JPH08209218A - Method for melting scrap by converter type reaction furnace - Google Patents

Method for melting scrap by converter type reaction furnace

Info

Publication number
JPH08209218A
JPH08209218A JP1517795A JP1517795A JPH08209218A JP H08209218 A JPH08209218 A JP H08209218A JP 1517795 A JP1517795 A JP 1517795A JP 1517795 A JP1517795 A JP 1517795A JP H08209218 A JPH08209218 A JP H08209218A
Authority
JP
Japan
Prior art keywords
slag
molten iron
oxygen
scrap
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1517795A
Other languages
Japanese (ja)
Inventor
Shinya Kitamura
信也 北村
Yuji Ogawa
雄司 小川
Yoji Idemoto
庸司 出本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1517795A priority Critical patent/JPH08209218A/en
Publication of JPH08209218A publication Critical patent/JPH08209218A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE: To stably smelt molten iron having low sulfur content by specifying the oxygen feed rate at the time of refining by oxygen top blowing, the recessed shape of molten slag by oxygen blowing, etc., at the time of refining molten steel in a top and bottom blown converter using steel scrap as a raw material. CONSTITUTION: The steel scrap 5 is melted by the heat generated by burning of the carbonaceous material in the top and bottom blown converter 1 having an oxygen top blowing lance 3 and a bottom blowing nozzle 4 by gaseous oxygen. In such a case, the oxygen supply rate from the top blowing lance is specified to 150 to 300Nm<3> /hour per formed molten iron 7. The value of Ls /Lso is specified to 0.3 to 0.8 when the depth of the recess of the molten slag 6 by oxygen top blowing is defined as Ls and the thickness of the molten slag 6 as Lso . The molten iron 7 is tapped out when the entire scrap melts and in succession, the next refining is executed by charging 20 to 60% molten iron 8 as the next charge into the converter while the molten slag contg. 100 to 500kg carbonaceous material used in the charge and 0.1 to 3% Fe2 O3 , etc., as Fe in the molten slag 6 is made to remain at 100 to 400kg per 1 ton of the molten iron in the converter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、上底吹き転炉等の反応
容器を用いたスクラップの溶解方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scrap melting method using a reaction vessel such as a top-bottom blowing converter.

【0002】[0002]

【従来の技術】近年、資源、環境問題から、スクラップ
などの固体金属原料をリサイクル使用して、効率的に溶
融金属を製造することが技術課題となって来ている。
2. Description of the Related Art In recent years, it has become a technical subject to efficiently produce molten metal by recycling solid metal raw materials such as scrap due to resource and environmental problems.

【0003】従来、スクラップの溶解には、ほとんど電
気炉が用いられて来たが、電気炉の場合には、スクラッ
プの溶解・精錬に多くの電力を消費するため、わが国の
ように電力価格が著しく高い国ではコストアップとなり
好ましくない。そこで、電気炉に依らずに経済的にスク
ラップを溶解・精錬する方法として、高送酸能力を有す
る転炉の余剰生産能力を利用して安価な炭材を用いたス
クラップの溶解・精錬方法が検討されるようになって来
た。
Conventionally, most of the electric furnaces have been used for melting scrap, but in the case of electric furnaces, a large amount of electric power is consumed for melting and refining scraps, so the electric power price is the same as in Japan. It is not preferable because the cost will increase in the countries where the cost is extremely high. Therefore, as a method of melting and refining scrap economically without relying on an electric furnace, there is a method of melting and refining scrap using inexpensive carbonaceous materials by utilizing the surplus production capacity of a converter having a high acid transfer capacity. It has come to be considered.

【0004】このような状況の中で、一般的には既存の
上底吹きの複合吹錬転炉を利用することで設備増を控え
るとともに、スクラップと一緒に炉内に装入した火種に
着火した後、上底吹き吹錬の際に炉上方から熱源として
炭材を投入しながら溶解・精錬する方法が、例えば、材
料とプロセス、第6巻(1993年)、第1028ペー
ジ以降に開示されている技術の様に提案されている。こ
の技術は溶鉄が存在している状態でスクラップを投入し
溶解する方法であるが、操業を開始する時には溶鉄は存
在しないため、スクラップを何らかの方法で溶解し種湯
を作る必要がある上に、操業を安定させるために所定量
のスクラップを溶解した後には、全量出銑せず、溶鉄の
一部を種湯として残したまま次チャージのスクラップを
投入し吹錬を開始している。この様にした場合には、常
に炉内に溶鉄が存在しているために、転炉製鋼法では、
一般に用いられている耐火物へのスラグコーティングが
できず、また、炉底の撹拌ガス供給用羽口が常に溶鉄と
接しているために溶損が大きく、炉寿命がきわめて短く
なるという問題がある。高炉等の溶銑製造プロセスを保
持している場合には、スクラップを溶解した後に全量出
銑し、新たに高炉溶銑を受銑して種湯とすることも可能
であるが、高炉溶銑により溶鉄中Sが増加する問題や、
スラグを残したまま溶銑を受銑する時に爆発的に溶銑と
スラグが炉内から噴出する、突沸現象が避けられず実現
されていない。
Under such circumstances, generally, the existing upper-bottom blown composite blowing converter is used to suppress the increase in equipment and to ignite the fire species charged in the furnace together with scrap. After that, a method of melting and refining while charging carbonaceous material as a heat source from above the furnace at the time of top and bottom blowing is disclosed in, for example, Materials and Processes, Volume 6 (1993), page 1028 and subsequent pages. It has been proposed as a technology. This technology is a method of adding and melting scrap in the presence of molten iron, but since molten iron does not exist at the start of operation, it is necessary to melt scrap by some method to make seed water, After a predetermined amount of scrap has been melted in order to stabilize the operation, the entire amount is not tapped, and the scrap of the next charge is charged while a part of the molten iron is left as seed water and blowing is started. In such a case, since molten iron is always present in the furnace, in the converter steelmaking method,
There is a problem that slag coating cannot be applied to commonly used refractories, and that the tuyere for stirring gas supply at the bottom of the furnace is always in contact with molten iron, resulting in large melting loss and extremely shortening the furnace life. . When the hot metal manufacturing process such as blast furnace is maintained, it is possible to melt the scrap and then tap the whole amount to receive new blast furnace hot metal and use it as seed water. The problem that S increases,
The bumping phenomenon, in which the hot metal and slag are explosively ejected from the furnace when the hot metal is received while leaving the slag, is inevitable.

【0005】これに対して、特開平2−141511号
公報には、溶融物をガス攪拌できる反応容器を用いて、
溶融スラグを溶銑トン当たり350kg以上とし、かつ硫
黄含有量が0.4%以上の石炭を用いて反応容器内に存
在する遊離の固定炭素量を溶融スラグトン当たり17kg
以上に保って、上吹き吹酸する鋼スクラップの溶解法が
開示されている。しかし、複合吹錬転炉を利用したスク
ラップ溶解法の本質である、上記の各問題点を解決する
手段は記述されていない。
On the other hand, in Japanese Patent Laid-Open No. 2-141511, a reaction vessel which can stir the melt is used.
The molten slag is 350 kg or more per ton of hot metal, and the amount of free fixed carbon existing in the reaction vessel is 17 kg per ton of molten slag using coal having a sulfur content of 0.4% or more.
While keeping the above, a melting method of steel scrap sprayed with top-blown acid is disclosed. However, no means for solving the above problems, which is the essence of the scrap melting method using the composite blowing converter, is described.

【0006】[0006]

【発明が解決しようとする課題】本発明は、材料とプロ
セス、第6巻(1993年)、第1028ページ以降や
特開平2−141511号公報に開示された技術のごと
き複合吹錬転炉を利用したスクラップ溶解法では、溶鉄
の一部を種湯として残したまま操業するため炉寿命がき
わめて短くなるという問題や、高炉溶銑を受銑して種湯
とした場合の、高炉溶銑による溶鉄中Sの増加や、スラ
グを残したまま溶銑を受銑する時の突沸現象が避けられ
ないという問題を解決することを目的とする。
SUMMARY OF THE INVENTION The present invention provides a composite blowing furnace such as the technique disclosed in Materials and Processes, Volume 6 (1993), page 1028 and subsequent pages and JP-A-2-141511. In the scrap melting method used, the life of the furnace is extremely shortened because some of the molten iron is left as seed water for operation, and when the blast furnace hot metal is used as seed water It is an object to solve the problem that the increase of S and the bumping phenomenon at the time of receiving hot metal while leaving slag are inevitable.

【0007】[0007]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、(1)上底吹き転炉型反応炉で、酸素ガスを用い
炭材が燃焼した時に発生する熱によりスクラップを溶解
する方法において、生成溶鉄t当りの酸素供給速度を3
00〜150Nm3 /(Hr・t)、上吹きガスによるスラグの
キャビティー深さLS とスラグ厚みLSOの比であるLS
/LSOを0.3〜0.8とした条件でスクラップを溶解
精錬後、生成した溶鉄を全量出銑し、引き続いて当該チ
ャージで用いた、炭材をスラグt当り100〜500kg
/t含み(T・Fe) が0.1〜3%前記生成溶鉄t当り10
0〜400kg/tのスラグを炉内に残留させたまま、次チ
ャージとして、前記生成溶鉄の重量比で20〜60%の
溶銑を炉内に装入することを特徴とする転炉型反応炉に
よるスクラップ溶解方法、(2)生成溶鉄を全量出銑す
る工程に先だって、総送酸量の75〜90%経過後に生
成溶鉄t当りの酸素供給速度を175〜100Nm3 /(Hr
・t)、LS /LSOを0.1〜0.4とした仕上げ精錬を
実施することを特徴とする前記(1)に記載の転炉型反
応炉によるスクラップ溶解方法にある。
Means for Solving the Problems The gist of the present invention is (1) a method of melting scrap by heat generated when a carbonaceous material is burned using oxygen gas in a top-bottom blowing converter type reactor. In the above, the oxygen supply rate per generated molten iron t was 3
0 to 150 Nm 3 / (Hr · t), L S which is the ratio of the slag cavity depth L S to the slag thickness L SO due to the top-blown gas
After melting and refining scrap under the condition that / L SO was 0.3 to 0.8, the total amount of molten iron produced was tapped, and subsequently the carbonaceous material used for the charge was 100 to 500 kg per slag t.
0.1 to 3% containing / t (T · Fe) 10 per t of the generated molten iron
A converter-type reactor in which 0 to 400 kg / t of slag remains in the furnace and 20 to 60% by weight of the produced molten iron is charged into the furnace as a next charge as a next charge. Scrap melting method according to (2), prior to the step of tapping all the generated molten iron, the oxygen supply rate per generated molten iron t is 175 to 100 Nm 3 / (Hr
T) and finishing smelting with L S / L SO of 0.1 to 0.4 are carried out, which is the scrap melting method using the converter-type reactor described in (1) above.

【0008】ここで、上吹きガスによるスラグのキャビ
ティー深さLS (m) はノズル径d(mm)、ランスとスラグ
面間の距離h(mm)、ノズル個数n、生成溶鉄t当りの酸
素供給速度をF(Nm3 /(Hr・t))とすると、(1)、
(2)式で計算される。 LS =(7/1)×{Lh × exp(−0.78×h/Lh )}/100 (1) Lh =63×(F/(n×d))2/3 (2) また、スラグ厚LSO(m) の計算はスラグ密度を1(g/cm
3 )として転炉の幾何学的形状から計算できる。
Here, the cavity depth L S (m) of the slag by the top-blown gas is the nozzle diameter d (mm), the distance between the lance and the slag surface h (mm), the number of nozzles n, and the amount of molten iron t produced. If the oxygen supply rate is F (Nm 3 / (Hr · t)), (1),
It is calculated by the equation (2). L S = (7/1) × {L h × exp (−0.78 × h / L h )} / 100 (1) L h = 63 × (F / (n × d)) 2/3 (2 ) In addition, the calculation of the slag thickness L SO (m) is based on the slag density of 1 (g / cm
3 ) can be calculated from the geometrical shape of the converter.

【0009】[0009]

【作用】図1は本法の実施態様を示したものである。複
合吹錬転炉1を利用したスクラップ溶解法で、高炉溶銑
8を受銑して種湯とする場合の、高炉溶銑による溶鉄中
Sの増加を防止し、かつ、スラグ6を残したまま溶銑を
受銑する時の突沸現象を抑制するには、種湯として装入
する高炉溶銑量とスラグ中の(T・Fe) を適正に制御する
ことが重要である。突沸現象はスラグ中の(T・Fe) に代
表される酸化物と、溶銑に含まれる炭素とが急激に反応
して爆発的にCOガスを生成するために起こる現象であ
る。これは、冷却されて反応性を失ったスラグに高温の
溶銑が混合され、スラグ温度が溶銑と接触した領域で部
分的に上昇し、反応性を回復した時に急にCOガスが生
成されることが根本原因である。スラグの反応性は、本
発明者らによる基礎実験によれば、固相が30〜50%
程度を境に極端に変化し、固相が多ければ反応性は乏し
く、固相が少なく流動性が大きければ反応性が良くな
る。
FIG. 1 shows an embodiment of this method. In the scrap melting method using the composite blowing converter 1, when the blast furnace hot metal 8 is used as a hot melt to prevent the increase of S in the molten iron due to the blast furnace hot metal, the hot metal is left with the slag 6 left. In order to suppress the bumping phenomenon at the time of receiving hot metal, it is important to properly control the amount of blast furnace hot metal charged as seed water and (T ・ Fe) in slag. The bumping phenomenon is a phenomenon that occurs because an oxide represented by (T · Fe) in slag and carbon contained in the hot metal rapidly react to explosively generate CO gas. This is because hot slag is mixed with slag that has been cooled and loses reactivity, and the slag temperature partially rises in the area in contact with the hot metal and CO gas is suddenly generated when the reactivity is restored. Is the root cause. According to the basic experiment by the present inventors, the reactivity of slag is 30-50% in the solid phase.
When the solid phase is large, the reactivity is poor, and when the solid phase is small and the fluidity is large, the reactivity is good.

【0010】したがって、これを回避するには、種湯と
して装入する高炉溶銑量を少なくすることが必要であ
る。これは、溶銑がスラグよりも一定量以下の場合に
は、スラグ温度が溶銑と接触した領域で部分的に上昇し
てもスラグが反応性を回復するまでには温度が上昇しな
いためである。この条件は、スラグ量と溶銑量の相対関
係で支配され、生成溶鉄のt当り100〜400kg/tの
スラグを炉内に残留させたまま、図2に示すように次チ
ャージの溶銑の装入量を、生成溶鉄の重量比で20〜6
0%にすることである。ここで、炉内残留スラグが生成
溶鉄t当り400kg/tよりも多い場合には、本発明範囲
で溶銑を装入しても、スラグが多量すぎるため突沸現象
は避けられず、また、スラグを加熱するために多量の熱
が必要となるため炭材原単位が悪化する。また、炉内残
留スラグが生成溶鉄t当り100kg/tよりも少ない場合
には、後述するLS /LSOの適正範囲を得るには、ラン
スをスラグ面から極端に高くする必要が生じ、排ガス温
度が上昇し(3)式で定義される着熱効率が低下する。 着熱効率={1−(排ガスが浴温以上に加熱された分の顕熱量)/(COから CO2 への燃焼による発熱量)}×100 (3)
Therefore, in order to avoid this, it is necessary to reduce the amount of blast furnace hot metal charged as seed water. This is because when the hot metal is less than the slag by a certain amount, even if the slag temperature partially rises in the region in contact with the hot metal, the temperature does not rise until the reactivity of the slag is recovered. This condition is governed by the relative relationship between the amount of slag and the amount of hot metal, and 100 to 400 kg / t of slag produced per t of molten iron is left in the furnace while the next charge of molten iron is charged as shown in Fig. 2. The amount is 20 to 6 by weight ratio of molten iron produced.
It is to make it 0%. Here, when the residual slag in the furnace is more than 400 kg / t per generated molten iron t, even if the molten pig iron is charged within the scope of the present invention, the bumping phenomenon cannot be avoided because the slag is too large, and the slag is generated. Since a large amount of heat is required to heat the carbonaceous material unit. Further, when the residual slag in the furnace is less than 100 kg / t per generated molten iron t, it is necessary to make the lance extremely high from the slag surface in order to obtain an appropriate range of L S / L SO described later, The temperature rises and the heat deposition efficiency defined by equation (3) decreases. Chakunetsu efficiency = {1 - (sensible heat of the partial exhaust gas is heated above a bath temperature) / (the amount of heat generated by the combustion of CO to CO 2)} × 100 (3)

【0011】また、次チャージの溶銑の装入量を生成溶
鉄の重量比で60%よりも多くすると、前記の機構によ
り突沸が生じ、20%よりも少なくすると炉内残留スラ
グにより装入溶銑が冷却され、吹錬初期に装入溶銑が半
溶融状態になるため安定した撹拌が得られず、着熱効率
が低くなる。尚、炉を直立させ吹錬を開始すれば、次第
に昇温されスラグが反応性を回復する臨界温度を通過す
るが、この場合には、炉が直立しているため上部空間が
充分に大きいことと、底吹き攪拌を受けているためスラ
グ相が均一になっており、限られた場所で急激な反応を
起こすことはないため突沸は回避される。
When the amount of hot metal charged in the next charge is more than 60% by weight of the generated molten iron, bumping occurs due to the mechanism described above, and when it is less than 20%, the residual hot slag in the furnace causes the charged hot metal to be charged. Since the molten iron is cooled and becomes a semi-molten state in the initial stage of blowing, stable agitation cannot be obtained and the heat deposition efficiency becomes low. If the furnace is placed upright and blowing is started, the temperature gradually rises and the slag passes the critical temperature at which the reactivity is restored, but in this case, the furnace is upright and the upper space is large enough. As a result, the slag phase is uniform because it is subjected to bottom blowing stirring, and sudden reaction does not occur in a limited place, so bumping is avoided.

【0012】次に高炉溶銑による溶鉄中Sの増加を防止
するためには、炭材をスラグt当り100〜500kg/t
含み(T・Fe) が0.1〜3%のスラグを生成させること
が必要である。これは、本発明のようにLS /LSOを適
正範囲にした場合、2次燃焼率が50〜95%と高くな
り気相の酸化度が高くなるため、スラグのSが気相によ
り酸化されSOX として気相へ除去されるが、それを促
進させるには低い酸化度のスラグを生成する必要がある
ためである。つまり、炭材がスラグt当り100kg/tよ
りも少ない場合や(T・Fe) が3%よりも高い場合にはス
ラグの酸化度が高く脱Sが進まず、500kg/tよりも多
い場合にはスラグ中に炭材が多すぎるため、炭材充填層
に近い状態の層がスラグ上部に形成されるため、吹き付
けられた酸素と炭材が反応して生成したCO2 が炭材充
填層により還元されCOとなり2次燃焼率が上がらな
い。尚、(T・Fe) が0.1%よりも低い場合にはスラグ
と溶銑の反応性が低く、スラグがフォーミングしないた
め炭材の循環が悪く着熱効率が低下する。
Next, in order to prevent the increase of S in the molten iron due to the blast furnace hot metal, the carbonaceous material is 100 to 500 kg / t per t of slag.
It is necessary to form a slag having a content (T · Fe) of 0.1 to 3%. This is because when L S / L SO is set to an appropriate range as in the present invention, the secondary combustion rate is as high as 50 to 95% and the degree of oxidation of the gas phase is high, so that S in the slag is oxidized by the gas phase. Although it is removed into the gas phase as is SO X, because it is necessary to generate a low oxidation degree of the slag to thereby promote it. In other words, when the carbonaceous material is less than 100 kg / t per slag t, or when (T · Fe) is higher than 3%, the oxidation degree of the slag is high and S removal does not proceed, and when it is more than 500 kg / t. in the slag, since the carbonaceous material is too large, the layer of state close to carbonaceous material filling layer is formed in the slag upper, CO 2 that the blown oxygen and carbonaceous material was produced by the reaction by carbonaceous material packed layer It is reduced to CO and the secondary combustion rate does not rise. When (T · Fe) is lower than 0.1%, the reactivity of the slag and the hot metal is low and the slag does not form, so that the circulation of the carbonaceous material is poor and the heat deposition efficiency is lowered.

【0013】ここで、本発明におけるスラグは攪拌によ
り炭材が充分に循環できる組成であり、CaO/SiO
2 は0.6〜2.6が好ましい。このように低い塩基度
であれば、通常は溶銑からの脱硫は(T・Fe) が3〜0.
1%であっても困難である。本発明においては、2次燃
焼率が50〜95%と高いため、Sは一旦、溶銑からス
ラグに移行した後、気相へと除去されることが可能であ
り、そのために初めて脱硫が可能となるものである。本
発明で炭材と固体炭素分が70%以上の無煙炭、コーク
スと定義する。
Here, the slag in the present invention has a composition in which the carbonaceous material can be sufficiently circulated by stirring, and CaO / SiO
2 is preferably 0.6 to 2.6. With such a low basicity, desulfurization from hot metal usually has a (T · Fe) of 3 to 0.
Even 1% is difficult. In the present invention, since the secondary combustion rate is as high as 50 to 95%, S can be temporarily removed from the hot metal to slag and then removed to the gas phase, and therefore desulfurization can be performed for the first time. It will be. In the present invention, carbonaceous material, anthracite having a solid carbon content of 70% or more, and coke are defined.

【0014】また、ここで、スクラップ溶解精錬におい
て、高い2次燃焼率を確保するためには、スラグにより
上吹き酸素ガスと溶銑との直接接触を防ぐことが必要で
あり、その条件はLS /LSOを0.3〜0.8とするこ
とである。ここで、LS /LSOが0.3よりも小さい場
合には、上吹きガスによるスラグの攪拌が小さいため着
熱効率が低下し、0.8よりも大きい場合には、スラグ
相下部に懸濁している粒鉄と酸素ガスが直接接触するた
め2次燃焼率が低下する。また、酸素供給速度が300
Nm3 /(Hr・t)よりも多い場合には着熱効率が良い場合で
も炉への熱供給速度が過剰のため耐火物損耗が著しく、
150Nm3 /(Hr・t)よりも小さい場合には熱供給速度が
小さく生産性が低い。
Further, in scrap melting and refining, in order to secure a high secondary combustion rate, it is necessary to prevent the direct contact between the top-blown oxygen gas and the hot metal by slag, which condition is L S / L SO is set to 0.3 to 0.8. Here, when L S / L SO is smaller than 0.3, the agitation of the slag by the top-blown gas is small, so the heat deposition efficiency decreases, and when it is larger than 0.8, the slag phase is suspended below the slag phase. The secondary combustion rate decreases because the turbid granular iron and oxygen gas come into direct contact with each other. Also, the oxygen supply rate is 300
When it is more than Nm 3 / (Hr ・ t), even if the heat deposition efficiency is good, the refractory wear is remarkable because the heat supply rate to the furnace is excessive,
When it is less than 150 Nm 3 / (Hr · t), the heat supply rate is small and the productivity is low.

【0015】ところで、より効率的に脱硫を進めるに
は、全量出銑工程に先だって、総送酸量の75〜90%
経過後に生成溶鉄t当りの酸素供給速度を175〜10
0Nm3/(Hr・t)、LS /LSOを0.1〜0.4とした仕
上げ精錬を実施することが好ましい。これは、スラグに
よる上吹き酸素ガスと溶銑との直接接触を完全に防止
し、それまでに生成した(T・Fe) を溶銑より1%以下ま
で還元させスラグの酸化度をより低くすることで脱硫を
促進させるものである。LS /LSOが0.1よりも小さ
い場合にはランスとスラグ面間の距離が大きく離れるた
め着熱効率が極端に悪化し、0.4よりも大きい場合に
は、スラグ中に少量とはいえ存在している粒鉄と酸素ガ
スが接触するため(T・Fe) が低下しない。
By the way, in order to promote desulfurization more efficiently, 75% to 90% of the total amount of fed acid is supplied before the whole tapping step.
After the lapse of time, the oxygen supply rate per generated molten iron t was adjusted to 175 to 10
It is preferable to carry out finish refining with 0 Nm 3 / (Hr · t) and L S / L SO of 0.1 to 0.4. This completely prevents the direct contact between the top-blown oxygen gas and the hot metal by the slag, reduces the (T ・ Fe) produced up to that point to 1% or less than the hot metal, and lowers the degree of oxidation of the slag. It promotes desulfurization. When L S / L SO is smaller than 0.1, the distance between the lance and the slag surface is large, so that the heat deposition efficiency is extremely deteriorated. When it is larger than 0.4, a small amount is contained in the slag. However, since the existing granular iron and oxygen gas come into contact with each other, (T · Fe) does not decrease.

【0016】このLS /LSOの条件は、上吹きガスによ
るスラグの攪拌が小さいため着熱効率は高くないが、酸
素供給速度が175Nm3 /(Hr・t)よりも大きい場合には
耐火物損耗が大きいが、それ以下であれば熱供給速度が
小さいため問題はない。しかし、100Nm3 /(Hr・t)よ
りも小さい場合には、熱供給速度が小さすぎるため溶銑
温度が著しく低下する。また、仕上げ精錬が総送酸量の
90%経過時よりも後に実施した場合には(T・Fe) が充
分に低下する時間がないため効果がなく、75%経過時
よりも前から実施した場合には溶銑温度が低下するとと
もに、生産性が悪化する。
Under the condition of L S / L SO , the heat generation efficiency is not high because the stirring of the slag by the top blowing gas is small, but when the oxygen supply rate is higher than 175 Nm 3 / (Hr · t), the refractory material The wear is large, but if it is less than that, there is no problem because the heat supply rate is low. However, when it is less than 100 Nm 3 / (Hr · t), the heat supply rate is too small, and the hot metal temperature remarkably decreases. In addition, when the final refining is carried out after 90% of the total amount of acid feed has passed, there is no time for (T · Fe) to sufficiently decrease, so there is no effect, and it is carried out before 75% has passed. In this case, the hot metal temperature decreases and the productivity deteriorates.

【0017】[0017]

【実施例】実施例は8トン上底吹き転炉を用いた。底吹
きガスは酸素と羽口冷却用ガスの混合ガス、又は窒素を
用い、上吹きランスより酸素ガスを供給した。実験工程
は、前チャージのスラグを全量、又は少なくとも50%
以上残留させた状態で、まずスクラップを装入し、引き
続いて次チャージの溶銑を受銑した後、炉を直立させ酸
素ガスを供給しつつスクラップと炭材を連続的に添加し
た。スクラップ溶解後、炉を傾動させてスラグを残した
状態で全量出銑し、この工程を繰り返した。炭材として
はコークス又は無煙炭を用いた。
EXAMPLES In the examples, an 8 ton top-bottom blowing converter was used. As the bottom blowing gas, a mixed gas of oxygen and a tuyere cooling gas or nitrogen was used, and oxygen gas was supplied from a top blowing lance. The experimental process consists of pre-charging slag in full or at least 50%
In the state in which the scrap was left as described above, first, scrap was charged, and subsequently, hot metal for the next charge was received, and then the furnace was erected upright and the scrap and the carbonaceous material were continuously added while supplying oxygen gas. After the scrap was melted, the furnace was tilted and the entire amount was tapped with the slag remaining, and this process was repeated. Coke or anthracite was used as the carbonaceous material.

【0018】表1は試験結果を示す。Fは生成溶鉄t当
りの酸素供給速度を示し(Nm3 /(Hr・t))、WCはスラ
グt当りの炭材量を示し(kg/t-slag) 、RSは生成溶鉄
t当りの炉内残留スラグ量(kg/t-W)、Mは次チャージ装
入溶銑重量W2 と生成溶鉄重量Wとの比(W2 /W×1
00;%)を示す。ηは前記の着熱効率(%)を表す。
番号1〜12は本発明の例であるが、溶銑装入時の突沸
もなく、スクラップ溶解中の脱硫率、着熱効率がともに
高く、かつ耐火物溶損も少なく生産性も高い。
Table 1 shows the test results. F indicates the oxygen supply rate per generated molten iron t (Nm 3 / (Hr · t)), WC indicates the amount of carbonaceous material per slag t (kg / t-slag), RS indicates the furnace per generated molten iron t Residual slag amount (kg / tW), M is the ratio (W 2 / W × 1) of the weight W 2 of the next charge and the weight W of molten iron
00;%). [eta] represents the heat deposition efficiency (%).
Nos. 1 to 12 are examples of the present invention, but there is no bumping at the time of charging hot metal, both the desulfurization rate during scrap melting and the heat deposition efficiency are high, and the melting loss of refractory is low and the productivity is high.

【0019】表2は、試験番号1の条件で、生成溶鉄W
を全量出銑する工程に先だって、生成溶鉄t当りの酸素
供給速度F2 (Nm3 /(Hr・t-W))とLS /LSOを変化さ
せた仕上げ精錬を実施した場合の試験結果である。これ
により、酸素供給速度を175〜100Nm3 /(Hr・t)、
S /LSOを0.1〜0.4とした仕上げ精錬を総送酸
量の75〜90%経過後に実施することで、極めて高い
脱硫率が得られている。ここで、αは仕上げ精錬開始時
までの送酸量O(Nm3 )と総送酸量OT (Nm3)との
比、(O/OT )×100である。
Table 2 shows the molten iron W produced under the conditions of test number 1.
Is a test result in the case where the finishing refining is performed by changing the oxygen supply rate F 2 (Nm 3 / (Hr · tW)) per generated molten iron t and L S / L SO prior to the step of tapping all the . As a result, the oxygen supply rate is 175 to 100 Nm 3 / (Hr · t),
An extremely high desulfurization rate is obtained by performing the final refining with L S / L SO of 0.1 to 0.4 after 75 to 90% of the total acid feed amount has elapsed. Here, α is (O / O T ) × 100, which is the ratio of the amount O (Nm 3 ) of oxygen supply until the start of finishing smelting and the total amount O T (Nm 3 ) of oxygen supply.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【発明の効果】本発明を用いることにより、溶鉄中Sの
増加や、受銑する時の突沸現象を引き起こすことなしに
高炉溶銑を受銑して種湯とした、耐火物溶損の少ない着
熱効率の高いスクラップ溶解が可能となった。
EFFECTS OF THE INVENTION By using the present invention, blast furnace hot metal is received as seed water without increasing S in molten iron and causing bumping phenomenon when receiving hot metal. It became possible to melt scrap with high thermal efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施工程例を示した概略図。FIG. 1 is a schematic diagram showing an example of steps of carrying out the present invention.

【図2】突沸発生頻度に及ぼす、装入溶銑重量と生成溶
鉄重量に対する比の影響を示した実験結果。
FIG. 2 is an experimental result showing the influence of the ratio of the charged hot metal weight and the generated molten iron weight on the occurrence frequency of bumping.

【符号の説明】[Explanation of symbols]

1 転炉 2 高炉溶銑装入用取鍋 3 上吹きランス 4 攪拌用ガス供給管 5 スクラップ 6 炭材が混合されているスラグ 7 生成溶銑 8 高炉溶銑 1 Converter 2 Ladle for charging blast furnace hot metal 3 Top blowing lance 4 Stirring gas supply pipe 5 Scrap 6 Slag mixed with carbon material 7 Hot metal produced 8 Blast furnace hot metal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 上底吹き転炉型反応炉で、酸素ガスを用
い炭材が燃焼した時に発生する熱によりスクラップを溶
解する方法において、生成溶鉄t当りの酸素供給速度を
300〜150Nm3 /(Hr・t)、上吹きガスによるスラグ
のキャビティー深さLS とスラグ厚みLSOの比であるL
S /LSOを0.3〜0.8とした条件でスクラップを溶
解精錬後、生成した溶鉄を全量出銑し、引き続いて当該
チャージで用いた、炭材をスラグt当り100〜500
kg/t含み(T・Fe) が0.1〜3%前記生成溶鉄t当り1
00〜400kg/tのスラグを炉内に残留させたまま、次
チャージとして、前記生成溶鉄の重量比で20〜60%
の溶銑を炉内に装入することを特徴とする転炉型反応炉
によるスクラップ溶解方法。
1. A method for melting scrap by heat generated when carbonaceous materials are burned by using oxygen gas in an upper-bottom blown converter type reactor, and an oxygen supply rate per generated molten iron t is 300 to 150 Nm 3 / (Hr · t), L, which is the ratio of the slag cavity depth L S to the slag thickness L SO due to the top-blown gas
After smelting and refining scrap under the condition of S / L SO of 0.3 to 0.8, the total amount of molten iron produced was tapped, and subsequently the carbonaceous material used for the charge was 100 to 500 per slag t.
0.1 to 3% containing (T / Fe) including kg / t 1 per t of the generated molten iron
20 to 60% by weight ratio of the produced molten iron as a next charge while leaving the slag of 0 to 400 kg / t in the furnace.
A method for melting scrap in a converter-type reactor, characterized in that the hot metal of step 1 is charged into the furnace.
【請求項2】 生成溶鉄を全量出銑する工程に先だっ
て、総送酸量の75〜90%経過後に生成溶鉄t当りの
酸素供給速度を175〜100Nm3 /(Hr・t)、LS /L
SOを0.1〜0.4とした仕上げ精錬を実施することを
特徴とする、請求項1記載の転炉型反応炉によるスクラ
ップ溶解方法。
2. Prior to the step of tapping all the produced molten iron, the oxygen supply rate per produced molten iron t is 175 to 100 Nm 3 / (Hr · t), L S / L
The method for scrap melting with a converter-type reactor according to claim 1, characterized in that finish refining with SO of 0.1 to 0.4 is carried out.
JP1517795A 1995-02-01 1995-02-01 Method for melting scrap by converter type reaction furnace Withdrawn JPH08209218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1517795A JPH08209218A (en) 1995-02-01 1995-02-01 Method for melting scrap by converter type reaction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1517795A JPH08209218A (en) 1995-02-01 1995-02-01 Method for melting scrap by converter type reaction furnace

Publications (1)

Publication Number Publication Date
JPH08209218A true JPH08209218A (en) 1996-08-13

Family

ID=11881541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1517795A Withdrawn JPH08209218A (en) 1995-02-01 1995-02-01 Method for melting scrap by converter type reaction furnace

Country Status (1)

Country Link
JP (1) JPH08209218A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038140A1 (en) 2007-09-19 2009-03-26 Kabushiki Kaisha Kobe Seiko Sho Process for producing molten iron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038140A1 (en) 2007-09-19 2009-03-26 Kabushiki Kaisha Kobe Seiko Sho Process for producing molten iron
US8012237B2 (en) 2007-09-19 2011-09-06 Kobe Steel, Ltd. Process for producing molten iron

Similar Documents

Publication Publication Date Title
US4089677A (en) Metal refining method and apparatus
US4362556A (en) Arc furnace steelmaking involving oxygen blowing
EP0116720B1 (en) Method of and apparatus for melting scrap
JPH0349964B2 (en)
US6314123B1 (en) Method for continuous smelting of solid metal products
US5084093A (en) Method for manufacturing molten pig iron
JPH08209218A (en) Method for melting scrap by converter type reaction furnace
JPH01127613A (en) Method and apparatus for refining molten metal
US4023962A (en) Process for regenerating or producing steel from steel scrap or reduced iron
JPS6250544B2 (en)
EP0950117B1 (en) A method for producing metals and metal alloys
JPH07316618A (en) Method for pre-refining smelting reduction molten iron
JP3286114B2 (en) Method for producing high carbon molten iron from scrap iron
JP2803528B2 (en) Converter steelmaking method
JP2560669B2 (en) Method of manufacturing hot metal
WO2022234762A1 (en) Electric furnace and steelmaking method
JPH09165613A (en) Scrap melting method
JPH08291311A (en) Steel scrap melting method excellent in heat conductive efficiency
JPH09263811A (en) Method for melting tinned steel plate scrap
US1888312A (en) Metallurgical process for the making of ferrous metals
JP6468264B2 (en) Operating method of hot metal holding furnace
JP2843604B2 (en) Production method of molten iron by combined smelting reduction and scrap melting method
JP2002003917A (en) Method for supplying oxygen in vertical melting furnace
Stone Oxygen in Steelmaking
JPH08209219A (en) Method for smelting stainless steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020402