit configuration of a flow velocity measuring device according to an embodiment of the present invention.

【図9】前記実施例の流速測定装置の計測結果を示す特
性図である。
FIG. 9 is a characteristic diagram showing a measurement result of the flow velocity measuring device according to the embodiment.

【図10】前記実施例の流速測定装置において対象面と
の距離が変化した場合の計測結果を示す特性図である。
FIG. 10 is a characteristic diagram showing a measurement result when the distance to the target surface is changed in the flow velocity measuring device of the embodiment.

【図11】本発明の適用例を示す図である。FIG. 11 is a diagram showing an application example of the present invention.

【図12】図11の適用例における測定結果を示す特性
図である。
12 is a characteristic diagram showing measurement results in the application example of FIG.

【図13】連続鋳造の説明図である。FIG. 13 is an explanatory diagram of continuous casting.

【図14】接触式による従来の高温液体金属の流速測定
装置の説明図である。
FIG. 14 is an explanatory view of a conventional high-temperature liquid metal flow velocity measuring device by a contact type.

【図15】磁場の速度効果の説明図である。FIG. 15 is an explanatory diagram of a velocity effect of a magnetic field.

【図16】従来の磁気による非接触式高温液体金属の流
速測定装置(その1)の説明図である。
FIG. 16 is an explanatory diagram of a conventional non-contact type high-temperature liquid metal flow velocity measuring device (1).

【図17】従来の磁気による非接触式高温液体金属の流
速測定装置(その2)の説明図である。
FIG. 17 is an explanatory diagram of a conventional non-contact type high-temperature liquid metal flow velocity measuring device (No. 2).

【図18】従来の磁気による非接触式高温液体金属の流
速測定装置(その3)の説明図である。
FIG. 18 is an explanatory diagram of a conventional non-contact type high-temperature liquid metal flow velocity measuring device (No. 3).

【符号の説明】[Explanation of symbols]

200:センサヘッド 202:E型ボビン 203a,c:検出巻線 203b:励磁巻線 56:渦流距離計 201:導電性測定対象物 118:励磁回路 123:発振器 126:定電流アンプ 120:検出回路 129:バンドパスフィルター 131:同期検波器(又は位相検波器) 121:リフトオフ補正回路 135:渦流距離計駆動・検出回路 136:指数特性アンプ 137:乗算器 138:リニアアンプ 200: Sensor head 202: E-type bobbin 203a, c: Detection winding 203b: Excitation winding 56: Eddy current distance meter 201: Conductive measurement object 118: Excitation circuit 123: Oscillator 126: Constant current amplifier 120: Detection circuit 129 : Band pass filter 131: Synchronous detector (or phase detector) 121: Lift-off correction circuit 135: Eddy current distance meter drive / detection circuit 136: Exponential characteristic amplifier 137: Multiplier 138: Linear amplifier

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西岡 信一 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 加藤 宏晴 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinichi Nishioka Marunouchi 1-2-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan KK (72) Hiroharu Kato 1-2-1 Marunouchi, Chiyoda-ku, Tokyo No. Nippon Steel Tube Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 移動する導電性の測定対象物の上に、対
象面に対しその中心軸が垂直となるように配置され、前
記測定対象物に垂直な交流磁界を生成する励磁巻線と、 その両側に導体の移動方向と平行に、かつ前記励磁巻線
に対し左右対称に、それぞれが同じ向きの磁束を検出す
るように配置された一対の検出巻線と、 非磁性体から構成され、前記各巻線を保持する保持部材
と、 前記一対の検出巻線の出力の差分信号の電圧から前記測
定対象物の流速を測定する測定手段とを有することを特
徴とする流速測定装置。
1. An exciting winding, which is arranged on a moving conductive object to be measured such that its central axis is perpendicular to the object surface, and which generates an alternating magnetic field perpendicular to the object to be measured. A pair of detection windings arranged on both sides thereof in parallel to the moving direction of the conductor and symmetrically with respect to the excitation winding so as to detect magnetic flux in the same direction, and composed of a non-magnetic material, A flow velocity measuring device comprising: a holding member that holds each of the windings; and a measuring unit that measures the flow velocity of the measurement target from the voltage of the differential signal between the outputs of the pair of detection windings.
【請求項2】 前記励磁巻線に供給される励磁電流の周
波数として外乱磁場の周波数から離れた周波数を選択
し、そして、前記測定手段は、前記励磁電流の周波数を
中心周波数とし、前記一対の検出巻線の差分後の出力を
入力するバンドパスフィルタと、前記バンドパスフィル
タの出力を同期又は位相検波する検波器とを備え、その
検波電圧に基づいて流速を求めることを特徴とする請求
項1記載の流速測定装置。
2. The frequency of the exciting current supplied to the exciting winding is selected from the frequency of the disturbance magnetic field, and the measuring means uses the frequency of the exciting current as a center frequency, A bandpass filter for inputting the output after the difference of the detection windings, and a detector for detecting the output of the bandpass filter in synchronization or phase, and determining the flow velocity based on the detected voltage. The flow velocity measuring device according to 1.
JP16665695A 1994-07-01 1995-06-30 Flow velocity measuring device Pending JPH08211085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16665695A JPH08211085A (en) 1994-07-01 1995-06-30 Flow velocity measuring device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP15077694 1994-07-01
JP29319294 1994-11-28
JP6-293192 1994-11-28
JP6-150776 1994-11-28
JP16665695A JPH08211085A (en) 1994-07-01 1995-06-30 Flow velocity measuring device

Publications (1)

Publication Number Publication Date
JPH08211085A true JPH08211085A (en) 1996-08-20

Family

ID=27319997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16665695A Pending JPH08211085A (en) 1994-07-01 1995-06-30 Flow velocity measuring device

Country Status (1)

Country Link
JP (1) JPH08211085A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010060792A (en) * 1999-12-28 2001-07-07 이구택 Noncontact electromagnetic velocimeter for solid and molten metal application
KR20030052573A (en) * 2001-12-21 2003-06-27 재단법인 포항산업과학연구원 Method for measuring velocity of molten metal
CN109387665A (en) * 2017-08-07 2019-02-26 纳博特斯克有限公司 Speed detector and speed detection method
JP2019207150A (en) * 2018-05-29 2019-12-05 ナブテスコ株式会社 Speed detector
CN110542765A (en) * 2018-05-29 2019-12-06 纳博特斯克有限公司 Speed detection device and speed detection method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010060792A (en) * 1999-12-28 2001-07-07 이구택 Noncontact electromagnetic velocimeter for solid and molten metal application
KR20030052573A (en) * 2001-12-21 2003-06-27 재단법인 포항산업과학연구원 Method for measuring velocity of molten metal
CN109387665A (en) * 2017-08-07 2019-02-26 纳博特斯克有限公司 Speed detector and speed detection method
EP3450988A3 (en) * 2017-08-07 2019-06-12 Nabtesco Corporation Speed detecting device and method
CN109387665B (en) * 2017-08-07 2022-09-09 纳博特斯克有限公司 Speed detection device and speed detection method
JP2019207150A (en) * 2018-05-29 2019-12-05 ナブテスコ株式会社 Speed detector
CN110542765A (en) * 2018-05-29 2019-12-06 纳博特斯克有限公司 Speed detection device and speed detection method
EP3584586A3 (en) * 2018-05-29 2020-04-08 Nabtesco Corporation Speed detecting device and speed detecting method

Similar Documents

Publication Publication Date Title
US4647854A (en) Apparatus for measuring the level of the molten metal in the mold of a continuous casting machine
US4567435A (en) Method and apparatus for continuously measuring distance utilizing eddy current and having temperature difference influence elimination
GB2142729A (en) Method and apparatus for non-contact measurement of solidified shell of a metal casting having unsolidifed inner part
JP3602096B2 (en) Apparatus and method for measuring molten metal level in electromagnetic continuous casting
JPH08211085A (en) Flow velocity measuring device
JPH07128104A (en) Flow measuring device
JP3307170B2 (en) Flow velocity measuring method and its measuring device, continuous casting method and its device
JPH08211084A (en) Flow velocity measuring device
JP3575264B2 (en) Flow velocity measuring method and device
JPS624641B2 (en)
JP2007152424A (en) Method and device for detecting in-mold molten steel level in continuous casting apparatus
JPH05281063A (en) Measuring device for tension of steel material
JPH08327647A (en) Current velocity measuring apparatus
JPH08211086A (en) Method and device for measuring flow velocity
JPH0194201A (en) Method and apparatus for measuring thickness of molten slag
JPH10104038A (en) Method and apparatus for measurement of flow velocity
JP2522732Y2 (en) Iron loss value measuring device
JPH09101321A (en) Flow velocity measuring method and measuring apparatus therefor
KR100445583B1 (en) Non-contact-type apparatus for measuring the velocity of a moving molten metal, and measuring method therefor
JPH08327649A (en) Method and apparatus for measuring current velocity
JP3546288B2 (en) Flow velocity measuring method and device
KR100270114B1 (en) Method and apparatus for distortion of hot metal plate
JPH08262051A (en) Method and apparatus for measuring flow velocity
JP2000162227A (en) Method and apparatus for measurement of flow velocity
JPH10328152A (en) Electromagnetic rheometer