JPH08211084A - Flow velocity measuring device - Google Patents

Flow velocity measuring device

Info

Publication number
JPH08211084A
JPH08211084A JP16665595A JP16665595A JPH08211084A JP H08211084 A JPH08211084 A JP H08211084A JP 16665595 A JP16665595 A JP 16665595A JP 16665595 A JP16665595 A JP 16665595A JP H08211084 A JPH08211084 A JP H08211084A
Authority
JP
Japan
Prior art keywords
flow velocity
magnetic field
measuring device
distance
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16665595A
Other languages
Japanese (ja)
Inventor
Kaneyuki Oota
金幸 太田
Kazumoto Futaki
一元 二木
Akio Nagamune
章生 長棟
Shinichi Nishioka
信一 西岡
Hiroharu Katou
宏晴 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP16665595A priority Critical patent/JPH08211084A/en
Publication of JPH08211084A publication Critical patent/JPH08211084A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE: To obtain a velocity measuring device which can detect the flow velocity of a high-temperature object such as molten metal stably, sensitively, continuously and in non-contact state. CONSTITUTION: This device is formed of E-shaped structure where the right and left legs are symmetrical to each other to the center line of central leg, and it is provided with an E-shaped magnetic core 202 that is arranged over a moving conductive object 201 to be measured in a manner that the leg ends will be opposite to the object 201 and the respective legs be parallel to the moving direction of the object 201, and an exciting winding 203b that is wound around the core 202 in a manner that the adjoining legs will generate reverse magnetic fields at every moments and generates a magnetic field vertical to the object 201 when an AC current is supplied. Then the right and left legs of the core 202 are provided with a pair of wound windings 203a and 203c for detection to detect magnetic fluxes of the same direction and a measuring means to measure the flow velocity of the object 201 based on the difference of output voltages from the windings 203a and 203c.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は連続鋳造プロセスにおい
て溶鋼を鋳込む鋳型内の溶鋼流の表面流速を測定する流
速測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow velocity measuring device for measuring the surface velocity of molten steel flow in a mold for casting molten steel in a continuous casting process.

【0002】[0002]

【従来の技術】連続鋳造ラインにおいては、図18に示
されるように、溶鋼3はタンディッシュ1からノズル2
を通して銅製の鋳型4中に注ぎ込まれて鋳造される。鋳
型中に注ぎ込まれた溶鋼は、鋳型壁面に当たり上昇流7
と下降流8とに分かれる。上昇流7は表面で流れ9a,
9bを作るが、ここで表面の溶鋼流動の左右のバランス
が崩れると渦が発生し、溶鋼表面上に撒いたパウダー5
を巻き込んだ流れ11を生成する。また、表面の溶鋼流
動が過大になると、溶鋼表面のパウダー5の一部10を
削り込む。何れの場合においても鋳片中に介在物が捕捉
され、製品欠陥の原因となる。この理由から、鋳型内溶
鋼流動を安定化させることは極めて重要な課題であり、
特に溶鋼表面近傍の流速を連続的に計測することが強く
求められている。
2. Description of the Related Art In a continuous casting line, as shown in FIG. 18, molten steel 3 is supplied from a tundish 1 to a nozzle 2
And is poured into a copper mold 4 to be cast. The molten steel poured into the mold hits the wall surface of the mold and rises 7
And downflow 8. Upflow 7 flows on the surface 9a,
9b is made, but when the left and right balance of the molten steel flow on the surface is lost, a vortex is generated and the powder 5 sprinkled on the molten steel surface
To produce stream 11. Further, when the molten steel flow on the surface becomes excessive, a part 10 of the powder 5 on the molten steel surface is ground. In either case, inclusions are trapped in the slab, causing product defects. For this reason, stabilizing the molten steel flow in the mold is a very important issue,
In particular, it is strongly required to continuously measure the flow velocity near the surface of molten steel.

【0003】従来、溶鋼の流速測定装置は、例えば特開
平5−60774号公報において提案されているような
接触型の計測が主であった。この流速測定装置は、図1
9に示されるように、ファインセラミックス製の棒12
を溶鋼14に浸漬して、その棒12が溶鋼流動により受
ける圧力を、受圧センサ13により検出して、流速を測
定するものである。この測定装置では高温の溶鋼14に
セラミックス製の棒12を浸漬させるため、長時間の連
続測定が不可能であった。
Heretofore, the flow velocity measuring apparatus for molten steel has mainly been a contact type measurement as proposed in, for example, JP-A-5-60774. This flow velocity measuring device is shown in FIG.
As shown in 9, fine ceramic rod 12
Is immersed in the molten steel 14, and the pressure received by the molten steel flow on the rod 12 is detected by the pressure receiving sensor 13 to measure the flow velocity. In this measuring device, the ceramic rod 12 is immersed in the high temperature molten steel 14, so that continuous measurement for a long time is impossible.

【0004】これに対し、磁気を用いて非接触で速度を
計測できることが知られている。図19に示されるよう
に、均等な磁場中で導体15が動くと、その導体中にE
=v×Bなる速度起電力が生じる。この速度起電力によ
り、導体中に渦電流Jv が誘起され、導体上に誘導磁場
Bv が発生して、元の磁場は導体の速度方向に引きずら
れるようにBからB’へと歪む。このように磁場が導体
の運動により歪む効果を、以下磁場の速度効果と呼ぶ。
この速度効果による歪みの程度は導体の速度に対応して
変化するので、歪み量を測ることで対象導体の速度を知
ることができる。
On the other hand, it is known that the velocity can be measured in a non-contact manner using magnetism. As shown in FIG. 19, when the conductor 15 moves in a uniform magnetic field, E
= V × B, a velocity electromotive force is generated. Due to this velocity electromotive force, an eddy current Jv is induced in the conductor, an induced magnetic field Bv is generated on the conductor, and the original magnetic field is distorted from B to B ′ so as to be dragged in the velocity direction of the conductor. The effect of the magnetic field being distorted by the movement of the conductor in this way is hereinafter referred to as the velocity effect of the magnetic field.
Since the degree of strain due to this speed effect changes corresponding to the speed of the conductor, the speed of the target conductor can be known by measuring the amount of strain.

【0005】このような磁気を用いて非接触で流速を測
定する流速測定装置としては例えば特開平2−3117
66号公報(文献1)があった。この流速測定装置は、
図21(a)に示されるように、溶鋼の流れ18と平行
に1次コイル19を配置し、水平方向両側に2つの2次
コイル20a,20bを配置したものである。1次コイ
ル19に交流電流を供給して溶鋼面と平行な交流磁場1
7を溶鋼表面に印加し、2次コイル20a,20bによ
り対象面と平行な磁場を検出する。導体が静止している
ときには磁場は1次コイル19を挟んで対称となり、2
つの2次コイル20a,20bの起電力に差はなく出力
は0である。導体が動いている場合には、図21(b)
に示されるように、速度効果により磁場は導体の速度方
向に歪み、励磁コイル19を挟んで対称でなくなるた
め、2つの2次コイル20a,20bに生じる起電力に
差が生じ、磁場の歪み量、即ち速度に対応した信号が2
つの2次コイル20a,20bの差分信号として得られ
る。
As a flow velocity measuring device for measuring the flow velocity in a non-contact manner using such magnetism, for example, Japanese Patent Laid-Open No. 2-3117
There was a publication No. 66 (reference 1). This velocity measuring device
As shown in FIG. 21A, the primary coil 19 is arranged in parallel with the molten steel flow 18, and the two secondary coils 20a and 20b are arranged on both sides in the horizontal direction. An alternating current is supplied to the primary coil 19 to generate an alternating magnetic field 1 parallel to the molten steel surface.
7 is applied to the molten steel surface, and the magnetic field parallel to the target surface is detected by the secondary coils 20a and 20b. When the conductor is stationary, the magnetic field becomes symmetrical with the primary coil 19 in between,
There is no difference in the electromotive force of the two secondary coils 20a and 20b, and the output is zero. If the conductor is moving, see Figure 21 (b).
As shown in, the magnetic field is distorted in the speed direction of the conductor due to the velocity effect and is not symmetrical with the exciting coil 19 in between. Therefore, a difference occurs in the electromotive force generated between the two secondary coils 20a and 20b, and the amount of distortion of the magnetic field is generated. That is, the signal corresponding to the speed is 2
It is obtained as a differential signal between the two secondary coils 20a and 20b.

【0006】また、磁気による方法では、装置と測定対
象物体との距離により速度感度が変化するが、特開平2
−311766号公報(文献2)に提案されている流速
測定装置においては、装置と測定対象物体との距離を、
対象面と平行な磁場を検出する2次コイルの片方の出力
電圧により測定して、それにより補正を行っていた。
In the magnetic method, the velocity sensitivity changes depending on the distance between the device and the object to be measured.
In the flow velocity measuring device proposed in Japanese Patent Publication No.-311766 (Document 2), the distance between the device and the object to be measured is
The measurement was performed by the output voltage of one of the secondary coils for detecting the magnetic field parallel to the target surface, and the correction was performed by the measurement.

【0007】また、磁気を用いて流速を計測する別の流
速測定装置として、特開昭61−223564号公報
(文献3)に提案されているものがある。この流速測定
装置は、図22(a)に示されるように、測定対象に対
しE型コアと巻線とから成るE型の励磁装置21を、各
磁極の開放端が導体側を向き、更に、3つの磁極21
a,21b,21cが対象面と平行となるように配置
し、また、リング状の磁心を持った磁気センサ22をE
型の励磁装置の中心の磁極21cを囲むように配置した
ものである。そして、E型の励磁装置21にそれぞれ隣
り合う磁極に反対向きの磁場を生じるよう直流電流を流
す。導体24が運動すると速度効果により導体中に渦電
流が流れるが、この渦電流により導体中に、中心の磁極
21cと左右の磁極21a,21bとの間にそれぞれ正
負逆の磁極N2 ,S2 を生じる。この磁極N2 ,S2 か
ら生じる磁場の対象面に対し水平な成分を先のリング状
の磁気センサ22を用いて検出し、それにより流速を検
出する。
Another flow velocity measuring device for measuring the flow velocity using magnetism is proposed in Japanese Patent Application Laid-Open No. 61-223564 (Document 3). As shown in FIG. 22 (a), this flow velocity measuring device has an E-shaped exciter 21 including an E-shaped core and windings for an object to be measured, in which the open ends of the magnetic poles face the conductor side. Three magnetic poles 21
a, 21b, 21c are arranged so as to be parallel to the target surface, and a magnetic sensor 22 having a ring-shaped magnetic core is provided.
It is arranged so as to surround the magnetic pole 21c at the center of the die exciter. Then, a direct current is passed through the E-shaped exciter 21 so as to generate magnetic fields in the opposite directions to the adjacent magnetic poles. When the conductor 24 moves, an eddy current flows in the conductor due to the velocity effect. Due to this eddy current, positive and negative magnetic poles N2 and S2 are generated between the central magnetic pole 21c and the left and right magnetic poles 21a and 21b, respectively. . The horizontal component of the magnetic field generated from the magnetic poles N2 and S2 with respect to the target surface is detected by using the ring-shaped magnetic sensor 22 and the flow velocity is detected.

【0008】また、磁気を用いて流速を計測する別の流
速測定装置として特開平5−297012号公報(文献
4)において提案されているものがある。この測定装置
は、図23に示されるように、1次コイル151を測定
対象152に対して垂直に配置し、1次コイル151に
交流電流を供給し、磁界153を生じさせ、1次コイル
151を挟んで両側に測定対象152に対して垂直に2
次コイル154a,154bを配置し、1次コイル15
1、2次コイル154a,154bを巻いた鉄心15
5,156a、156bを備えたものである。そして、
流速は2次コイル154a,154bに生じた起電力の
位相から検出する。
Another flow velocity measuring device for measuring the flow velocity using magnetism is proposed in Japanese Patent Application Laid-Open No. 5-297012 (Reference 4). In this measuring device, as shown in FIG. 23, the primary coil 151 is arranged vertically to the measurement object 152, an alternating current is supplied to the primary coil 151 to generate a magnetic field 153, and the primary coil 151 is generated. 2 vertically on both sides of the object
The secondary coils 154a and 154b are arranged and the primary coil 15
Iron core 15 wound with primary and secondary coils 154a and 154b
5,156a, 156b. And
The flow velocity is detected from the phase of the electromotive force generated in the secondary coils 154a and 154b.

【0009】[0009]

【発明が解決しようとする課題】しかし、従来の磁気を
用いた非接触の流速測定装置においては以下のような課
題が指摘される。 (1)文献1においては、水平方向に磁場を励磁する方
法を採用しているが、これでは、対象との距離が離れる
と磁場が大きく減衰し、検出能が下がる。また、速度効
果は磁場を対象に垂直に印加したときに最大となるの
で、効率が悪い。 (2)文献1においては、測定対象に平行に配置された
2次コイルに発生する起電力を検出し、その検出後の電
圧の差をとって流速の測定をする方法を採用している
が、磁場を検出する点での励磁磁場の大きさが大きく、
それに比べて、速度効果による磁場歪みが小さいため、
電圧の検出精度が流速の検出精度に影響し、十分な検出
精度が得られない。 (3)また、文献2においては、対象面と平行な磁場を
検出する2次コイルの片方の出力電圧により測定し、装
置と測定対象物体との距離を検出し、距離による速度感
度変化の補正を行う方法を採用しているが、距離検出精
度が十分でなく、補正後の流速検出精度も悪くなる。 (4)また、文献3においては、E型の励磁装置に直流
電流を流して直流磁場を生成しているが、流速が小さい
と、速度効果による磁場の歪み量が小さくなる。これに
比べて、連続鋳造ラインにおいては、周囲からの外乱磁
場の方が大きくなってしまうので、信号がノイズに埋も
れて計測できなくなる。 (5)また、文献4においては、2次コイルに発生する
起電力の位相の差から流速を測定する方法を採用してい
るが、位相を精度良く検出することが困難であり、その
検出精度が流速の検出精度に影響し、十分な検出精度が
得られない。
However, the following problems are pointed out in the conventional non-contact velocity measuring device using magnetism. (1) In Document 1, a method of exciting a magnetic field in the horizontal direction is adopted, but with this method, the magnetic field is greatly attenuated when the distance from the target is increased, and the detectability is lowered. In addition, the velocity effect becomes maximum when the magnetic field is vertically applied to the target, which is inefficient. (2) In Document 1, a method is used in which the electromotive force generated in a secondary coil arranged in parallel to the measurement target is detected and the difference in voltage after the detection is taken to measure the flow velocity. , The magnitude of the exciting magnetic field at the point of detecting the magnetic field is large,
In comparison, the magnetic field distortion due to the velocity effect is small,
The voltage detection accuracy affects the flow velocity detection accuracy, and sufficient detection accuracy cannot be obtained. (3) Further, in Reference 2, the output voltage of one of the secondary coils for detecting the magnetic field parallel to the target surface is measured, the distance between the device and the object to be measured is detected, and the speed sensitivity change due to the distance is corrected. However, the accuracy of distance detection is not sufficient, and the accuracy of flow velocity detection after correction is poor. (4) In Reference 3, a DC current is generated by passing a DC current through the E-type exciter, but when the flow velocity is low, the amount of magnetic field distortion due to the velocity effect is reduced. On the other hand, in the continuous casting line, the disturbance magnetic field from the surrounding becomes larger, so that the signal is buried in noise and measurement becomes impossible. (5) Further, in Document 4, a method of measuring the flow velocity from the phase difference of the electromotive force generated in the secondary coil is adopted, but it is difficult to detect the phase with high accuracy, and the detection accuracy thereof is high. Affects the detection accuracy of the flow velocity, and sufficient detection accuracy cannot be obtained.

【0010】[0010]

【課題を解決するための手段】本発明の一つの態様によ
る流速測定装置は、中心の脚を中心として左右対称形の
E型の形状をなしており、移動する導電性の測定対象物
の上に、脚の開いた面が測定対象物に対向し、且つ各脚
が測定対象物の移動方向に対し平行に並ぶように配置さ
れるE型の磁心と、各瞬間に、前記E型の磁心のそれぞ
れ隣り合う脚同士で、逆向きの磁場を生じるように、前
記E型の磁心に巻き回され、交流電流が供給されて、前
記測定対象物に対して垂直な磁場を生成させる励磁巻線
と、E型の磁心の両端の脚にそれぞれが同じ向きの磁束
を検出するように巻回された一対の検出用巻線と、一対
の検出用巻線の出力電圧の差に基いて測定対象物の流速
を測定する測定手段とを備えている。また、本発明の他
の態様による流速測定装置は、上記の流速測定装置にお
いて、測定対象物との距離を計測する距離測定手段を有
し、測定手段は前記の出力電圧の差を前記の距離により
補正する。
A flow velocity measuring device according to one aspect of the present invention has an E-shaped shape which is symmetrical with respect to a center leg, and is formed on a moving conductive object to be measured. And an E-shaped magnetic core in which the open surfaces of the legs face the object to be measured, and the legs are arranged in parallel with the moving direction of the object to be measured, and the E-shaped magnetic core at each moment. Exciting windings that are wound around the E-shaped magnetic core and are supplied with an alternating current so as to generate magnetic fields in opposite directions between adjacent legs of And a pair of detection windings wound around the legs of both ends of the E-shaped magnetic core so as to detect magnetic flux in the same direction, and a measurement target based on a difference in output voltage between the pair of detection windings. And a measuring means for measuring the flow velocity of the substance. Further, a flow velocity measuring device according to another aspect of the present invention, in the above flow velocity measuring device, has a distance measuring means for measuring a distance to a measuring object, and the measuring means measures the difference in the output voltage by the distance. Correct by

【0011】[0011]

【作用】本発明の一つの態様による流速測定装置におい
ては、励磁用巻線に交流電流が供給され、E型の磁心の
各脚から測定対象物に対して垂直な磁束が発生する。こ
の磁束は測定対象物を介して、E型の磁心の両端の脚に
戻ってくる。この戻ってきた磁束を一対の検出用巻線が
それぞれ検出する。磁界中を測定対象物が移動すると測
定対象中に渦流が流れて磁場が歪み、両端の検出用巻線
の位置における磁束に差が出て、その差分信号が変化す
る。この変化量は測定対象物の流速に対応しており、こ
の変化量から測定対象物の流速を測定することができ
る。従って、測定手段は、その一対の検出用巻線の出力
電圧の差に基いて測定対象物の流速を測定することにな
る。また、本発明の他の態様による流速測定装置におい
ては、測定手段は検出測定対象物対象との距離に基いて
流速値を補正する。この補正により、距離変化による流
速感度の変化が補正される。
In the flow velocity measuring device according to one aspect of the present invention, an alternating current is supplied to the exciting winding, and a magnetic flux perpendicular to the object to be measured is generated from each leg of the E-shaped magnetic core. This magnetic flux returns to the legs at both ends of the E-shaped magnetic core through the measurement object. The pair of detection windings detect the returned magnetic flux. When the measurement object moves in the magnetic field, an eddy current flows in the measurement object to distort the magnetic field, and a difference occurs in the magnetic flux at the positions of the detection windings at both ends, and the difference signal changes. This variation corresponds to the flow velocity of the measurement target, and the flow velocity of the measurement target can be measured from this variation. Therefore, the measuring means measures the flow velocity of the measuring object based on the difference between the output voltages of the pair of detection windings. Further, in the flow velocity measuring device according to another aspect of the present invention, the measuring means corrects the flow velocity value based on the distance from the detected object to be measured. By this correction, the change in flow velocity sensitivity due to the change in distance is corrected.

【0012】[0012]

【実施例】次に、本発明の実施例を説明にするのに先立
って、本発明の流速測定装置の動作原理を説明する。 (1)励磁・検出方法 本発明に係る流速計測装置のセンサヘッド200は、図
1に示されるように、中心の脚204bを中心として左
右対称形のE型の形状をした磁心202に対し、中心の
脚204bに励磁巻線203bを巻き、両端の脚204
a,cに検出巻線203a,cをそれぞれが同じ向きの
磁束を検出するように巻いたものである。これを移動す
る導電性の測定対象物201の上に、脚の開いた面が対
象面に向き、かつ各脚が対象面の移動方向に対し平行に
並ぶように配置する。なお、流速の方向は予め分かって
いる場合が多い。このようにE型の磁心202を脚の開
いた面が対象面に向け、中心の脚に励磁巻線203bを
施して励磁することにより、導体面に垂直に磁場を励磁
することができる。先に述べたように、速度効果はv×
Bで表されるので、対象の速度と磁場とが垂直となって
いるときに最大となる。ここで測定する流速は対象面と
平行なので、磁場を対象面と垂直に励磁すれば、水平に
励磁する場合よりも速度効果が大きくなり、速度検出感
度も大きくなる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Prior to describing the embodiments of the present invention, the operating principle of the flow velocity measuring apparatus of the present invention will be described. (1) Excitation / Detection Method As shown in FIG. 1, the sensor head 200 of the flow velocity measuring apparatus according to the present invention has a symmetrical E-shaped magnetic core 202 about a center leg 204b. The excitation winding 203b is wound around the center leg 204b, and the legs 204 at both ends are wound.
Detection windings 203a and 203c are wound around a and c so that the magnetic fluxes in the same direction are detected. It is arranged on the moving conductive object 201 to be measured such that the open surface of the leg faces the target surface and the legs are arranged parallel to the moving direction of the target surface. The direction of the flow velocity is often known in advance. In this way, the magnetic field can be excited perpendicularly to the conductor surface by directing the E-shaped magnetic core 202 with the open leg surface facing the target surface and applying the excitation winding 203b to the central leg to excite it. As mentioned earlier, the velocity effect is v ×
Since it is represented by B, it becomes maximum when the target velocity and the magnetic field are perpendicular. Since the flow velocity measured here is parallel to the target surface, when the magnetic field is excited perpendicularly to the target surface, the velocity effect becomes larger and the velocity detection sensitivity also becomes larger than when excited horizontally.

【0013】次に速度効果による磁場歪みの検出方法に
ついて説明する。図2(a)のように導体201が停止
していれば、磁場は中心の脚を中心として左右対象であ
り、左右の検出巻線の出力は等しく、その差分は0とな
る。導体201が動くと、図2(b)に示されるよう
に、その流速に対応して導体中に発生する渦電流により
磁場が歪み、両端の各検出巻き線位置での磁束に差が出
て、その差分信号が変化する。この変化量は対象の流速
に対応しており、この変化量から、対象の流速を測定す
ることができる。またこの時、磁束量の変化は、流れの
下流側と上流側の検出巻き線とでは逆方向で、外乱ノイ
ズや励磁装置からの直接磁場は、2つの検出巻線の位置
で同じため、2つの検出巻線の出力の差分をとれば、余
分な信号のみを除外することができ、流速に対応した歪
み量のみを更にS/N良く検出することが可能となる。
また、励磁電流を交流とし、各検出巻線の差分信号の振
幅を同期検波器もしくは位相検波器により検出すること
により、周囲の鉄などの磁性体の影響や、種々の外乱磁
場の影響を低減し、精度良く流速の測定が可能となる。
なお、ここで、速度に対応した磁場歪み量は、v×Bに
比例するので、低周波で励磁している場合は、磁場の歪
み量と、励磁磁場、即ち、励磁電流の位相は同じとな
る。これに対し、検出巻線の出力電圧と磁場とは−90
°の位相差があるため、位相検波器で検出する際には、
低周波の場合は励磁電流と−90°ずれた位相を選択す
れば良い。しかし、周波数が高い場合には、測定対象物
中での磁場の位相が−dB/dtに比例する渦電流によ
り変化するので、周波数ごとに速度による磁場歪み信号
が最大となる位相を選択する必要がある。
Next, a method of detecting the magnetic field distortion due to the velocity effect will be described. If the conductor 201 is stopped as shown in FIG. 2A, the magnetic field is symmetrical about the center leg, the outputs of the left and right detection windings are equal, and the difference between them is zero. When the conductor 201 moves, as shown in FIG. 2 (b), the magnetic field is distorted by the eddy current generated in the conductor corresponding to the flow velocity, and a difference occurs in the magnetic flux at each detection winding position at both ends. , The difference signal changes. This change amount corresponds to the flow velocity of the target, and the flow velocity of the target can be measured from this change amount. At this time, the change in the amount of magnetic flux is opposite in the detection windings on the downstream side and the upstream side of the flow, and the disturbance noise and the direct magnetic field from the exciter are the same at the positions of the two detection windings. By taking the difference between the outputs of the two detection windings, only the extra signal can be excluded, and only the distortion amount corresponding to the flow velocity can be detected with a good S / N ratio.
In addition, the excitation current is an alternating current and the amplitude of the differential signal of each detection winding is detected by a synchronous detector or phase detector to reduce the influence of magnetic substances such as surrounding iron and the influence of various disturbance magnetic fields. However, the flow velocity can be measured accurately.
Since the magnetic field distortion amount corresponding to the velocity is proportional to v × B, the magnetic field distortion amount and the exciting magnetic field, that is, the phase of the exciting current are the same when exciting at a low frequency. Become. On the other hand, the output voltage of the detection winding and the magnetic field are -90.
Since there is a phase difference of °, when detecting with a phase detector,
In the case of low frequency, a phase deviated from the exciting current by -90 ° may be selected. However, when the frequency is high, the phase of the magnetic field in the measurement object changes due to the eddy current proportional to −dB / dt, so it is necessary to select the phase that maximizes the magnetic field distortion signal due to velocity for each frequency. There is.

【0014】(2)温度ドリフト 高温の導体の流速を検出しようとするときには、装置の
温度が変化する。この時、励磁巻線及び磁心と検出巻線
及び磁心とが分離している場合には、各磁心を何らかの
固定治具により固定する必要がある。その際、高温の導
体の流速を検出しようとする場合には、周囲の温度が変
化すれば、固定治具や固定治具と磁心との結合部分が、
熱膨張あるいは熱収縮する。ここで、熱膨張・熱収縮が
左右の検出コイルに対して均等に作用すれば、2つの検
出コイルで差分をとるため、熱変形による信号変化は除
外される。しかし、固定していても本来各磁極はバラバ
ラなので、左右の検出コイルに対して熱変形は均等にな
らず、熱変形による信号変化分が残る。そのため例えば
図3(a)のように片側の磁心46aのみが大きく熱変
形によりずれれば(48a≠48b)、片側の検出巻線
47b出力が増加し、導体が動いていなくても擬似信号
を生じてしまう。この擬似信号は温度の上昇・下降に従
って増加もしくは下降するドリフト状のものである。
(2) Temperature Drift When trying to detect the flow velocity of a hot conductor, the temperature of the device changes. At this time, if the excitation winding and the magnetic core are separated from the detection winding and the magnetic core, it is necessary to fix each magnetic core by some fixing jig. At that time, when trying to detect the flow velocity of a high temperature conductor, if the surrounding temperature changes, the fixing jig or the connecting portion between the fixing jig and the magnetic core
Thermal expansion or contraction. Here, if the thermal expansion and the thermal contraction act equally on the left and right detection coils, the difference between the two detection coils is taken, so that the signal change due to thermal deformation is excluded. However, even if they are fixed, since the respective magnetic poles are originally scattered, the thermal deformation is not uniform with respect to the left and right detection coils, and a signal change due to the thermal deformation remains. Therefore, for example, if only the magnetic core 46a on one side is largely displaced by thermal deformation as shown in FIG. 3A (48a ≠ 48b), the output of the detection winding 47b on one side increases and a pseudo signal is generated even if the conductor is not moving. Will occur. This pseudo signal is in the form of a drift that increases or decreases as the temperature rises and falls.

【0015】そこで、図3(b)に示されるように、励
磁コイル47cと2つの検出コイル47a,bとを1つ
のコアに巻き、一体化する。このようにすれば、熱変形
は左右の検出コイル47a,bに対して均等に作用する
(48a=48b)ので、2つの検出コイルで差分をと
れば、熱変形による信号変化は除外され、温度ドリフト
を抑えることができる。しかし、左右の検出コイルの温
度は僅かに異なれば、熱変形が左右で均等にならず温度
ドリフトが残ってしまう。そこで、図4のような冷却シ
ャーシ49にセンサヘッド200を収納し、左右均等に
空気を吹き込み冷却することにより、装置全体の温度上
昇を抑え、かつ装置の左右の温度不均衡を防止すること
ができる。また、こうした冷却シャーシ49の材質が導
電性の場合、周囲の温度変化によりシャーシ49の導電
率が大きく変化し、装置の出力信号に影響を与える。そ
こで、シャーシ49は、全てあるいは少なくとも装置か
らの磁場が通る対象と面した底面を不導体により作成す
る。
Therefore, as shown in FIG. 3B, the exciting coil 47c and the two detecting coils 47a and 47b are wound around one core and integrated. In this way, the thermal deformation acts equally on the left and right detection coils 47a and 47b (48a = 48b), so if the difference between the two detection coils is taken, the signal change due to the thermal deformation is excluded, and Drift can be suppressed. However, if the temperatures of the left and right detection coils are slightly different, the thermal deformation is not uniform on the left and right, and temperature drift remains. Therefore, the sensor head 200 is housed in the cooling chassis 49 as shown in FIG. 4 and the air is blown evenly on the left and right sides to cool the sensor head 200, thereby suppressing the temperature rise of the entire apparatus and preventing the temperature imbalance on the left and right sides of the apparatus. it can. Further, when the material of the cooling chassis 49 is conductive, the conductivity of the chassis 49 changes greatly due to a change in ambient temperature, which affects the output signal of the device. Therefore, in the chassis 49, all or at least the bottom surface facing the object through which the magnetic field from the device passes is made of a non-conductor.

【0016】(3)リフトオフ補正 また、流速測定装置と測定対象との距離が変化すると、
速度感度も変化する。そのため、対象の流速が一定で
も、出力信号が変化しノイズとなる。そこで、例えば渦
流距離計の様なもので対象面との距離を測定し、検出用
巻線の磁場の歪み信号をこの距離信号により演算し、速
度感度を補正する。ここで、図5、図6及び図7を用い
てリフトオフ補正の原理を説明する。図5には流速計と
対象面との距離を変えたときの流速計の速度感度の変化
を示した。このように対象面との距離Lと速度感度Gと
は次式のような関係にある。 G=A・exp(−B・L) 従って、距離がLの時の本流速計測装置の磁場歪み信号
をS(L)とすると、そのときの対象の流速vは次式で
計算できる。 v=S(L)/{A・exp(−B・L)} =A’・S(L)・exp(B・L) (ここでA,Bは定数,A’=1/A) この式は例えば図6の示したような補正回路によって実
現できる。これは渦流距離計駆動・検出回路51、指数
特性を持ったアンプ52、乗算器54及びリニアアンプ
53から構成される。
(3) Lift-off correction When the distance between the flow velocity measuring device and the object to be measured changes,
The speed sensitivity also changes. Therefore, even if the target flow velocity is constant, the output signal changes and becomes noise. Therefore, the distance to the target surface is measured with a device such as an eddy current distance meter, and the distortion signal of the magnetic field of the detection winding is calculated from this distance signal to correct the velocity sensitivity. Here, the principle of lift-off correction will be described with reference to FIGS. 5, 6, and 7. FIG. 5 shows the change in velocity sensitivity of the velocity meter when the distance between the velocity meter and the target surface is changed. In this way, the distance L to the target surface and the speed sensitivity G have the following relationship. G = A · exp (−B · L) Therefore, if the magnetic field distortion signal of the present velocity measuring device when the distance is L is S (L), the target velocity v at that time can be calculated by the following equation. v = S (L) / {A · exp (−B · L)} = A ′ · S (L) · exp (B · L) (where A and B are constants, A ′ = 1 / A) The equation can be realized by a correction circuit as shown in FIG. 6, for example. This is composed of an eddy current distance meter drive / detection circuit 51, an amplifier 52 having an exponential characteristic, a multiplier 54 and a linear amplifier 53.

【0017】図7に示されるように、渦流距離計56は
流速測定装置のセンサヘッド200の中心の磁極204
bの前面に併設する。そして、渦流距離計56及び駆動
・検出回路51により対象面との距離Lを検出する。検
出した距離信号58を指数アンプ52にかけ指数exp
(B・L)を計算する。更に、流速計の励磁・検出回路
50の出力の流速検出信号57と掛け合わせた後、利得
が可変のリニアアンプ53で定数倍する。これにより距
離が変化しても常に一定の速度感度で流速を計測するこ
とができる。また、ここでは回路により補正式を実現し
たが、流速計の出力及び渦流距離計の出力信号をそれぞ
れA/D変換し、その後ソフトウェア的に補正式の計算
を行っても良い。なお、ここで指数関数の係数Bは励磁
装置の形状により異なるため、あらかじめ図5のような
対象面との距離−速度感度曲線を計測して求めておく必
要がある。また、比例定数A即ちリニアアンプ53のゲ
インは、例えば特開平5−60774号公報の棒を浸漬
する方法のような、他の方法で計測した流速信号を用い
て予め調整しておけばよい。
As shown in FIG. 7, the eddy current distance meter 56 includes a magnetic pole 204 at the center of the sensor head 200 of the flow velocity measuring device.
Installed in front of b. Then, the eddy current distance meter 56 and the drive / detection circuit 51 detect the distance L to the target surface. The detected distance signal 58 is applied to the exponential amplifier 52 to exponent exp.
Calculate (BL). Further, after being multiplied by the flow velocity detection signal 57 output from the excitation / detection circuit 50 of the flow velocity meter, it is multiplied by a constant by the linear amplifier 53 having a variable gain. As a result, even if the distance changes, the flow velocity can always be measured with a constant velocity sensitivity. Further, although the correction equation is realized by the circuit here, the output of the anemometer and the output signal of the eddy current distance meter may be A / D converted, and then the correction equation may be calculated by software. Since the coefficient B of the exponential function differs depending on the shape of the exciter, it is necessary to measure the distance-velocity sensitivity curve with the target surface as shown in FIG. 5 in advance. Further, the proportional constant A, that is, the gain of the linear amplifier 53 may be adjusted in advance by using a flow velocity signal measured by another method such as the method of immersing a rod in Japanese Patent Laid-Open No. 60774/1993.

【0018】本発明の測定原理が明らかになったところ
で、次に本発明の実施例を説明する。ここでは、本発明
の一実施例を図1、図4及び図8〜図16に基いて説明
する。本実施例に係る流速測定装置は、図1、図4、図
7に示される装置と、図8の測定回路とから構成されて
いる。ここで、装置としては、流速測定の基本となるセ
ンサヘッド(図1)、高温環境下で計測する際の空冷シ
ャーシ(図4)、測定対象面との距離が変化する場合の
リフトオフ補正に用いる渦流距離計(図7)、から構成
される。センサヘッド200は、図1のように磁性材か
らなる中心の脚を中心として左右対称形のE型の磁心2
02と,励磁巻線203b, 検出巻線203a,cとか
ら構成される。ここでは、磁心202としては3%珪素
鋼板を積層したものを用いた。しかし、高温の測定環境
下では温度変化による磁心の熱変形を抑えるため、積層
した磁心を用いるよりも、例えばフェライトコアのよう
に一体型のコアを用いた方がより良い。また、センサヘ
ッド200はその両端の検出巻線203a,cと励磁巻
線203bとが対象の移動方向と平行となるように配置
される。
Now that the measurement principle of the present invention has been clarified, an embodiment of the present invention will be described. An embodiment of the present invention will be described here with reference to FIGS. 1, 4 and 8 to 16. The flow velocity measuring device according to the present embodiment is composed of the device shown in FIGS. 1, 4, and 7 and the measuring circuit of FIG. Here, the device is used for a sensor head (FIG. 1), which is the basis of flow velocity measurement, an air-cooled chassis (FIG. 4) for measurement in a high temperature environment, and lift-off correction when the distance to the measurement target surface changes. The eddy current range finder (Fig. 7). As shown in FIG. 1, the sensor head 200 has a symmetrical E-shaped magnetic core 2 with a central leg made of a magnetic material as a center.
02, the excitation winding 203b, and the detection windings 203a and 203c. Here, as the magnetic core 202, a laminate of 3% silicon steel plates was used. However, in a high-temperature measurement environment, in order to suppress thermal deformation of the magnetic core due to temperature change, it is better to use an integral core such as a ferrite core than to use a laminated magnetic core. Further, the sensor head 200 is arranged so that the detection windings 203a and 203c and the excitation winding 203b at both ends thereof are parallel to the moving direction of the target.

【0019】更に、リフトオフ補正用として、図7に示
されるように、渦流距離計56をセンサヘッド200の
中心の脚204bの前面に配置する。ここでは渦流距離
計56をとしては特開昭62−30562号公報に提案
されているような差動帰還型渦流距離計を用いている。
また、高温の環境下で流速を測定する際には、センサヘ
ッド200及び渦流距離計56を図4に示されるような
空冷ボックス49中に配置し、センサヘッド200等を
冷却する。この空冷ボックス49は、セラミクス製で、
空気吹き込み口55a,b,c,dが加工されている。
この空冷ボックス49を用いて、空気吹き込み口54
a,b,c,dよりそれぞれ均等に空気を吹き込み、セ
ンサヘッド200等を均等に冷却する。
Further, as shown in FIG. 7, an eddy current range finder 56 is arranged in front of the leg 204b at the center of the sensor head 200 for lift-off correction. Here, as the eddy current range finder 56, a differential feedback type eddy current range finder as proposed in JP-A-62-30562 is used.
Further, when measuring the flow velocity under a high temperature environment, the sensor head 200 and the eddy current distance meter 56 are arranged in the air cooling box 49 as shown in FIG. 4 to cool the sensor head 200 and the like. This air-cooled box 49 is made of ceramics,
The air blowing ports 55a, b, c, d are processed.
Using this air-cooled box 49, an air blowing port 54
Air is blown evenly from a, b, c, and d to evenly cool the sensor head 200 and the like.

【0020】測定回路は、図8に示されるように、励磁
回路118、検出回路120及びリフトオフ補正回路1
21から構成されている。まず、励磁回路118は、励
磁巻線203bに交流電流を流し、測定対象物に磁場を
励磁する。この励磁は発振器123及び定電流アンプ1
26によってなされる。発振器123により1〜100
0Hzの正弦波を発生させ、定電流アンプ126を介し
て励磁巻線203bに励磁電流を送る。ここで、励磁周
波数としては、あまり高すぎると(1KHz程度以上)
測定対象に生じる渦電流が大きくなり、流速計としてよ
りも渦流距離計としての性質が強くなり、対象表面の波
立ちによるノイズが強くなる。また、周波数があまり低
すぎると(1Hz程度以下)、検出巻線203a,cに
生じる起電力が弱くなり検出感度が落ちる。従って、励
磁周波数としてはここでは14Hzとした。
As shown in FIG. 8, the measuring circuit includes an exciting circuit 118, a detecting circuit 120 and a lift-off correcting circuit 1.
21. First, the excitation circuit 118 applies an alternating current to the excitation winding 203b to excite a magnetic field on the measurement target. This excitation is performed by the oscillator 123 and the constant current amplifier 1.
Made by 26. 1 to 100 depending on the oscillator 123
A 0 Hz sine wave is generated and an exciting current is sent to the exciting winding 203b via the constant current amplifier 126. Here, if the excitation frequency is too high (about 1 KHz or more)
The eddy current generated in the measurement object becomes large, the property as the eddy current rangefinder becomes stronger than that of the velocity meter, and the noise due to the wave of the target surface becomes stronger. On the other hand, if the frequency is too low (about 1 Hz or less), the electromotive force generated in the detection windings 203a and 203c becomes weak and the detection sensitivity decreases. Therefore, the excitation frequency is set to 14 Hz here.

【0021】検出巻線203a,cからの出力信号は検
出回路120に入る。ここで2つの検出巻線からの信号
は差分された後、励磁周波数を中心周波数に持つバンド
パスフィルター129を通して、不要なノイズ信号を除
去し、同期検波器131(若しくは位相検波器)によっ
て、励磁電流と−90°ずれた位相の成分が検波される
(ここでは低周波なので−90°で良い)。この検波後
の信号の大きさが、流速に対応した磁場歪み信号とな
る。その後、この磁場歪み信号は、渦流距離計56から
の対象面との距離信号と共に、リフトオフ補正回路12
1によりリフトオフ補正される。リフトオフ補正回路1
21の中で、渦流距離計56の出力信号は、距離計の駆
動・検出回路135により距離信号に変換された後、指
数特性アンプ136を通して、磁場歪み信号と乗算器1
37により掛け合わされ、利得が可変のリニアアンプ1
38を通して最終的な流速出力信号となる。ここで指数
特性アンプ136は、例えば折れ線回路により組み立て
ることができる。また、先にも述べたように、指数関数
の係数は対象面との距離−速度感度曲線を計測してあら
かじめ求めておく。また、リニアアンプ138のゲイン
は、他の方法で計測した流速信号を用いてあらかじめ調
整しておく。
Output signals from the detection windings 203a and 203c enter the detection circuit 120. Here, after the signals from the two detection windings are differentiated, an unnecessary noise signal is removed through a bandpass filter 129 having an excitation frequency as a center frequency, and excitation is performed by a synchronous detector 131 (or a phase detector). A component having a phase deviated from the current by −90 ° is detected (here, since it is a low frequency, −90 ° is sufficient). The magnitude of the signal after this detection becomes a magnetic field distortion signal corresponding to the flow velocity. After that, this magnetic field distortion signal together with the distance signal to the target surface from the eddy current range finder 56 is combined with the lift-off correction circuit 12.
Lift-off correction is performed by 1. Lift-off correction circuit 1
21, the output signal of the eddy current range finder 56 is converted into a range signal by the drive / detection circuit 135 of the range finder, and then passed through the exponential characteristic amplifier 136 to generate the magnetic field distortion signal and the multiplier 1.
Linear amplifier 1 with variable gain by multiplication by 37
A final flow velocity output signal is obtained through 38. Here, the exponential characteristic amplifier 136 can be assembled by, for example, a broken line circuit. Moreover, as described above, the coefficient of the exponential function is obtained in advance by measuring the distance-speed sensitivity curve with respect to the target surface. Further, the gain of the linear amplifier 138 is adjusted in advance using the flow velocity signal measured by another method.

【0022】次に、上記実施例の測定結果例を図9〜図
11により説明する。図9に低融点合金金属(ウッドメ
タル)の流速を測定した出力例を示す。図9(a)が測
定対象の流速を他の方法により検出した値であり、図9
(b)が上記実施例の速測定装置により検出した流速信
号であり、リフトオフ補正前の生の速度効果による磁場
歪み信号である。このように、対象面との距離が大きく
変化しなければ、特に何の補正もなく測定対象の流速に
追従した信号が得ることができる。
Next, an example of the measurement result of the above embodiment will be described with reference to FIGS. FIG. 9 shows an output example in which the flow velocity of the low melting point alloy metal (wood metal) is measured. FIG. 9A is a value obtained by detecting the flow velocity of the measurement target by another method.
(B) is a flow velocity signal detected by the velocity measuring device of the above embodiment, and is a magnetic field distortion signal due to the raw velocity effect before lift-off correction. Thus, unless the distance to the target surface changes significantly, a signal that follows the flow velocity of the measurement target can be obtained without any particular correction.

【0023】次に高温の環境下での測定結果例を示す。
図10は高温の溶鋼の流速を上記実施例の測定装置によ
り流速を計測した例である。ここでは測定装置の下に溶
鋼を流しているので、装置の下からの熱放射を受けて周
囲温度が大きく変化している。図10(a)は測定対象
の流速をその流れた重量と流れの断面積とから算出した
値である。また、図10(b)が上記実施例の流速測定
装置により検出した磁場歪み信号である。更に、図10
(c)がセンサヘッドの温度を熱電対により測定した結
果である。このように装置全体を空冷ボックス49によ
り均等に空冷し、1体型の励磁・検出コイルを用いるこ
とにより、温度変化による温度ドリフトの影響を低減
し、溶鋼のような高温の液体金属に対し、環境の温度変
化の元でも安定して流速を計測できることが分かる。
Next, an example of measurement results in a high temperature environment will be shown.
FIG. 10 is an example in which the flow velocity of molten steel at high temperature is measured by the measuring device of the above embodiment. Here, since the molten steel is flowing under the measuring device, the ambient temperature is greatly changed by receiving heat radiation from under the device. FIG. 10A shows the value of the flow velocity of the measurement target calculated from the weight of the flow and the cross-sectional area of the flow. Further, FIG. 10B is a magnetic field distortion signal detected by the flow velocity measuring device of the above-mentioned embodiment. Furthermore, FIG.
(C) is the result of measuring the temperature of the sensor head with a thermocouple. In this way, the entire apparatus is uniformly air-cooled by the air-cooling box 49, and by using the one-body type excitation / detection coil, the influence of temperature drift due to temperature change is reduced, and the environment against hot liquid metal such as molten steel is reduced. It can be seen that the flow velocity can be measured stably even under the temperature change.

【0024】次に、対象面との距離が変動する場合の測
定結果例を図11に示す。図11(a)は渦流距離計に
より計測した距離信号、図11(b)はリフトオフ補正
前の流速計の出力信号である。図11(b)の信号を図
8の補正回路121が図11(a)の信号に基いて補正
した結果が図11(c)である。このように本リフトオ
フ補正方式により対象面との距離が変化しても安定して
流速を計測できることが分かる。
Next, FIG. 11 shows an example of measurement results when the distance to the target surface changes. FIG. 11A shows a distance signal measured by an eddy current distance meter, and FIG. 11B shows an output signal of the anemometer before lift-off correction. FIG. 11C shows the result of the correction circuit 121 of FIG. 8 correcting the signal of FIG. 11B based on the signal of FIG. 11A. Thus, it can be seen that the present lift-off correction method can stably measure the flow velocity even if the distance to the target surface changes.

【0025】図12は本実施例の流速測定装置を連続鋳
造ラインに適用した第1の例を示す。タンディッシュ1
02の下面より空却ボック(図示せず)に入れた本実施
例のセンサヘッド200を吊り下げ、湯面上に配置す
る。これにより鋳型104内の溶鋼の流速105を監視
し、流速を制御して流れを安定化させ、連続鋳造中の表
面流の変動による品質欠陥の発生を未然に防ぐことがで
きる。また、このセンサヘッドを2つ、長辺方向に、ノ
ズルを中心として対称の位置に配置すれば、表面流れの
左右非対称性を監視できる。
FIG. 12 shows a first example in which the flow velocity measuring device of this embodiment is applied to a continuous casting line. Tundish 1
The sensor head 200 of this embodiment, which is placed in an empty box (not shown), is hung from the lower surface of 02 and placed on the molten metal surface. This makes it possible to monitor the flow rate 105 of the molten steel in the mold 104, control the flow rate to stabilize the flow, and prevent the occurrence of quality defects due to fluctuations in the surface flow during continuous casting. Further, by disposing two of these sensor heads at positions symmetrical with respect to the nozzle in the long side direction, the asymmetry of the surface flow can be monitored.

【0026】また、図13は、本実施例の流速測定装置
を連続鋳造ラインに適用した第2の例である。ここで
は、溶鋼に対し水冷鋳型206を挟んで、長辺側215
のモールド中に、湯面直下の高さ付近で、ノズル213
と鋳型短辺214との間に本実施例のセンサヘッド20
0を設置する。センサヘッド200の向きは、図13の
ように2つの検出巻線(図示せず)が湯面に対し平行に
並ぶようにする。このように配置すれば、モールド表面
の流速209を測定できる。また、図13のようにセン
サヘッド200を2つ、長辺215方向にノズルを中心
として左右対称の位置に配置すれば、表面流れの左右非
対称性を監視できる。この他にも、センサを設置する位
置や、向きを変えれば、表面流速のみでなく、モールド
中の様々な流速を、測定することができる。
FIG. 13 shows a second example in which the flow velocity measuring device of this embodiment is applied to a continuous casting line. Here, the long side 215 is sandwiched between the molten steel and the water cooling mold 206.
During the molding of the nozzle 213,
The sensor head 20 of the present embodiment is provided between the mold and the mold short side 214.
Set 0. The orientation of the sensor head 200 is such that two detection windings (not shown) are arranged parallel to the molten metal surface as shown in FIG. With this arrangement, the flow velocity 209 on the mold surface can be measured. Further, as shown in FIG. 13, if two sensor heads 200 are arranged symmetrically with respect to the nozzle in the long side 215 direction, the asymmetry of the surface flow can be monitored. In addition to this, not only the surface flow velocity but also various flow velocity in the mold can be measured by changing the position or the orientation of the sensor.

【0027】例えば、図14に示されるように、センサ
ヘッド200を、ノズル213の吐出口近辺の高さで、
ノズルと鋳型短辺214との間に、2つの検出巻線がノ
ズル213からの吐出流と平行に並ぶように設置すれば
(ノズルの吐出口の角度から推定できる)、ノズル21
3からの吐出流速212を計測できる。更に、ノズル2
13を挟んで左右対称に、センサヘッドを2つ配置すれ
ば、ノズル吐出流の左右の不均衡を監視でき、溶鋼表面
で左右の流速バランスを推定できる。
For example, as shown in FIG. 14, the sensor head 200 is mounted at a height near the ejection port of the nozzle 213,
If two detection windings are arranged in parallel with the discharge flow from the nozzle 213 between the nozzle and the mold short side 214 (which can be estimated from the angle of the discharge port of the nozzle), the nozzle 21
The discharge flow rate 212 from 3 can be measured. Furthermore, the nozzle 2
If two sensor heads are arranged symmetrically with 13 in between, the left and right imbalance of the nozzle discharge flow can be monitored, and the left and right flow velocity balance can be estimated on the molten steel surface.

【0028】また、図15に示されるように、センサヘ
ッド200を鋳型206内の下側の位置で、ノズル21
3と鋳型短辺214との間に、2つの検出巻線がノズル
213から吐出して下に向かう流れと平行に並ぶように
設置すれば設置すれば、下降流211を計測することも
できる。下降流が強すぎれば、溶鋼中に含まれる介在物
が浮上できずに、溶鋼層のより深い位置まで運ばれ、そ
のまま鋳片に補足されて、成品欠陥となってしまう。そ
こでこの下降流が監視できれば、欠陥の発生を予測で
き、防止措置を講じることができる。
Further, as shown in FIG. 15, the sensor head 200 is placed at the lower position in the mold 206 and the nozzle 21
If the two detection windings are installed in parallel with the downward flow discharged from the nozzle 213 between the nozzle 3 and the mold short side 214, the downflow 211 can be measured. If the descending flow is too strong, inclusions contained in the molten steel cannot be floated, and they are carried to a deeper position in the molten steel layer, and are caught by the cast pieces as they are, resulting in product defects. Therefore, if this downflow can be monitored, the occurrence of defects can be predicted and preventive measures can be taken.

【0029】このようにモールド中にセンサヘッド20
0を設置すれば、モールドは水冷されているので、セン
サヘッド200を特に空冷シャーシに入れて、冷却する
必要がなくなる。但し、この場合には、厚さ50mm程
度の銅製の鋳型を挟んで励磁するので、励磁周波数を低
くとる必要がある。
In this way, the sensor head 20 is molded into the mold.
If 0 is set, since the mold is water-cooled, it is not necessary to put the sensor head 200 in an air-cooled chassis for cooling. However, in this case, since excitation is performed with a copper mold having a thickness of about 50 mm being sandwiched, it is necessary to keep the excitation frequency low.

【0030】また、図16は本実施例の流速測定装置を
連続鋳造ラインに適用した第3の例である。ここでは、
長辺側のモールドの直下にセンサヘッド200を設置す
る。センサヘッド200の向きは、図16に示されるよ
うに、2つの検出巻線が鋳片の引き抜き方向と平行に並
ぶようにする。このように設置すれば、溶鋼の下降流2
11の流速の計測が可能となる。先に述べた第2の例で
も、下降流は計測できるが、先の場合は銅製鋳型を挟ん
でいるので、磁場を励磁するには、周波数をかなり低く
とらねばならず、検出巻線の起電力が低くなってしま
う。この例のように配置すれば、センサヘッド200と
溶鋼流との間には、凝固シェルがあるのみで、一般に溶
鋼の連続鋳造の場合には、凝固シェルの導電率は銅の1
/80とかなり小さく、また、厚みは30〜40mm程
度と銅製鋳型より薄いため、周波数は第2の例より高く
てもかまわず、検出巻線の起電力が比較的高くでき検出
精度が良くなる。なおこの場合は、センサヘッド200
と溶鋼流との間のシェルも、下方向に引き抜かれ、速度
を持っており、センサヘッド200の出力はこの速度と
溶鋼下降流の和を検出する。しかし、シェルの速度は数
m/minと非常に遅いため、下降流流速に大きな影響
はない。
FIG. 16 shows a third example in which the flow velocity measuring device of this embodiment is applied to a continuous casting line. here,
The sensor head 200 is installed immediately below the mold on the long side. As shown in FIG. 16, the orientation of the sensor head 200 is such that the two detection windings are arranged in parallel with the direction in which the slab is drawn out. If installed in this way, the downward flow of molten steel 2
The flow velocity of 11 can be measured. In the second example described above, the downward flow can be measured, but in the case of the previous case, since the copper mold is sandwiched, in order to excite the magnetic field, the frequency must be set considerably low and the detection winding start-up occurs. The power will be low. With the arrangement as in this example, there is only a solidified shell between the sensor head 200 and the molten steel flow, and generally in the case of continuous casting of molten steel, the conductivity of the solidified shell is 1
/ 80, which is considerably small, and the thickness is about 30-40 mm, which is thinner than that of the copper mold. Therefore, the frequency may be higher than that of the second example, the electromotive force of the detection winding can be relatively high, and the detection accuracy can be improved. . In this case, the sensor head 200
The shell between the molten steel flow and the molten steel flow is also drawn downward and has a velocity, and the output of the sensor head 200 detects the sum of this velocity and the molten steel descending flow. However, since the speed of the shell is very slow at several m / min, there is no great influence on the downflow velocity.

【0031】またここでは、E型鉄心の中心の脚に励磁
巻線を巻いた例を示したが、励磁巻線としては、各瞬間
にE型の磁心のそれぞれ隣り合う脚同士で、逆向きの磁
場を生じるようにE型磁心に巻けばどのように巻いても
かまわない。例えば図17(a),(b)の様に中心の
脚以外のところに巻いても、複数の巻き線を巻いてもか
まわない。また、図17(b)で各励磁巻線を検出巻線
の上から重ねて巻いても、検出巻線より下の位置に巻い
てもかまわない。また、図1,図17(a)、図17
(b)の巻き方を組み合わせてもかまわない。
Although an example in which the excitation winding is wound around the center leg of the E-shaped iron core is shown here, as the excitation winding, the legs adjacent to each other of the E-shaped magnetic core at opposite moments are reversed. If it is wound around the E-type magnetic core so as to generate the magnetic field, it may be wound in any way. For example, as shown in FIGS. 17 (a) and 17 (b), it may be wound on a place other than the central leg, or a plurality of windings may be wound. Further, in FIG. 17B, the excitation windings may be wound on the detection windings in a superposed manner or may be wound below the detection windings. In addition, FIG. 1, FIG.
The winding method of (b) may be combined.

【0032】[0032]

【発明の効果】本発明の一つの態様によれば、中心の脚
を中心として左右対称形のE型の磁心がその脚の開いた
面が対象面に向き、且つ各脚が対象面の移動方向に対し
平行に並ぶように配置され、各瞬間に、E型の磁心のそ
れぞれ隣り合う脚同士で、逆向きの磁場を生じるよう
に、E型の磁心に巻回された励磁巻線に交流電流を供給
し、測定対象物に対して垂直な磁場を発生させ磁場の速
度効果による磁気歪みを、E型の磁心の両脚に巻回され
た検出巻線により検出して、測定対象物の流速を測定す
るようにしたので、対象面から離れた位置でも、感度良
く流速の測定ができる。また、本発明の他の態様によれ
ば、対象面との距離を計測し、その距離信号によって検
出した流速信号を補正するようにしたので、対象面との
距離変化による速度感度の変化が補正され、対象面との
距離が変動しても正確な流速の測定が可能となる。
According to one aspect of the present invention, the E-shaped magnetic core having a symmetrical shape centering on the center leg has the open surface of the leg facing the target surface, and each leg moves the target surface. They are arranged parallel to the direction, and at each instant, alternating current is applied to the excitation winding wound around the E-shaped magnetic core so that adjacent legs of the E-shaped magnetic core generate opposite magnetic fields. The flow velocity of the object to be measured is detected by detecting the magnetostriction due to the velocity effect of the magnetic field by supplying an electric current and generating a magnetic field perpendicular to the object to be measured by the detection windings wound around both legs of the E-shaped magnetic core. Therefore, the flow velocity can be measured with high sensitivity even at a position away from the target surface. Further, according to another aspect of the present invention, the distance to the target surface is measured and the flow velocity signal detected by the distance signal is corrected, so that the change in speed sensitivity due to the change in the distance from the target surface is corrected. Therefore, even if the distance to the target surface changes, the flow velocity can be accurately measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のセンサヘッドの構成を示す図である。FIG. 1 is a diagram showing a configuration of a sensor head of the present invention.

【図2】本発明の流速を測定するための動作原理を示す
図である。
FIG. 2 is a diagram showing an operating principle for measuring a flow velocity according to the present invention.

【図3】温度ドリフトの説明図である。FIG. 3 is an explanatory diagram of temperature drift.

【図4】本発明の冷却ボックスの構成を示した斜視図で
ある。
FIG. 4 is a perspective view showing a configuration of a cooling box of the present invention.

【図5】対象面との距離と速度感度との関係を示した特
性図である。
FIG. 5 is a characteristic diagram showing a relationship between a distance to a target surface and speed sensitivity.

【図6】リフトオフ変動の補正回路の構成を示したブロ
ック図である。
FIG. 6 is a block diagram showing a configuration of a lift-off variation correction circuit.

【図7】渦流距離計の配置例を示した斜視図である。FIG. 7 is a perspective view showing an arrangement example of an eddy current distance meter.

【図8】本発明の一実施例の流速測定装置の回路構成を
示したブロック図である。
FIG. 8 is a block diagram showing a circuit configuration of a flow velocity measuring device according to an embodiment of the present invention.

【図9】前記実施例の流速測定装置の計測結果を示す特
性図(その1)である。
FIG. 9 is a characteristic diagram (No. 1) showing the measurement results of the flow velocity measuring device of the above-mentioned embodiment.

【図10】前記実施例の流速測定装置の計測結果を示す
特性図(その2)である。
FIG. 10 is a characteristic diagram (No. 2) showing the measurement result of the flow velocity measuring device of the embodiment.

【図11】前記実施例の流速測定装置の計測結果を示す
特性図(その3)である。
FIG. 11 is a characteristic diagram (No. 3) showing the measurement results of the flow velocity measuring device of the embodiment.

【図12】本発明の応用例を示す図である。FIG. 12 is a diagram showing an application example of the present invention.

【図13】本発明の他の応用例を示す図である。FIG. 13 is a diagram showing another application example of the present invention.

【図14】本発明の他の応用例を示す図である。FIG. 14 is a diagram showing another application example of the present invention.

【図15】本発明の他の応用例を示す図である。FIG. 15 is a diagram showing another application example of the present invention.

【図16】本発明の更に他の応用例を示す図である。FIG. 16 is a diagram showing still another application example of the present invention.

【図17】本発明のセンサヘッドの他の構成例を示す図
である。
FIG. 17 is a diagram showing another configuration example of the sensor head of the present invention.

【図18】連続鋳造の説明図である。FIG. 18 is an explanatory diagram of continuous casting.

【図19】接触式による従来の高温液体金属の流速測定
装置の説明図である。
FIG. 19 is an explanatory view of a conventional high-temperature liquid metal flow velocity measuring apparatus of a contact type.

【図20】磁場の速度効果の説明図である。FIG. 20 is an explanatory diagram of a velocity effect of a magnetic field.

【図21】従来の磁気による非接触式高温液体金属の流
速測定装置(その1)の説明図である。
FIG. 21 is an explanatory diagram of a conventional non-contact type high-temperature liquid metal flow velocity measuring apparatus (1).

【図22】従来の磁気による非接触式高温液体金属の流
速測定装置(その2)の説明図である。
FIG. 22 is an explanatory diagram of a conventional non-contact type high-temperature liquid metal flow velocity measuring device (No. 2).

【図23】従来の磁気による非接触式高温液体金属の流
速測定装置(その3)の説明図である。
FIG. 23 is an explanatory diagram of a conventional non-contact type high-temperature liquid metal flow velocity measuring device (3).

【符号の説明】[Explanation of symbols]

200:センサヘッド 202:E型磁心 203a,c:検出巻線 203b:励磁巻線 56:渦流距離計 201:導電性測定対象物 118:励磁回路 123:発振器 126:定電流アンプ 120:検出回路 129:バンドパスフィルター 131:同期検波器(若しくは位相検波器) 121:リフトオフ補正回路 135:渦流距離計駆動・検出回路 136:指数特性アンプ 137:乗算器 138:リニアアンプ 200: Sensor head 202: E-type magnetic core 203a, c: Detection winding 203b: Excitation winding 56: Eddy current distance meter 201: Conductive measurement object 118: Excitation circuit 123: Oscillator 126: Constant current amplifier 120: Detection circuit 129 : Band pass filter 131: Synchronous detector (or phase detector) 121: Lift-off correction circuit 135: Eddy current distance meter drive / detection circuit 136: Exponential characteristic amplifier 137: Multiplier 138: Linear amplifier

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西岡 信一 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 加藤 宏晴 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinichi Nishioka Marunouchi 1-2-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan KK (72) Hiroharu Kato 1-2-1 Marunouchi, Chiyoda-ku, Tokyo No. Nippon Steel Tube Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 中心の脚を中心として左右対称形のE型
の形状をなしており、移動する導電性の測定対象物の上
に、脚の開いた面が前記測定対象物に対向し、且つ各脚
が前記測定対象物の移動方向に対し平行に並ぶように配
置されるE型の磁心と、 各瞬間に、前記E型の磁心のそれぞれ隣り合う脚同士
で、逆向きの磁場を生じるように、前記E型の磁心に巻
き回され、交流電流が供給されて、前記測定対象物に対
して垂直な磁場を生成させる励磁巻線と、 前記E型の磁心の両端の脚にそれぞれが同じ向きの磁束
を検出するように巻回された一対の検出用巻線と、 前記一対の検出用巻線の出力電圧の差に基いて前記測定
対象物の流速を測定する測定手段とを備えたことを特徴
とする流速測定装置。
1. A laterally symmetrical E-shape having a center leg as a center, and an open surface of the leg facing the measurement target on a moving conductive measurement target, In addition, an E-shaped magnetic core arranged so that the legs are arranged in parallel to the moving direction of the measurement object, and an adjacent magnetic field is generated at each instant between the adjacent legs of the E-shaped magnetic core. As described above, the excitation winding that is wound around the E-shaped magnetic core and is supplied with an alternating current to generate a magnetic field perpendicular to the measurement target, and the legs at both ends of the E-shaped magnetic core respectively have A pair of detection windings wound so as to detect magnetic flux in the same direction, and a measuring unit that measures the flow velocity of the measurement object based on the difference in output voltage of the pair of detection windings. A flow velocity measuring device characterized in that
【請求項2】 前記測定対象物との距離を計測する距離
測定手段を有し、前記測定手段は前記出力電圧の差を前
記距離測定手段により計測された距離により補正するこ
とを特徴とする請求項1記載の流速測定装置。
2. A distance measuring means for measuring a distance to the object to be measured, wherein the measuring means corrects the difference in the output voltage by the distance measured by the distance measuring means. Item 1. The flow velocity measuring device according to item 1.
JP16665595A 1994-07-01 1995-06-30 Flow velocity measuring device Pending JPH08211084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16665595A JPH08211084A (en) 1994-07-01 1995-06-30 Flow velocity measuring device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP15077694 1994-07-01
JP6-293191 1994-11-28
JP29319194 1994-11-28
JP6-150776 1994-11-28
JP16665595A JPH08211084A (en) 1994-07-01 1995-06-30 Flow velocity measuring device

Publications (1)

Publication Number Publication Date
JPH08211084A true JPH08211084A (en) 1996-08-20

Family

ID=27319996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16665595A Pending JPH08211084A (en) 1994-07-01 1995-06-30 Flow velocity measuring device

Country Status (1)

Country Link
JP (1) JPH08211084A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010060792A (en) * 1999-12-28 2001-07-07 이구택 Noncontact electromagnetic velocimeter for solid and molten metal application
KR20030052573A (en) * 2001-12-21 2003-06-27 재단법인 포항산업과학연구원 Method for measuring velocity of molten metal
JP2007078558A (en) * 2005-09-15 2007-03-29 Toshiba Corp Moving distance measuring device and moving distance measuring method
JP2008087912A (en) * 2006-10-02 2008-04-17 Mitsubishi Electric Corp Speed detection device of elevator
CN109387665A (en) * 2017-08-07 2019-02-26 纳博特斯克有限公司 Speed detector and speed detection method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010060792A (en) * 1999-12-28 2001-07-07 이구택 Noncontact electromagnetic velocimeter for solid and molten metal application
KR20030052573A (en) * 2001-12-21 2003-06-27 재단법인 포항산업과학연구원 Method for measuring velocity of molten metal
JP2007078558A (en) * 2005-09-15 2007-03-29 Toshiba Corp Moving distance measuring device and moving distance measuring method
JP4542973B2 (en) * 2005-09-15 2010-09-15 株式会社東芝 Moving distance measuring device and moving distance measuring method
JP2008087912A (en) * 2006-10-02 2008-04-17 Mitsubishi Electric Corp Speed detection device of elevator
CN109387665A (en) * 2017-08-07 2019-02-26 纳博特斯克有限公司 Speed detector and speed detection method
EP3450988A3 (en) * 2017-08-07 2019-06-12 Nabtesco Corporation Speed detecting device and method
CN109387665B (en) * 2017-08-07 2022-09-09 纳博特斯克有限公司 Speed detection device and speed detection method

Similar Documents

Publication Publication Date Title
CA1120235A (en) Method and apparatus for regulating the bath level in a continuous casting mould by means of alternating electro-magnetic fields
GB2142729A (en) Method and apparatus for non-contact measurement of solidified shell of a metal casting having unsolidifed inner part
US4567435A (en) Method and apparatus for continuously measuring distance utilizing eddy current and having temperature difference influence elimination
JPH08211084A (en) Flow velocity measuring device
JP6524849B2 (en) Method and apparatus for measuring flow rate of molten steel in immersion nozzle, tundish for continuous casting and continuous casting method for multi-layer slab
JP4453556B2 (en) Manufacturing method of continuous cast slab
JP3307170B2 (en) Flow velocity measuring method and its measuring device, continuous casting method and its device
JP2018114548A (en) Method and apparatus for measuring molten-steel flow rate in immersion nozzle, continuous casting tundish, and method for continuously casting bilayer cast piece
JPH08211085A (en) Flow velocity measuring device
JP2007098400A (en) Continuous casting apparatus and method for measuring flowing rate
JP2007152424A (en) Method and device for detecting in-mold molten steel level in continuous casting apparatus
JPS60178318A (en) Device for detecting molten metal surface in mold in continuous casting equipment
JPH08327647A (en) Current velocity measuring apparatus
JP3575264B2 (en) Flow velocity measuring method and device
JPS60127060A (en) Measuring device for level of molten metal surface
JPH08211086A (en) Method and device for measuring flow velocity
JP2714437B2 (en) Method and apparatus for measuring meniscus flow velocity of molten metal
JPS6324789B2 (en)
JPH09168847A (en) Method for continuously casting steel
JPS60133955A (en) Method for electromagnetic stirring in continuous casting
JP4414609B2 (en) Method and apparatus for detecting drift in molten steel in continuous casting of steel
JP2810511B2 (en) Method and apparatus for measuring meniscus flow velocity of molten metal
JPH09101321A (en) Flow velocity measuring method and measuring apparatus therefor
JPH08327648A (en) Method and apparatus for measuring current velocity
JPH10104038A (en) Method and apparatus for measurement of flow velocity