JPH09263811A - Method for melting tinned steel plate scrap - Google Patents

Method for melting tinned steel plate scrap

Info

Publication number
JPH09263811A
JPH09263811A JP7179396A JP7179396A JPH09263811A JP H09263811 A JPH09263811 A JP H09263811A JP 7179396 A JP7179396 A JP 7179396A JP 7179396 A JP7179396 A JP 7179396A JP H09263811 A JPH09263811 A JP H09263811A
Authority
JP
Japan
Prior art keywords
scrap
furnace
plated steel
tuyere
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7179396A
Other languages
Japanese (ja)
Other versions
JP2980023B2 (en
Inventor
Hiroaki Ishida
博章 石田
Takaiku Yamamoto
高郁 山本
Yoshiki Ito
義起 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7179396A priority Critical patent/JP2980023B2/en
Priority to US08/849,039 priority patent/US5902375A/en
Priority to PCT/JP1996/002835 priority patent/WO1997012065A1/en
Priority to EP96932044A priority patent/EP0792939B1/en
Priority to DE1996617198 priority patent/DE69617198T2/en
Priority to KR1019970703415A priority patent/KR100250672B1/en
Publication of JPH09263811A publication Critical patent/JPH09263811A/en
Application granted granted Critical
Publication of JP2980023B2 publication Critical patent/JP2980023B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide a melting method of tinned steel plate, by which calory (latent heat) contained in exhaust gas can be improved without increasing average secondary combustion ratio and high tin-removing efficiency can be achieved. SOLUTION: In the melting method of steel scrap (SC), a cylindrical furnace 1' provided with tuyeres at a furnace wall part in the lower part of the furnace, and further, at a furnace bottom part, and after forming a coke packing layer 9' to the level containing the tuyere from the furnace bottom part and the steel scrap (SC) packing layer 10 on the upper part thereof, combustible gas is blown from the tuyere. As the steel scrap (SC), non-tinned steel (SC) 10-2 and tinned steel plate (SC) 10-1 are used, and preceding to the non-tinned steel (SC) 10-2, the tinned steel plate (SC) 10-1 is packed and the tinned steel plate (SC) 10-1 is held between the coke packing layer 9' and the non-tinned steel (SC) 10-1 and melted. The cylindrical furnace can be provided with secondary tuyeres at the upper furnace wall part. While producing molten iron having low tin content available to production of a high grade steel with one set of the melting furnace, the exhaust gas having high calory can be recovered. Dust containing concd. SnO2 in the exhaust gas can efficiently be utilized as a tin source.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、羽口を備えた筒型
炉を使用し、溶解熱源に電力を用いずに鉄スクラップを
溶解する方法、特に錫めっき鋼板スクラップを有効に活
用して、高品位の転炉鋼相当鋼や特殊鋼の製造に使用で
きる錫含有量の少ない溶鉄を製造するとともに、再生利
用可能な形で錫を回収できる錫めっき鋼板スクラップの
溶解方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of melting iron scrap without using electric power as a heat source for melting, using a tubular furnace equipped with tuyere, and particularly, by effectively utilizing tin-plated steel plate scrap, The present invention relates to a method of melting tin-plated steel plate scrap, which can produce molten iron having a low tin content and can be used in the production of high-grade converter steel or special steel, and can recover tin in a reusable form.

【0002】[0002]

【従来の技術】日本学術振興会、素材プロセシング69委
員会第1分科会および第2分科会の合同研究会(平成2
年8月)における報告によれば、鉄スクラップの発生量
は鋼材の蓄積量とともに年々100 万トン程度の割合で増
加し、西暦2000年の時点では市中の鉄スクラップ(市中
屑)の発生量は約4000万トン/年となり、粗鋼生産量の
45%に達すると予想されている。
[Prior Art] Joint Research Group of the 1st and 2nd subcommittees of the Japan Society for the Promotion of Science, 69 Committee for Material Processing
According to a report in August, the amount of iron scrap increases with the accumulated amount of steel at a rate of about 1 million tons per year, and as of the year 2000, the amount of iron scrap in the city The amount of crude steel production is about 40 million tons / year.
It is expected to reach 45%.

【0003】現在、市中屑の溶解製品化は大部分が電気
炉で行われている。特に近年では、製品品種の拡大とコ
スト低減を目的として、電気炉で鉄スクラップや不純物
希釈用の直接還元鉄を溶解し、連続鋳造して圧延すると
いうミニミル方式が拡大化している。
At present, most of the melting and commercialization of municipal waste is performed in an electric furnace. Particularly in recent years, for the purpose of expanding product types and reducing costs, a mini-mill system of melting iron scrap or direct reduced iron for diluting impurities in an electric furnace and continuously casting and rolling is expanding.

【0004】他方一貫製鉄所では、上述の鉄スクラップ
増加に対し、高炉集約化の中で粗鋼生産量の変動に対応
できる鉄源を確保するため、溶解鉄源に電力を用いずに
鉄スクラップを溶解する技術開発が進められている。
On the other hand, in the integrated steelworks, in order to secure an iron source capable of coping with fluctuations in the production amount of crude steel in the blast furnace consolidation in response to the above-mentioned increase in iron scrap, the iron scrap is not used as electric power for the molten iron source. Technology development for dissolution is underway.

【0005】近年、鋼の消費構造の高級化に伴って、表
面処理鋼の市中屑も増加しつつあり、その一つに錫めっ
き鋼板スクラップ(市中屑としては「ぶりき缶屑」と言
われる)がある。錫(以下、Snと記す)は、製鋼段階
で除去することが困難な元素であり、しかも鋼中にSn
が0.04重量%程度以上残留すると、熱間加工性や靭性等
が低下するので、Snめっき鋼板スクラップを鉄源とし
て再利用する際のSn除去技術が、下記のようにいくつ
か提案されている。
In recent years, as the consumption structure of steel has become more sophisticated, the amount of scraps of surface-treated steel is also increasing. One of them is tin-plated steel plate scrap (as scraps, "tin tin dust"). Is said). Tin (hereinafter referred to as Sn) is an element that is difficult to remove in the steelmaking stage, and moreover, Sn is contained in the steel.
When about 0.04 wt% or more remains, hot workability, toughness, etc. are deteriorated. Therefore, some Sn removal techniques when reusing Sn plated steel scrap as an iron source have been proposed as follows.

【0006】A法(特開平4−198429号公報および同4
−198430号公報参照):鋼板表面のめっき部分を除去す
るため、Snめっき鋼板スクラップを 300〜1200℃に加
熱して硫化雰囲気で処理し、SnをSnSに形態変化さ
せ、このSnSを機械的に分離あるいは蒸発させる。次
に上底吹き転炉形式の炉を用い、上吹き酸素ジェットが
鉄浴に直接接触しないように鉄浴上にスラグを形成して
酸素を上吹きし、適量のS(硫黄)を含有する炭材と、
上記硫化雰囲気処理のSnめっき鋼板スクラップを連続
装入して溶解する。これにより酸素吹き付け点のSポテ
ンシャルが高くなり、低沸点(約1230℃)のSnSが形
成されるので、Fe(鉄)に対するSnの優先蒸発が可
能となり、Sn含有量が0.05重量%以下の溶湯が得ら
れ、その後通常の製鋼処理を行って低Sn溶鋼を製造す
る方法。
Method A (JP-A-4-198429 and JP-A-4-198429)
-198430 gazette): In order to remove the plated portion of the steel plate surface, Sn-plated steel plate scrap is heated to 300 to 1200 ° C. and treated in a sulfurizing atmosphere to change the form of Sn to SnS, and this SnS is mechanically changed. Separate or evaporate. Then, using a top-bottom blow converter type furnace, a slag is formed on the iron bath so that the top-blown oxygen jet does not come into direct contact with the iron bath, and oxygen is top-blown to contain an appropriate amount of S (sulfur). Carbonaceous material,
The Sn-plated steel plate scrap treated in the sulfurizing atmosphere is continuously charged and melted. As a result, the S potential at the oxygen spraying point becomes high and SnS with a low boiling point (about 1230 ° C) is formed, so that the preferential evaporation of Sn with respect to Fe (iron) becomes possible, and the molten metal having an Sn content of 0.05% by weight or less. Is obtained, and then a normal steelmaking process is performed to produce a low Sn molten steel.

【0007】B法(特開平5−9600号公報参照):筒型
炉内にコークスとスクラップまたはスクラップおよび鉄
鉱石とを層状に充填し、各充填層に1次羽口、2次羽口
から支燃性ガスを吹き込んで溶解、還元を行う方法(特
開平1−290711号公報に開示される方法)を用い、不純
物が少ないスクラップを装入した筒型炉で不純物低含有
の溶銑を製造し、ぶりき缶屑(Sn含有量が例えば0.63
重量%)のような不純物が高いスクラップを装入した別
の筒型炉で不純物高含有の溶銑を製造する。そして2基
の炉で製造した溶銑を合わせ湯し、例えばSn:0.06重
量%の溶銑を得る方法。
Method B (see Japanese Patent Laid-Open No. 5-9600): Coke and scrap or scrap and iron ore are packed into a cylindrical furnace in layers, and each packed bed is filled with a primary tuyere and a secondary tuyere. Using a method of blowing a combustion-supporting gas to dissolve and reduce (a method disclosed in Japanese Patent Laid-Open No. 1-290711), hot metal containing a small amount of impurities is produced in a cylindrical furnace charged with scrap containing few impurities. , Tin tin waste (Sn content is 0.63
Hot metal with a high impurity content is produced in another tube furnace charged with scrap having a high impurity content such as (wt%). Then, the hot metal produced in the two furnaces is combined and hot-melted to obtain, for example, Sn: 0.06 wt% hot metal.

【0008】C法(特開平7−207313号公報参照):筒
型炉内にコークスとスクラップとを層状に充填し、1次
羽口および2次羽口から支燃性ガスを吹き込んで溶解を
行う方法である。上記スクラップの少なくとも一部とし
て錫めっき鋼板スクラップを用い、2次羽口の支燃性ガ
ス吹き込み量を調整して平均2次燃焼率を50%以上に制
御し、SnO2 濃縮ダストの形態にして除去する。
Method C (see Japanese Patent Application Laid-Open No. 7-207313): Coke and scrap are packed in layers in a cylindrical furnace, and a combustion-supporting gas is blown from the primary tuyere and the secondary tuyere to melt it. Is the way to do it. Using tin-plated steel plate scrap as at least a part of the above scrap, the amount of the combustion-supporting gas blown into the secondary tuyere is adjusted to control the average secondary combustion rate to 50% or more, and form SnO 2 concentrated dust. Remove.

【0009】なお、上述の特開平5−9600号公報、特開
平1−290711号公報および特開平7−207313号公報の発
明は、いずれも本出願人または本発明者らが提案したも
のである。
The inventions of the above-mentioned JP-A-5-9600, JP-A-1-290711 and JP-A-7-207313 are all proposed by the present applicant or the present inventors. .

【0010】[0010]

【発明が解決しようとする課題】上述の従来技術には、
それぞれ下記のような問題がある。
SUMMARY OF THE INVENTION The above-mentioned prior art includes:
Each has the following problems.

【0011】A法:スクラップ表面のSn除去のため、
硫化雰囲気処理装置を設ける必要があり、この予備処理
工程が溶解工程の前に不可欠である。また酸素吹き付け
点の鉄の蒸発を抑制するため、上吹き酸素ジェットが直
接鉄浴に接触しないようにするには、相当量のスラグを
造滓する必要がある。この場合、スラグ中のFeO絶対
量が増加するので鉄歩留が低下する上に、耐火物損耗が
大きくなる等の問題が生じる恐れがある。さらに、スラ
グ脱硫はほとんど行われず、逆に溶鉄が加硫されるため
脱硫処理が必須となる。
Method A: To remove Sn on the scrap surface,
It is necessary to provide a sulfurizing atmosphere treatment device, and this pretreatment process is indispensable before the melting process. Moreover, in order to prevent the top-blown oxygen jet from coming into direct contact with the iron bath in order to suppress the evaporation of iron at the oxygen-blowing point, it is necessary to produce a considerable amount of slag. In this case, since the absolute amount of FeO in the slag increases, the iron yield decreases, and there is a possibility that problems such as increased wear of refractory material may occur. Further, slag desulfurization is hardly performed, and conversely, molten iron is vulcanized, so desulfurization is essential.

【0012】B法:羽口を備えた筒型炉を用いる溶解法
であるが、本質的な脱Sn技術ではなく、いわば合わせ
湯による希釈法であるため、同時出銑が可能な別の溶解
炉が必要となる。
Method B: This is a melting method that uses a tubular furnace equipped with tuyere, but since it is not an essential Sn removal technique, but a so-called dilution method using combined hot water, it is another melting method that allows simultaneous tapping. A furnace is needed.

【0013】C法:羽口を備えた筒型炉を用いる溶解法
であり、また本質的な脱Sn方法である。
Method C: A melting method using a tubular furnace equipped with tuyere, and an essential Sn removal method.

【0014】しかし、2次羽口からの支燃性ガス吹き込
み量を調整し、平均2次燃焼率を50%以上に制御する必
要がある。
However, it is necessary to control the average secondary combustion rate to 50% or more by adjusting the amount of combustion-supporting gas blown from the secondary tuyere.

【0015】本発明の目的は、平均2次燃焼率を高く制
御することなく、すなわち排ガスが有するカロリー(潜
熱量)を向上することができ、かつ高い脱Sn効率を達
成することができる錫めっき鋼板スクラップの溶解方法
を提供することにある。
An object of the present invention is tin plating which can improve the calorie (latent heat amount) of exhaust gas without controlling the average secondary combustion rate to a high level and can achieve high Sn removal efficiency. It is to provide a melting method of steel plate scrap.

【0016】[0016]

【課題を解決するための手段】本発明は、次の(1) およ
び(2) のSnめっき鋼板スクラップの溶解方法を要旨と
する。
DISCLOSURE OF THE INVENTION The gist of the present invention is the following methods (1) and (2) for melting scrap of Sn-plated steel sheet.

【0017】(1)炉上部に原料装入およびガス排出用の
開口部、炉下部炉壁またはさらに炉底部に羽口をそれぞ
れ備えた筒型炉を用い、その炉底から羽口を含むレベル
までコークス充填層、その上部に鉄スクラップ充填層を
それぞれ形成させた後、羽口から支燃性ガスを吹き込む
鉄スクラップの溶解方法であって、鉄スクラップとして
非Snめっき鋼およびSnめっき鋼板を用い、非Snめ
っき鋼スクラップに先だってSnめっき鋼板スクラップ
を充填し、Snめっき鋼板スクラップをコークス充填層
と非Snめっき鋼スクラップ充填層との間に保持して溶
解することを特徴とするSnめっき鋼板スクラップの溶
解方法。
(1) A cylindrical furnace having openings for charging raw materials and discharging gas at the upper part of the furnace, tuyeres on the lower furnace wall or further at the bottom of the furnace is used, and the level including the tuyere from the bottom of the furnace is used. A method for melting iron scrap in which a coke packed layer and an iron scrap packed layer are formed on top of the coke packed layer and a supporting gas is blown from the tuyere, and non-Sn plated steel and Sn plated steel sheet are used as the iron scrap. , Sn-plated steel scrap is filled with Sn-plated steel scrap prior to non-Sn-plated steel scrap, and the Sn-plated steel scrap is held between the coke-filled layer and the non-Sn-plated steel scrap-filled layer to melt. Dissolution method.

【0018】この方法では、コークスは鋳物用のものを
用いるのが望ましい。
In this method, it is desirable to use the coke for casting.

【0019】(2)上記(1) の筒型炉として、さらに炉上
部炉壁に二次羽口を備えたものを用いることを特徴とす
るSnめっき鋼板スクラップの溶解方法。
(2) A method for melting Sn-plated steel plate scrap, characterized in that the cylindrical furnace of (1) above is further equipped with a secondary tuyere on the furnace upper furnace wall.

【0020】この方法では、コークスは高炉用のものを
用いるのが望ましい。
In this method, it is desirable to use coke for blast furnace.

【0021】本発明方法はいずれも、連続溶解にも適用
することができる。
Any of the methods of the present invention can be applied to continuous dissolution.

【0022】本発明方法を実施するには、本出願人が特
開平1−290711号公報に開示した、後述する図1または
図2のような構成の筒型炉を用いるのがよい。
In order to carry out the method of the present invention, it is preferable to use a cylindrical furnace having a configuration as shown in FIG. 1 or FIG.

【0023】[0023]

【発明の実施の形態】図1および図2に基づいて、本発
明方法を実施するための筒型炉の構成例を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A configuration example of a cylindrical furnace for carrying out the method of the present invention will be described with reference to FIGS. 1 and 2.

【0024】図1は、二次羽口を備えない筒型炉とその
炉内充填の状態を示す概略の縦断面図である。
FIG. 1 is a schematic vertical sectional view showing a cylindrical furnace having no secondary tuyere and a state of filling the furnace.

【0025】この筒型炉1は図示のように、その上部に
ダスト含有排ガス11の排出と原料の装入とを行うための
開口部2を有する。この筒型炉1の上方には、集塵装置
や排ガスの熱回収設備等に接続する開口部2に着脱可能
なダクトが設置される。しかし、それらは周知の構造の
ものでよいので、図示は省略してある。
As shown in the figure, this cylindrical furnace 1 has an opening 2 for discharging the dust-containing exhaust gas 11 and charging the raw material in the upper part thereof. Above the cylindrical furnace 1, a duct that is attachable to and detachable from an opening 2 that connects to a dust collector, a heat recovery facility for exhaust gas, and the like is installed. However, since they may have a well-known structure, their illustration is omitted.

【0026】筒型炉1の炉下部炉壁もしくは加えてさら
に炉底部には、酸素含有ガス等の支燃性ガスと、必要に
応じて微粉炭、重油、天然ガス等の液体または気体の燃
料とを吹き込む羽口3もしくはさらに炉底羽口4が設け
られる。炉底部には、溶銑6およびスラグ7を排出する
排出口5がある。
On the lower furnace wall of the cylindrical furnace 1 or in addition to the furnace bottom, a combustion-supporting gas such as an oxygen-containing gas and, if necessary, a liquid or gaseous fuel such as pulverized coal, heavy oil, natural gas, etc. A tuyere 3 for blowing air and a furthest bottom tuyere 4 are provided. At the bottom of the furnace, there is a discharge port 5 for discharging the hot metal 6 and the slag 7.

【0027】望ましい羽口配置は、炉下部炉壁の羽口3
では炉底から0.8m程度上部に4本(水平方向で90°間
隔)、炉底羽口4では中心から0.4mの位置に4本であ
る。
The desirable tuyere arrangement is the tuyere 3 on the lower furnace wall of the furnace.
In the furnace bottom tuyere 4, there are four in the upper part about 0.8 m above the furnace bottom (90 ° apart in the horizontal direction), and four in the position 0.4 m from the center.

【0028】図1の筒型炉1を用いてSnめっき鋼板ス
クラップを溶解するには、まずコークス、望ましくは鋳
物用コークスならびに所要の珪石、石灰石、蛇紋岩およ
び蛍石などの造滓材を筒型炉1内に投入して、炉下部炉
壁の羽口3を含むレベルまでコークス充填層9を形成す
る。次に、先ずSnめっき鋼板スクラップ10−1を炉底
から2.4m程度のレベルまで装入し、その後、非Snめっ
き鋼スクラップ10−2を装入してスクラップ充填層10を
炉底から3.4m程度のレベルまで形成する。このようにし
て、Snめっき鋼板スクラップ10−1がコークス充填層
9と非Snめっき鋼スクラップ10−2の充填層との間に
保持される状態とする。
In order to melt the Sn-plated steel plate scrap by using the tubular furnace 1 of FIG. 1, first, a coke, preferably a coke for casting, and a required slag material such as silica stone, limestone, serpentine and fluorite are tubularized. The coke filling layer 9 is formed in the mold furnace 1 to a level including the tuyere 3 on the furnace wall of the furnace lower part. Next, first, the Sn-plated steel plate scrap 10-1 is charged to a level of about 2.4 m from the bottom of the furnace, and then the non-Sn-plated steel scrap 10-2 is charged to set the scrap packing layer 10 to 3.4 m from the bottom of the furnace. Form up to a level. In this way, the Sn-plated steel plate scrap 10-1 is held between the coke packed layer 9 and the non-Sn plated steel scrap 10-2 packed layer.

【0029】鋳物用コークスとは鋳物製造に用いられる
ものである。これは、比較的サイズが大きく、かつ緻密
性がよいために、燃焼性の悪いコークスである。粒径の
望ましい範囲は 100〜200mm 程度、嵩密度の望ましい範
囲は 0.5〜0.8t/m3 程度である。
Coke for foundry is used for producing foundry. This is a coke having a poor combustibility because it has a relatively large size and good compactness. The desirable range of particle size is about 100 to 200 mm, and the desirable range of bulk density is about 0.5 to 0.8 t / m 3 .

【0030】鋳物用コークスと造滓材との容積比の望ま
しい範囲は0.02〜0.2 程度、コークス充填層9の望まし
い嵩密度の範囲は 0.7〜1.2t/m3(平均0.9t/m3)程度であ
る。
The foundry coke and desired range of the volume ratio between the Zokasu material about 0.02 to 0.2, the range of desired bulk density of the coke packed layer 9 0.7~1.2t / m 3 (average 0.9t / m 3) degree Is.

【0031】非Snめっき鋼スクラップとは、スクラッ
プ中のSn含有量が0.01%重量未満の低Snスクラップ
のことであり、ぶりき缶屑以外の多くのスクラップがこ
れに相当する。Snめっき鋼板スクラップとは、スクラ
ップ中のSn含有量が0.1 重量%以上の高Snスクラッ
プのことであり、いわゆるぶりき缶屑に相当する。上記
二種類の鉄スクラップは多種の鉄屑の集合体であるた
め、その嵩密度の範囲は1〜3t/m3(平均2t/m3)程度
とばらついている。
The non-Sn plated steel scrap is a low Sn scrap in which the Sn content in the scrap is less than 0.01% by weight, and many scraps other than tin can scrap correspond to this. The Sn-plated steel plate scrap is a high Sn scrap having a Sn content of 0.1% by weight or more, and corresponds to so-called tin dust. Since the above two kinds of iron scrap is a collection of various scrap, a range of the bulk density is varied with 1~3t / m 3 (average 2t / m 3) degree.

【0032】上記のように筒型炉1に充填した後、コー
クス充填層9に羽口3もしくは羽口3および炉底羽口4
から支燃性ガスを吹き込み、下記(1)式の完全燃焼反
応を生じさせてコークス充填層9を高温に保つ。(1)
式で生じた高温のCO2 ガスは周囲のコークスと下記
(2)式のカーボンソリューション反応を起こす。
After filling the cylindrical furnace 1 as described above, the coke packed layer 9 is provided with tuyere 3 or tuyere 3 and furnace bottom tuyere 4.
A combustion-supporting gas is blown in from the above to cause a complete combustion reaction of the following formula (1) to keep the coke packed bed 9 at a high temperature. (1)
The high-temperature CO 2 gas generated by the equation causes a carbon solution reaction of the following equation (2) with the surrounding coke.

【0033】 C+O2 →CO2 +96990kcal/kmol・C ------(1) CO2 +C→2CO−38190kcal/kmol・C ----(2) 望ましい支燃性ガスは空気または酸素を富化した空気な
ど、その流量の望ましい範囲は1000〜10000Nm3/hr 程度
である。
C + O 2 → CO 2 +96990 kcal / kmol · C ------ (1) CO 2 + C → 2CO-38190 kcal / kmol · C ---- (2) Desirable combustion-supporting gas is air or oxygen. The desirable range of the flow rate, such as enriched air, is about 1000 to 10000 Nm 3 / hr.

【0034】上記(2)式の反応の進行度合いは、コー
クスの性状によって変化する。すなわち鋳物用コークス
のように比較的サイズが大きく、かつ緻密性がよいため
に燃焼性が悪い場合には、(2)式のカーボンソリュー
ション反応は遅く、かつ反応量が小さい。このため、平
均2次燃焼率の範囲は30%〜50%未満となる。
The degree of progress of the reaction of the above equation (2) changes depending on the properties of coke. That is, when the combustibility is poor because the size is relatively large and the denseness is good as in the case of coke for casting, the carbon solution reaction of the formula (2) is slow and the reaction amount is small. Therefore, the range of the average secondary combustion rate is 30% to less than 50%.

【0035】平均2次燃焼率ηとは、下記の(3)式で
定義されるものである。
The average secondary combustion rate η is defined by the following equation (3).

【0036】η(%) =〔(CO2 )/{(CO2 +(C
O)}〕×100 ---- (3) ただし、各ガス成分の単位は体積%である。
Η (%) = [(CO 2 ) / {(CO 2 + (C
O)}] × 100 ---- (3) However, the unit of each gas component is volume%.

【0037】本発明方法では、さらに二次羽口を設けた
筒型炉を用いてもよい。これを図2により説明する。
In the method of the present invention, a tubular furnace further provided with a secondary tuyere may be used. This will be described with reference to FIG.

【0038】図2は、さらに二次羽口を備えた筒型炉と
その炉内充填の状態を示す概略の縦断面図である。2次
羽口8の望ましい配置は、炉底から1.4m程度上部の炉上
部炉壁に6本(水平方向で60°間隔)である。この場
合、図1に示す羽口3は一次羽口3′、炉底羽口4は炉
底一次羽口4′となる。
FIG. 2 is a schematic vertical sectional view showing a cylindrical furnace further provided with a secondary tuyere and a state of filling the furnace. The desirable arrangement of the secondary tuyeres 8 is six (60 ° in the horizontal direction) on the furnace upper furnace wall which is about 1.4 m above the furnace bottom. In this case, the tuyere 3 shown in FIG. 1 becomes the primary tuyere 3'and the furnace bottom tuyere 4 becomes the furnace bottom primary tuyere 4 '.

【0039】図2の筒型炉1′を用いてSnめっき鋼板
スクラップを溶解するには、まず、望ましくは高炉用コ
ークスを用いて図1の場合と同様に一次羽口3′を含む
レベルまでコークス充填層9′を形成する。次に図1の
場合と同様に、Snめっき鋼板スクラップ10−1を装入
し、その後、非Snめっき鋼スクラップ10−2を装入し
てスクラップ充填層10を形成する。
In order to melt the Sn-plated steel plate scrap by using the tubular furnace 1'of FIG. 2, first, it is preferable to use coke for blast furnace to the level including the primary tuyere 3'as in the case of FIG. A coke filling layer 9'is formed. Then, as in the case of FIG. 1, the Sn-plated steel scrap 10-1 is charged, and then the non-Sn-plated steel scrap 10-2 is charged to form the scrap filling layer 10.

【0040】高炉用コークスとは、溶鉱炉で溶銑製造に
用いられるものである。これは、鋳物用に比べてサイズ
が小さく、かつ緻密性が悪いために、燃焼性のよいコー
クスである。粒径の望ましい範囲は20〜70mm程度、嵩密
度の望ましい範囲は 0.5〜0.6t/m3 程度である。
Blast furnace coke is used in hot metal production in a blast furnace. This is a coke having a good combustibility because it is smaller in size and less dense than that for castings. The desirable range of particle size is about 20 to 70 mm, and the desirable range of bulk density is about 0.5 to 0.6 t / m 3 .

【0041】高炉用コークスと造滓材との容積比の望ま
しい範囲は0.03〜0.3 程度、コークス充填層9′の望ま
しい嵩密度の範囲は0.6 〜1.0t/m3(平均0.8t/m3)程度、
望ましい層厚の範囲は 100〜500mm 程度である。
The desirable range of about 0.03 to 0.3 volume ratio of the blast furnace coke and Zokasu material, the range of desired bulk density of the coke packed layer 9 'is 0.6 ~1.0t / m 3 (average 0.8 t / m 3) degree,
The preferable layer thickness range is about 100 to 500 mm.

【0042】高炉用コークスを溶解燃料として使用する
場合には、上記のように筒型炉1′に充填した後、一次
羽口3′、4′から支燃性ガスを吹き込むとともに、コ
ークス充填層9′に二次羽口8から支燃性ガスを吹き込
み、前記(1)式の完全燃焼反応を生じさせてコークス
充填層9′を高温に保つ。前記(1)式で生じた高温の
CO2 ガスは、高炉用コークスと前記(2)式のカーボ
ンソリューション反応を起こす。
When the blast furnace coke is used as the molten fuel, after filling the cylindrical furnace 1'as described above, the combustion supporting gas is blown from the primary tuyere 3 ', 4', and the coke filling layer is also added. A combustion-supporting gas is blown into the 9'from the secondary tuyere 8 to cause the complete combustion reaction of the equation (1) to keep the coke-filled layer 9'at a high temperature. The high-temperature CO 2 gas generated by the equation (1) causes the carbon solution reaction of the equation (2) with the blast furnace coke.

【0043】高炉用コークスのように比較的サイズが小
さく、かつ緻密性が悪いため燃焼性がよい場合には、前
記(2)式のカーボンソリューション反応が急速に進行
し、かつその反応量が大きい。したがって高炉用コーク
スを使用した場合には、排ガス11の平均2次燃焼率は低
くなるので、さらに二次羽口3′から支燃性ガス吹き込
み、その流量を調整して下記(4)式の2次燃焼反応を
発生させ、望ましい平均2次燃焼率の範囲である10%〜
50%未満に制御する必要がある。このようにして、スク
ラップ充填層10を加熱、溶解する。
When the combustibility is good because the size of the coke for blast furnace is relatively small and the density is poor, the carbon solution reaction of the above formula (2) rapidly progresses and the reaction amount is large. . Therefore, when the blast furnace coke is used, the average secondary combustion rate of the exhaust gas 11 becomes low. Therefore, the combustion-supporting gas is further blown from the secondary tuyere 3'and the flow rate thereof is adjusted to obtain the following equation (4). A secondary combustion reaction is generated, and the desirable average secondary combustion rate is in the range of 10% to
It should be controlled to less than 50%. In this way, the scrap filling layer 10 is heated and melted.

【0044】 CO+(1/2) O2 →CO2 +67590kcal/kmol・CO --(4) 支燃性ガスの望ましい流量の範囲は、一次羽口で1000〜
10000Nm3/hr 程度、二次羽口で 500〜5000Nm3/hr程度で
ある。
CO + (1/2) O 2 → CO 2 + 67 590 kcal / kmol · CO-(4) The desirable flow range of the combustion-supporting gas is 1000-
10000Nm 3 / hr about, is 500~5000Nm 3 / hr about the secondary tuyeres.

【0045】平均2次燃焼率が50%以上になると、排ガ
ス中のCO比率すなわちカロリーが減少するので、経済
的メリットが少なくなる。平均2次燃焼率が10%以上50
%未満であれば、製鋼から圧延までの工程で必要とする
エネルギーを確保することが可能である。一方、平均2
次燃焼率が10%未満になると脱SnのためのCO2 の発
生を確保することが困難となり、脱Sn率が低下する。
また、スクラップの溶解効率すなわち生産性が低下して
しまうので、経済的メリットが少なくなる。
When the average secondary combustion rate is 50% or more, the CO ratio in the exhaust gas, that is, the calorie decreases, so that the economic merit decreases. Average secondary combustion rate is 10% or more 50
If it is less than%, it is possible to secure the energy required in the steps from steel making to rolling. On the other hand, average 2
When the secondary combustion rate is less than 10%, it becomes difficult to secure the generation of CO 2 for Sn removal, and the Sn removal rate decreases.
Further, since the melting efficiency of scrap, that is, the productivity is reduced, the economic merit is reduced.

【0046】本発明方法において連続溶解を行う場合に
は、充填層のレベルを逐次計測し、レベルが低下すれば
次回溶解用のSnめっき鋼板スクラップを先行して充填
し、次に非Snめっき鋼スクラップを充填するようにす
ればよい。
When continuous melting is carried out in the method of the present invention, the level of the packed bed is sequentially measured, and if the level drops, the Sn-plated steel scrap for melting next is filled in advance, and then the non-Sn-plated steel is filled. Scrap may be filled.

【0047】本発明方法の基本的な技術思想は次のとお
りである。すなわち、炉内で発生させたCOガスの平均
2次燃焼率を、望ましくは前述の範囲に制御する。これ
とともにSnめっき鋼板スクラップの加熱過程におい
て、スクラップ表面のめっき層に存在し低温時に溶融す
るSn(融点は232 ℃)を炉底へ滴下させ、またはめっ
き鋼板の母材側に拡散させる前に酸化させてSnO2
ストとして炉外に排出させることにより、Sn含有量の
低い銑鉄を低コストで製造するとともに高カロリーの排
ガスを回収する。
The basic technical idea of the method of the present invention is as follows. That is, the average secondary combustion rate of the CO gas generated in the furnace is preferably controlled within the above range. At the same time, in the heating process of the Sn-plated steel plate scrap, Sn (melting point is 232 ° C) existing in the plating layer on the scrap surface and melting at low temperature is dropped onto the furnace bottom or oxidized before being diffused to the base metal side of the plated steel plate. By discharging it as SnO 2 dust to the outside of the furnace, pig iron having a low Sn content is produced at low cost and high-calorie exhaust gas is recovered.

【0048】本発明方法における脱Sn機構は、次の1)
〜4)である。
The Sn removal mechanism in the method of the present invention is as follows.
~ 4).

【0049】1)前記(1)式で発生した高温のCOガス
はコークス充填層内を上昇する。スクラップ充填層内に
おいて前記(4)式による2次燃焼が生じ、1700〜1900
℃の2次燃焼ガスを生成する。
1) The high temperature CO gas generated by the above equation (1) rises in the coke packed bed. In the scrap packed bed, secondary combustion according to the equation (4) occurs,
Generates secondary combustion gas at ℃.

【0050】2)2次燃焼ガスは、スクラップ充填層の空
隙を通過しながらスクラップを加熱し、同時にガス温度
自体は降下しながらスクラップ充填層内を上昇する。そ
して通常、連続的に装入される次回溶解用のコークス充
填層およびスクラップ充填層と熱交換し、その後、温度
200〜500 ℃のダスト含有排ガスとして開口部から排出
される。
2) The secondary combustion gas heats the scrap while passing through the voids of the scrap packed bed, and at the same time, the gas temperature itself drops and rises in the scrap packed bed. Then, heat is exchanged with the coke packed bed and scrap packed bed for the next melting, which are usually charged continuously, and then the temperature is changed.
It is discharged from the opening as dust-containing exhaust gas at 200 to 500 ° C.

【0051】3)Snめっき鋼板スクラップの昇温速度は
スクラップ充填層内の存在位置によって異なるが、その
表面から急速に昇温を開始する。そして、その表面層の
温度が232 ℃(Snの融点)に達すると、Snめっき層
(通常、厚み40×10-6m 程度)は直ちに溶融し、スクラ
ップ充填層内の空隙を通過する2次燃焼ガス中のCO2
ガスによって酸化され、固相のSnO2 薄層がめっき層
と母材との接合面から剥離した状態で形成される。した
がって、昇温初期に溶融したSnがスクラップ充填層内
を滴下して炉底に溜まったり、母材中にSnが拡散した
りして製造溶銑中にSnが濃縮されるようなことはなく
なる。
3) The rate of temperature rise of the Sn-plated steel scrap varies depending on the existing position in the scrap packing layer, but the temperature starts to rise rapidly from the surface. Then, when the temperature of the surface layer reaches 232 ° C. (melting point of Sn), the Sn plating layer (usually about 40 × 10 −6 m in thickness) is immediately melted and passes through the voids in the scrap filling layer. CO 2 in combustion gas
Oxidized by the gas, a solid-phase SnO 2 thin layer is formed in a state of being separated from the joint surface between the plating layer and the base material. Therefore, molten Sn at the initial stage of temperature rise does not drop in the scrap packed layer and accumulate at the bottom of the furnace, or Sn diffuses into the base material, so that Sn is not concentrated in the hot metal produced.

【0052】4)母材から剥離した固相のSnO2 薄層
は、スクラップ充填層内の空隙を通過して上昇する前記
温度の高温の2次燃焼ガスによって加熱され、母材の昇
温に優先して昇温する。その昇温過程で微粉化した一部
のSnO2 は2次燃焼ガスの上昇気流に随伴して上昇
し、排ガスダストとなって開口部から炉外に排出され
る。
4) The thin solid phase SnO 2 layer separated from the base material is heated by the high temperature secondary combustion gas of the above temperature which rises by passing through the voids in the scrap packed bed, and the temperature of the base material is raised. Priority is given to raising the temperature. Part of SnO 2 pulverized in the temperature rising process rises in association with the upward flow of the secondary combustion gas, and becomes exhaust gas dust and is discharged from the opening to the outside of the furnace.

【0053】また、母材表面に残存したSnO2 薄層
は、母材であるスクラップが溶解する前に2次燃焼ガス
生成温度近くまで昇温する。SnO2 は1800℃以上では
融解せずに昇華するので、スクラップ充填層内の空隙を
通過してSnO2 蒸気が上昇し、上昇中に冷却されて微
細な排ガスダストとなって炉外に排出される。
The SnO 2 thin layer remaining on the surface of the base material is heated to near the secondary combustion gas generation temperature before the scrap as the base material is melted. Since SnO 2 sublimes without melting at 1800 ° C or higher, SnO 2 vapor rises through the voids in the scrap packed bed, is cooled during the rise, and becomes fine exhaust gas dust that is discharged outside the furnace. It

【0054】上記のような脱Sn機構は、スクラップ充
填層内のSnめっき鋼板スクラップ表層の昇温速度によ
って影響を受ける。すなわち、高温の2次燃焼ガスでS
nめっき鋼板スクラップの表層を急速に加熱すること
が、脱Snに最も必要なファクターであり、従来のよう
に平均2次燃焼率をできるだけ高く制御して高濃度のC
2 を含有する2次燃焼ガスを発生させるのは、脱Sn
においては効率的ではない。よって、Snが母材中に拡
散する前に、いかに速くSnめっき鋼板スクラップの表
層を加熱させた後、いかに速くCO2 ガスによってSn
を酸化させ、固相のSnO2 薄層を母材から剥離させる
かが重要なのである。
The Sn removal mechanism as described above is affected by the temperature rising rate of the surface layer of the Sn-plated steel plate scrap in the scrap packing layer. That is, S
Rapid heating of the surface layer of n-plated steel scrap is the most necessary factor for Sn removal, and it is necessary to control the average secondary combustion rate as high as possible to achieve a high C concentration.
The secondary combustion gas containing O 2 is generated by removing Sn.
Is not efficient at. Therefore, how quickly the surface layer of the Sn-plated steel scrap is heated before the Sn diffuses into the base metal, and then how quickly the Sn is removed by the CO 2 gas.
It is important that the solid phase SnO 2 thin layer is peeled off from the base material by oxidization.

【0055】本発明方法のようにスクラップの充填順序
を、まずSnめっき鋼板スクラップ、次いで非Snめっ
き鋼スクラップとすれば、より下部に位置するSnめっ
き鋼板スクラップは非Snめっき鋼スクラップに比べて
急速に加熱され、昇温速度が速くなる。また、非Snめ
っき鋼スクラップを炉上から投入する際に、その落下衝
撃力を有効利用してSnめっき鋼板スクラップ表面の固
相のSnO2 薄層を母材から剥離させる効果も得られ
る。
As in the method of the present invention, if the scrap filling sequence is first Sn-plated steel scrap and then non-Sn-plated steel scrap, the Sn-plated steel scrap located in the lower portion is faster than non-Sn-plated steel scrap. The temperature rises faster. Further, when the non-Sn plated steel scrap is charged from the furnace, it is possible to effectively utilize the drop impact force to separate the solid phase SnO 2 thin layer on the surface of the Sn plated steel scrap from the base material.

【0056】スクラップの母材表面に残存したSnO2
薄層は1800℃以上では融解せずに昇華するので、脱Sn
を促進するには、そのSnO2 蒸気を急速に冷却して微
細ダストとして排ガスとともに炉外に排出させる操作が
重要である。本発明方法のようなスクラップの充填順序
であれば、非Snめっき鋼スクラップが炉の上部に存在
し、Snめっき鋼板スクラップがコークス充填層と非S
nめっき鋼スクラップ充填層との間に保持される状態で
加熱、溶解することができるため、SnO2 蒸気を急速
に冷却させる効果が得られる。
SnO 2 remaining on the surface of the scrap base metal
Since the thin layer does not melt above 1800 ° C and sublimes, Sn removal
In order to accelerate the above, it is important to rapidly cool the SnO 2 vapor and discharge it as fine dust together with the exhaust gas to the outside of the furnace. In the scrap filling sequence as in the method of the present invention, the non-Sn plated steel scrap is present at the top of the furnace, and the Sn plated steel scrap is the coke packed bed and non-S.
Since it can be heated and melted while being held between the n-plated steel scrap packed layer and the n-plated steel scrap packed layer, the effect of rapidly cooling the SnO 2 vapor can be obtained.

【0057】このような理由に基づいて本発明方法で
は、非Snめっき鋼スクラップの装入に先だって、まず
Snめっき鋼板スクラップを充填することとした。
Based on the above reason, in the method of the present invention, before the charging of the non-Sn plated steel scrap, the Sn plated steel plate scrap is first filled.

【0058】本発明方法では、前記の脱Sn機構および
作用効果に基づいて、Snめっき鋼板スクラップ表層の
SnをSnO2 に形態変化させて炉外に排出し除去する
ことができる。したがって、脱Sn予備処理や合わせ湯
工程を追加せずに、また高価な電力を用いずに1基の炉
によって、高品位鋼の製造に使用可能なSn含有量の低
い溶銑を製造しながら、高カロリーの排ガスを回収する
ことができる。
In the method of the present invention, Sn in the surface layer of the Sn-plated steel plate scrap can be transformed into SnO 2 and discharged to the outside of the furnace based on the above-mentioned Sn-removing mechanism and action and effect. Therefore, while producing molten iron with a low Sn content that can be used for the production of high-grade steel by one furnace without adding Sn removal pretreatment or a combined hot water process and without using expensive electric power, High-calorie exhaust gas can be collected.

【0059】[0059]

【実施例】図2に示す装置構成の筒型炉を用い、スクラ
ップの充填条件および平均2次燃焼率を変化させて溶銑
の連続製造試験を実施し、脱Sn率、排ガスカロリーお
よびダスト排出量などを調査した。
EXAMPLE A continuous production test of hot metal was carried out by changing the filling condition of scrap and the average secondary combustion rate using a cylindrical furnace having the apparatus configuration shown in FIG. 2, and the Sn removal rate, exhaust gas calorie and dust emission amount. And so on.

【0060】 筒型炉:直径は1.5m 炉底から炉口までの高さは3.6m 内容積は6.0m3 羽口配置:一次羽口は炉底から0.8m上部に4本(水平方向で90°間隔) 二次羽口は炉底から1.4m上部に6本(水平方向で60°間隔) 用いる鉄源は次のとおりとした。Cylindrical furnace: Diameter is 1.5 m, height from bottom to furnace mouth is 3.6 m, internal volume is 6.0 m 3 Tuyere arrangement: Primary tuyeres are 0.8 m above the furnace bottom and four (in horizontal direction) 90 ° intervals) Six secondary tuyeres 1.4m above the furnace bottom (60 ° intervals in the horizontal direction) The iron sources used were as follows.

【0061】 非Snめっき鋼スクラップ:最大寸法400mm 角、嵩密度2.5t/m3 の鋼屑 Sn含有量は0.001 重量% Snめっき鋼板スクラップ:最大寸法150mm 角、嵩密度1.5t/m3 のぶりき缶屑 Sn含有量は0.20重量% 支燃性ガスは空気、コークスは表1に示す粒度20〜70mm
の塊状の高炉用コークスを使用した。
Non-Sn-plated steel scrap: Steel scrap with maximum dimensions of 400 mm square and bulk density of 2.5 t / m 3 Sn content is 0.001 wt% Sn-plated steel scrap: Maximum dimensions of 150 mm square, bulk density of 1.5 t / m 3 Canned waste Sn content 0.20% by weight Combustion-supporting gas is air, and coke has a particle size of 20 to 70 mm shown in Table 1.
The lumpy blast furnace coke was used.

【0062】[0062]

【表1】 [Table 1]

【0063】(本発明例1)表2に示す配合条件に従
い、図2に示すような充填層構造の原料装入を実施し
た。二種類のスクラップの充填順序は、まず先にSnめ
っき鋼板スクラップ、次に非Snめっき鋼スクラップと
した。その後、平均2次燃焼率が15%になるように、一
次羽口に加えてさらに二次羽口から空気を吹き込んで溶
解した。溶解が進行してスクラップ充填層の高さが低く
なれば、次回連続溶解用のコークスおよびスクラップを
装入して充填層を形成した。このようにして1回の出銑
量7.5tonの溶銑を連続的に製造した。
(Invention Example 1) Raw materials having a packed bed structure as shown in FIG. 2 were charged under the compounding conditions shown in Table 2. The filling order of the two types of scraps was first Sn-plated steel scrap and then non-Sn-plated steel scrap. Then, in addition to the primary tuyere, air was further blown from the secondary tuyere so as to have an average secondary combustion rate of 15% and melted. When the melting progressed and the height of the scrap packed bed became low, coke and scrap for the next continuous melting were charged to form a packed bed. In this way, hot metal having a single tapping amount of 7.5 ton was continuously produced.

【0064】[0064]

【表2】 [Table 2]

【0065】(本発明例2)本発明例1と同様に表2に
示す配合条件に従い、図2に示すような充填層構造の原
料装入を実施した。二種類のスクラップの充填順序は、
まず先にSnめっき鋼板スクラップ、次に非Snめっき
鋼スクラップとした。その後、平均2次燃焼率が30%に
なるように二次羽口からの空気流量を調整して溶解し
た。溶解が進行してスクラップ充填層の高さが低くなれ
ば、次回連続溶解用のコークスおよびスクラップを装入
して充填層を形成した。このようにして1回の出銑量7.
5tonの溶銑を連続的に製造した。
(Invention Example 2) In the same manner as in Invention Example 1, according to the compounding conditions shown in Table 2, raw materials having a packed bed structure as shown in FIG. 2 were charged. The filling order of the two types of scrap is
First, Sn-plated steel scrap and then non-Sn-plated steel scrap. After that, the air flow rate from the secondary tuyere was adjusted so that the average secondary combustion rate was 30%, and melting was performed. When the melting progressed and the height of the scrap packed bed became low, coke and scrap for the next continuous melting were charged to form a packed bed. In this way, the amount of tapping is 7.
5 ton of hot metal was continuously produced.

【0066】(本発明例3)本発明例1と同様に表2に
示す配合条件に従い、図2に示すような充填層構造の原
料装入を実施した後、平均2次燃焼率が45%になるよう
に二次羽口からの空気流量を調整して溶解した。その後
は、本発明例1および2と同様に連続充填、溶解を行
い、1回の出銑量7.5tonの溶銑を製造した。
(Invention Example 3) After the raw material charging of the packed bed structure as shown in FIG. 2 was carried out according to the compounding conditions shown in Table 2 as in Invention Example 1, the average secondary combustion rate was 45%. The air flow rate from the secondary tuyere was adjusted so that After that, continuous filling and melting were carried out in the same manner as in Examples 1 and 2 of the present invention to produce a hot metal having a tonnage of 7.5 tons per time.

【0067】(比較例1)表2に示す配合条件に従い、
図2に示すような充填層構造とは異なり原料装入順序を
変えて実施した。すなわち、二種のスクラップの充填順
序は、まず先に非Snめっき鋼スクラップ、次にSnめ
っき鋼板スクラップとした。その後、平均2次燃焼率が
15%になるように一次羽口に加えてさらに二次羽口から
空気を吹き込んで溶解した。溶解が進行してスクラップ
充填層の高さが低くなれば、次回連続溶解用のコークス
およびスクラップを装入して充填層を形成した。このよ
うにして1回の出銑量7.5tonの溶銑を連続的に製造し
た。
Comparative Example 1 According to the compounding conditions shown in Table 2,
Different from the packed bed structure as shown in FIG. 2, the raw material charging order was changed. That is, the filling order of the two types of scrap was first non-Sn plated steel scrap and then Sn plated steel plate scrap. After that, the average secondary combustion rate
In addition to the primary tuyere, air was blown from the secondary tuyere so that the concentration became 15%, and the mixture was dissolved. When the melting progressed and the height of the scrap packed bed became low, coke and scrap for the next continuous melting were charged to form a packed bed. In this way, hot metal having a single tapping amount of 7.5 ton was continuously produced.

【0068】(比較例2)表2に示す配合条件に従い、
比較例1と同様の二種のスクラップの充填順序とした。
その後、平均2次燃焼率が30%になるように二次羽口か
ら空気を吹き込んで溶解した。その後は比較例1と同様
に連続充填、溶解を行い、1回の出銑量7.5tonの溶銑を
製造した。
Comparative Example 2 According to the compounding conditions shown in Table 2,
The same two types of scrap filling order as in Comparative Example 1 were used.
After that, air was blown from the secondary tuyere so that the average secondary combustion rate was 30% and the air was melted. After that, continuous filling and melting were carried out in the same manner as in Comparative Example 1 to produce a hot metal having a tapping amount of 7.5 tons.

【0069】(比較例3)表2に示す配合条件に従い、
比較例1および2と同様の二種のスクラップの充填順序
とした。その後、平均2次燃焼率が45%になるように、
二次羽口から空気を吹き込んで溶解した。その後は比較
例1および2と同様に連続充填、溶解を行い、1回の出
銑量7.5tonの溶銑を製造した。
(Comparative Example 3) According to the compounding conditions shown in Table 2,
The same filling order of two types of scrap as in Comparative Examples 1 and 2 was adopted. After that, so that the average secondary combustion rate is 45%,
Air was blown from the secondary tuyere to dissolve. After that, continuous filling and melting were carried out in the same manner as in Comparative Examples 1 and 2 to produce a hot metal having a tapping amount of 7.5 tons.

【0070】表3に上記試験結果を示す。Table 3 shows the test results.

【0071】[0071]

【表3】 [Table 3]

【0072】表3に示す脱Sn率は、装入鉄源中の計算
Sn重量(装入Sn重量)および表3に示す製造溶銑中
のSn含有率と出銑量から計算した製造溶銑中Sn重量
を用いて、表3の(注)に示す式により求めた値であ
る。
The Sn removal ratio shown in Table 3 is calculated from the calculated Sn weight in the charged iron source (charged Sn weight) and the Sn content in the manufactured hot metal shown in Table 3 and the amount of tapped iron in the manufactured hot metal. It is a value obtained by the formula shown in (Note) of Table 3 using weight.

【0073】表3に示すように脱Sn率は、本発明例
1、2および3ではそれぞれ70、75および78%に達し、
比較例1、2および3の場合のそれぞれ33、35および40
%に比べて、およそ2倍に向上した。しかも本発明例の
すべてにおいて、溶銑中のSn含有率を0.04重量%、す
なわち鋼材の品質に悪影響を及ぼさない程度まで減少で
きた。
As shown in Table 3, the Sn removal rates reached 70, 75 and 78% in Examples 1, 2 and 3 of the present invention, respectively.
33, 35 and 40 for Comparative Examples 1, 2 and 3, respectively
%, Compared to the%. Moreover, in all of the examples of the present invention, the Sn content in the hot metal could be reduced to 0.04% by weight, that is, to the extent that the quality of the steel material was not adversely affected.

【0074】排ガスカロリーは、本発明例ではいずれも
高い脱Sn率にもかかわらず、1200kcal/Nm3以上の高カ
ロリーとなった。一方、比較例の結果のとおり、従来の
方法で1200kcal/Nm3以上の高カロリー排ガスを得る場合
には、40%以下の脱Sn率しか達成できなかった。
In the examples of the present invention, the exhaust gas calories became high calories of 1200 kcal / Nm 3 or more in spite of the high Sn removal rate. On the other hand, as shown in the results of the comparative example, when the high calorie exhaust gas of 1200 kcal / Nm 3 or more was obtained by the conventional method, only the Sn removal rate of 40% or less could be achieved.

【0075】また、特開平7−207313号公報の方法によ
ると、脱Sn率を79%にするには平均2次燃焼率を72%
を設定する必要があった。この排ガスは、カロリー計算
すると高々530 kcal/Nm3に過ぎないので、同じ脱Sn率
が得られる本発明例3と比較すれば、排ガスカロリーは
半分以下にも満たない。
According to the method disclosed in Japanese Patent Laid-Open No. 7-207313, the average secondary combustion rate is 72% in order to make the Sn removal rate 79%.
Had to set. The calorie calculation of this exhaust gas is only 530 kcal / Nm 3 at most, so the exhaust gas calorie is less than half as compared with Example 3 of the present invention in which the same Sn removal rate is obtained.

【0076】このように本発明方法は、高脱Sn率の条
件下で高カロリーの排ガスを回収することができるの
で、その経済的優位性が高い。
As described above, the method of the present invention is capable of recovering a high-calorie exhaust gas under the condition of a high Sn removal rate, so that it is highly economical.

【0077】[0077]

【発明の効果】本発明方法によれば、脱Snの予備処理
工程や合わせ湯工程を追加せず、また高価な電力を用い
ずに1基の溶解炉により、高品位鋼の製造に使用可能な
Sn含有量の低い溶銑を製造しながら、高カロリーの排
ガスを回収することが可能である。SnO2 が濃縮され
た排ガスダストは、Sn源として有効に利用することも
できる。
EFFECTS OF THE INVENTION According to the method of the present invention, a single melting furnace can be used for producing high-grade steel without adding a pretreatment step for Sn removal and a combined hot water step, and without using expensive electric power. It is possible to recover high-calorie exhaust gas while producing hot metal having a low Sn content. The exhaust gas dust enriched with SnO 2 can also be effectively used as a Sn source.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の実施に用いる筒型炉およびその炉
内充填状態を示す概略の縦断面図である。
FIG. 1 is a schematic vertical sectional view showing a cylindrical furnace used for carrying out the method of the present invention and a filling state in the furnace.

【図2】別の本発明方法の実施に用いる筒型炉およびそ
の炉内充填状態を示す概略の縦断面図である。
FIG. 2 is a schematic vertical sectional view showing a cylindrical furnace used for carrying out another method of the present invention and a filling state in the furnace.

【符号の説明】[Explanation of symbols]

1,1′:筒型炉、 2:開口部、3:炉下部炉
壁の羽口、 3′:一次羽口、4:炉底羽口、
4′:炉底一次羽口、5:排出口、
6:溶銑、7:スラグ、 8:二次羽
口、9,9′:コークス充填層、10:スクラップ充填
層、10−1:Snめっき鋼板スクラップ、10−2:非S
nめっき鋼スクラップ、11:ダスト含有排ガス
1, 1 ': tubular furnace, 2: opening part, 3: tuyeres of furnace bottom wall, 3': primary tuyeres, 4: bottom tuyeres,
4 ': Primary bottom tuyeres of furnace bottom, 5: Discharge port,
6: hot metal, 7: slag, 8: secondary tuyere, 9, 9 ': coke packed layer, 10: scrap packed layer, 10-1: Sn plated steel scrap, 10-2: non-S
n-plated steel scrap, 11: Exhaust gas containing dust

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】炉上部に原料装入およびガス排出用の開口
部、炉下部炉壁またはさらに炉底部に羽口をそれぞれ備
えた筒型炉を用い、その炉底から羽口を含むレベルまで
コークス充填層、その上部に鉄スクラップ充填層をそれ
ぞれ形成させた後、羽口から支燃性ガスを吹き込む鉄ス
クラップの溶解方法であって、鉄スクラップとして非錫
めっき鋼および錫めっき鋼板を用い、非錫めっき鋼スク
ラップに先だって錫めっき鋼板スクラップを充填し、錫
めっき鋼板スクラップをコークス充填層と非錫めっき鋼
スクラップ充填層との間に保持して溶解することを特徴
とする錫めっき鋼板スクラップの溶解方法。
1. A cylindrical furnace having openings for charging raw materials and discharging gas at the upper part of the furnace, a furnace wall at the lower part of the furnace, and tuyeres at the bottom of the furnace is used. From the bottom to the level including the tuyere. Coke filling layer, a method for melting iron scrap after injecting a combustion-supporting gas from the tuyere after forming the iron scrap filling layer on the top, using non-tin-plated steel and tin-plated steel sheet as iron scrap, The tin-plated steel scrap is filled with tin-plated steel scrap prior to the non-tin-plated steel scrap, and the tin-plated steel scrap is held and melted between the coke filling layer and the non-tin-plated steel scrap filling layer. Dissolution method.
【請求項2】請求項1に記載の筒型炉として、さらに炉
上部炉壁に二次羽口を備えたものを用いることを特徴と
する錫めっき鋼板スクラップの溶解方法。
2. A melting method for tin-plated steel plate scrap, wherein the cylindrical furnace according to claim 1 is further provided with a secondary tuyere on the furnace upper furnace wall.
JP7179396A 1995-09-27 1996-03-27 Dissolution method of tin plated steel sheet scrap Expired - Lifetime JP2980023B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP7179396A JP2980023B2 (en) 1996-03-27 1996-03-27 Dissolution method of tin plated steel sheet scrap
US08/849,039 US5902375A (en) 1995-09-27 1996-09-27 Method of melting tinned iron scrap
PCT/JP1996/002835 WO1997012065A1 (en) 1995-09-27 1996-09-27 Method of melting tinned iron scrap
EP96932044A EP0792939B1 (en) 1995-09-27 1996-09-27 Method of melting tinned iron scrap
DE1996617198 DE69617198T2 (en) 1995-09-27 1996-09-27 METHOD FOR MELTING TINNED STEEL SCRAP
KR1019970703415A KR100250672B1 (en) 1995-09-27 1996-09-27 Method of melting tinned iron scrap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7179396A JP2980023B2 (en) 1996-03-27 1996-03-27 Dissolution method of tin plated steel sheet scrap

Publications (2)

Publication Number Publication Date
JPH09263811A true JPH09263811A (en) 1997-10-07
JP2980023B2 JP2980023B2 (en) 1999-11-22

Family

ID=13470810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7179396A Expired - Lifetime JP2980023B2 (en) 1995-09-27 1996-03-27 Dissolution method of tin plated steel sheet scrap

Country Status (1)

Country Link
JP (1) JP2980023B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031369A1 (en) * 2007-09-06 2009-03-12 Nippon Steel Corporation Method of operating vertical furnace
WO2009031368A1 (en) * 2007-09-07 2009-03-12 Nippon Steel Corporation Vertical furnace and method of operating the same
JP2011068987A (en) * 2009-08-31 2011-04-07 Jfe Steel Corp Method for producing molten pig iron using vertical-type scrap-melting furnace
JP2011068986A (en) * 2009-08-31 2011-04-07 Jfe Steel Corp Method for producing molten pig iron with the use of vertical-type scrap-melting furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031369A1 (en) * 2007-09-06 2009-03-12 Nippon Steel Corporation Method of operating vertical furnace
WO2009031368A1 (en) * 2007-09-07 2009-03-12 Nippon Steel Corporation Vertical furnace and method of operating the same
JP2011068987A (en) * 2009-08-31 2011-04-07 Jfe Steel Corp Method for producing molten pig iron using vertical-type scrap-melting furnace
JP2011068986A (en) * 2009-08-31 2011-04-07 Jfe Steel Corp Method for producing molten pig iron with the use of vertical-type scrap-melting furnace

Also Published As

Publication number Publication date
JP2980023B2 (en) 1999-11-22

Similar Documents

Publication Publication Date Title
KR0131266B1 (en) Process for the production of iron using converter
US5611838A (en) Process for producing an iron melt
AU2007204927B2 (en) Use of an induction furnace for the production of iron from ore
JP2002521569A (en) Direct smelting method and equipment
JPS62227024A (en) Method and apparatus for continuously melting waste iron and/or sponge iron
JP2010265485A (en) Method for operating arc-furnace
JPS6294792A (en) Method and device for continuously preheating charging material for steel-making furnace
JP4342104B2 (en) Direct smelting method
US5135572A (en) Method for in-bath smelting reduction of metals
JP3452645B2 (en) Method and apparatus for smelting reduction of ore or metal objects undergoing preliminary reduction
JP2980023B2 (en) Dissolution method of tin plated steel sheet scrap
US5558696A (en) Method of direct steel making from liquid iron
WO2015041834A2 (en) Steel production in a coke dry quenching system
KR100250672B1 (en) Method of melting tinned iron scrap
EP0950117B1 (en) A method for producing metals and metal alloys
JPH02200713A (en) Device and method for producing molten iron
US3207596A (en) Production of steel
KR20140027099A (en) Method and apparatus for making liquid iron and steel
JPH07207313A (en) Method for melting tin-plated steel sheet scrap
US20230323491A1 (en) Process for producing raw steel and aggregate for production thereof
JP2002003917A (en) Method for supplying oxygen in vertical melting furnace
JP2998610B2 (en) Dissolution method of tin plated steel sheet scrap
JP3978973B2 (en) Hot metal production method
Stone Oxygen in Steelmaking
JP2970465B2 (en) Apparatus and method for producing hot metal

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term