JPH08206420A - Magnetic separator - Google Patents

Magnetic separator

Info

Publication number
JPH08206420A
JPH08206420A JP7298079A JP29807995A JPH08206420A JP H08206420 A JPH08206420 A JP H08206420A JP 7298079 A JP7298079 A JP 7298079A JP 29807995 A JP29807995 A JP 29807995A JP H08206420 A JPH08206420 A JP H08206420A
Authority
JP
Japan
Prior art keywords
magnetic
electromagnet
superconducting
magnetic field
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7298079A
Other languages
Japanese (ja)
Inventor
Norihide Saho
典英 佐保
Takeo Nemoto
武夫 根本
Hisashi Isokami
尚志 磯上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7298079A priority Critical patent/JPH08206420A/en
Publication of JPH08206420A publication Critical patent/JPH08206420A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To enable a high speed separation while keeping a low operation cost by using a superconducting magnet in place of an electromagnet in a magnetic separator equipped with an electromagnet and a magnetic particle attraction means which is placed in the magnetic field of the electromagnet and attracts magnetic particles in raw water introduced. CONSTITUTION: A magnetic field is generated in a cylindrical vertical pressure container 7 by an energized superconducting air-core magnet 21, and the magnetic field is made uniform by magnetic poles 9. In addition, the magnetic fine line filler of a high gradient magnetic filter 8 is magnetized by the uniform magnetic field. The magnetic field is disturbed by the magnetized filler so that local unevenness of magnetic flux is formed, generating numbers of parts of a high gradient magnetic field. When raw water containing magnetic particles is introduced into the container 7 from below in an upward current through a pipe 4 and a lower head 5, the magnetic particles in raw water are caught on the surface of the filler by strong magnetic force, and purified raw water is sent outside through an upper header 11 and a pipe 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は水を浄化する磁気分
離装置に関する。
TECHNICAL FIELD The present invention relates to a magnetic separation device for purifying water.

【0002】[0002]

【従来の技術】近年、海、湖沼や池等における水質の悪
化のため、赤潮やアオコの大量発生が社会問題となって
いる。これらは水温、栄養状態等の条件が整うと一時に
大量に発生するので、これらを高速に取り除く装置の出
現が切望されている。
2. Description of the Related Art In recent years, due to the deterioration of water quality in the sea, lakes, ponds, etc., the mass production of red tides and water-blooms has become a social problem. Since a large amount of these are generated at one time when the conditions such as water temperature and nutritional condition are adjusted, the appearance of a device for removing them at high speed is desired.

【0003】水処理装置としては、固液分離技術を応用
した装置が知られている。化学工学、第45巻、第4号
(1981年)第235頁から239頁に記載の磁気分
離装置は、直流電源による電磁石を用いた磁場発生装置
により発生した磁場を利用して磁性粒子吸着手段に粒子
を吸着させるものである。この磁性粒子吸着手段とし
て、例えば、高勾配電磁フィルタを使用する。そして、
この高勾配電磁フィルタを鉄製のヨークで囲み、磁力線
の通路とその漏洩の防止をかねている。その内側には常
電導コイルが、更に中央部に高勾配電磁フィルタ部が配
置されており、フィルタ容器の中には多数の孔が開いた
磁極が高勾配電磁フィルタ部を挟んで上下に対置してい
る。
As a water treatment device, a device to which a solid-liquid separation technique is applied is known. The magnetic separation apparatus described in Chemical Engineering, Vol. 45, No. 4 (1981), pages 235 to 239 utilizes a magnetic field generated by a magnetic field generator using an electromagnet with a DC power source to adsorb magnetic particles. The particles are adsorbed on the. As this magnetic particle adsorption means, for example, a high gradient electromagnetic filter is used. And
This high-gradient electromagnetic filter is surrounded by an iron yoke to prevent passage of magnetic lines of force and its leakage. Inside it is a normal conducting coil, and a high-gradient electromagnetic filter is located in the center, and magnetic poles with a large number of holes in the filter container are placed vertically above and below the high-gradient electromagnetic filter. ing.

【0004】高勾配電磁フィルタは磁性細線等で構成さ
れ、テ−プ状、スチ−ルウ−ル状、粒子状、金網状等の
磁性材等を充填している。このように均一な磁場内に、
曲率半径の極めて小さな部分を持つ磁性細線を配置する
ことによって、細線表面近傍で局部的な磁場の疎密がで
き大きな磁気勾配が発生する。水処理する原水中の磁性
粒子は、磁場が密な部分を通過するため、この細線表面
に吸引される。
The high-gradient electromagnetic filter is composed of magnetic fine wires or the like, and is filled with a magnetic material such as tape, steel wool, particles, and wire mesh. In a uniform magnetic field like this,
By arranging the magnetic wire having a portion with a very small radius of curvature, the magnetic field can be locally distributed near the surface of the wire and a large magnetic gradient is generated. The magnetic particles in the raw water to be treated with water pass through the portion where the magnetic field is dense and are attracted to the surface of the thin wire.

【0005】[0005]

【発明が解決しようとする課題】上記したように、水処
理速度の高速化や分離効率の向上等の高性能化が要求さ
れ、このためには空心コイル等の電磁石の磁場を大きく
する必要がある。しかしながら、上記従来技術において
は、常電導の空心コイルの磁場を大きくするためには、
通電電流を大きくするか、コイルの巻き数を増やさなけ
ればならない。このためには、コイルやその冷却装置も
大型となり、熱損失が増加し運転経費が上昇するという
問題がある。
As described above, higher performance such as higher water treatment speed and higher separation efficiency is required. For this purpose, it is necessary to increase the magnetic field of electromagnets such as air-core coils. is there. However, in the above conventional technique, in order to increase the magnetic field of the normally conducting air-core coil,
Either the energizing current must be increased or the number of coil turns must be increased. For this reason, the coil and its cooling device become large in size, and there is a problem in that heat loss increases and operating costs increase.

【0006】一方、空心コイルを超伝導磁石で構成する
場合は、コイルの直流電源を切る運転操作は、極低温に
冷却されたコイル内の電流を室温部の抵抗器で吸収し、
フィルタ洗浄後再び直流電源からコイル内に電流を流す
操作が必要となる。この操作では、極低温に冷却された
コイル内と室温部の抵抗器、直流電源を線径の大きな電
気伝導体で接続するため、電気伝導体からコイルに多量
の熱が侵入しコイル温度を上昇させる。このため、この
操作の間コイルの冷却冷媒例えば液体ヘリウムを補給し
ながら行う必要があり、頻繁に行うフィルタ洗浄が煩雑
となり、かつ補給用の冷却冷媒のコストが必要となる問
題がある。
On the other hand, when the air-core coil is composed of a superconducting magnet, the operation of turning off the DC power source of the coil absorbs the current in the coil cooled to an extremely low temperature with a resistor at room temperature,
After cleaning the filter, it is necessary to again apply current from the DC power supply to the coil. In this operation, the coil cooled to cryogenic temperature, the resistor in the room temperature part, and the DC power supply are connected by an electric conductor with a large wire diameter, so a large amount of heat enters the coil from the electric conductor and the coil temperature rises. Let Therefore, during this operation, it is necessary to replenish the cooling refrigerant of the coil, for example, liquid helium, which frequently complicates filter cleaning, and the cost of the cooling refrigerant for replenishment is required.

【0007】本発明の第1の目的は、水を浄化する磁気
分離装置において、低運転コストを維持しつつ高速分離
可能な磁気分離装置を提供することにある。
A first object of the present invention is to provide a magnetic separation device for purifying water, which is capable of high-speed separation while maintaining a low operating cost.

【0008】本発明の第2の目的は、水を浄化する磁気
分離装置におけるフィルタの目詰まりを解消する逆洗時
の処理を簡略化することにある。
A second object of the present invention is to simplify the process at the time of backwashing for eliminating the filter clogging in the magnetic separation device for purifying water.

【0009】[0009]

【課題を解決するための手段】上記第1の目的は、電磁
石と、その磁場内に配置され流入する原水中の磁性粒子
を吸着する磁性粒子吸着手段を備えた磁気分離装置にお
いて、前記電磁石を超電導電磁石とすることにより達成
される。
A first object of the present invention is to provide a magnetic separation device equipped with an electromagnet and a magnetic particle adsorbing means for adsorbing magnetic particles in raw water that flows into the magnetic field, the electromagnet comprising: This is achieved by using a superconducting electromagnet.

【0010】また、上記第2の目的は、電磁石と、その
磁場内に配置され流入する原水中の磁性粒子を吸着する
磁性粒子吸着手段を備えた磁気分離装置において、前記
電磁石を超電導電磁石とし、前記磁性粒子吸着手段のフ
ィルタ能力回復のための逆洗時、前記超電導電磁石の励
磁電流を切らずに逆洗を行うようにすることにより達成
される。
A second object of the present invention is to provide a magnetic separation device equipped with an electromagnet and magnetic particle adsorbing means for adsorbing magnetic particles in inflowing raw water arranged in the magnetic field of the electromagnet, wherein the electromagnet is a superconducting electromagnet. This can be achieved by performing backwashing without turning off the exciting current of the superconducting electromagnet during the backwashing for recovering the filter performance of the magnetic particle adsorbing means.

【0011】[0011]

【発明の実施の形態】以下、本発明の一実施形態を図1
を用いて説明する。磁性粒子を含んだ原水は配管4、下
部ヘッダ5を通って固液分離部の円筒状縦型圧力容器7
内に下部より流入する。円筒状縦型圧力容器7内には、
磁性粒子吸着手段として、例えば、磁性細線を充填した
高勾配磁気フィルタ8が配置され、これを挟むように磁
極9が上下に対置されている。円筒状縦型圧力容器7の
上部は、上部ヘッダ11に連通し、上部ヘッダ11には
配管12を通じて処理水が流出し、また、配管15を通
じて原水槽に処理水がながれ出るようになっている。磁
場発生装置は、電流が流れている超伝導空心磁石21
と、これを真空断熱したクライオスタット23で構成さ
れている。超電導磁石21は液体ヘリウム等の冷媒を介
せず直接冷凍機38で生成する寒冷によって冷却されて
いる。ここで用いられている冷凍機は、例えば、2温度
レベルの寒冷を発生するギフォ−ドマクマフォン式冷凍
機38であり、超伝導空心磁石21を取り巻く熱シ−ル
ド板40は、冷凍機38の寒冷発生部の発生温度が10
0Kから20Kの第1ステ−ジ39により直接冷却さ
れ、超伝導空心磁石21は、発生温度が20Kから2K
の第2ステ−ジ41によって直接冷却される。高勾配磁
気フィルタ8は鉄製のヨーク24で囲まれており、超電
導磁石21が発生する磁力線の通路とその漏洩の防止を
兼ねている。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to FIG.
Will be explained. Raw water containing magnetic particles passes through a pipe 4 and a lower header 5 to form a cylindrical vertical pressure vessel 7 in a solid-liquid separation section.
It flows in from the bottom. In the cylindrical vertical pressure vessel 7,
As the magnetic particle adsorbing means, for example, a high-gradient magnetic filter 8 filled with magnetic fine wires is arranged, and magnetic poles 9 are vertically arranged so as to sandwich the high-gradient magnetic filter 8. The upper part of the cylindrical vertical pressure vessel 7 communicates with the upper header 11, and the treated water flows into the upper header 11 through the pipe 12 and the treated water flows through the pipe 15 into the raw water tank. . The magnetic field generator is a superconducting air-core magnet 21 in which an electric current flows.
And a cryostat 23 that vacuum-insulates this. The superconducting magnet 21 is cooled by the cold generated directly in the refrigerator 38 without passing through a refrigerant such as liquid helium. The refrigerator used here is, for example, a Gifford-McMavon type refrigerator 38 that produces cold at two temperature levels, and the heat shield plate 40 surrounding the superconducting air-core magnet 21 is a refrigerator of the refrigerator 38. The generated temperature of the generator is 10
Directly cooled by the first stage 39 of 0K to 20K, the superconducting air-core magnet 21 has a generation temperature of 20K to 2K.
It is directly cooled by the second stage 41 of. The high gradient magnetic filter 8 is surrounded by a yoke 24 made of iron, and serves both as a passage of a magnetic force line generated by the superconducting magnet 21 and as a leakage prevention thereof.

【0012】超伝導空心磁石21による均一な磁場内に
設置した高勾配磁気フィルタ8内の曲率半径の極めて小
さな部分を持つ磁性細線には、その細線表面近傍で局部
的な磁場の疎密ができ大きな磁気勾配が発生する。この
磁場が密の部分に磁性粒子が流れ込み磁場に捕捉され結
果的に高勾配磁気フィルタ8に吸着される。
A magnetic fine wire having a portion with a very small radius of curvature in the high gradient magnetic filter 8 installed in a uniform magnetic field by the superconducting air-core magnet 21 has a large local magnetic field density near the surface of the fine wire and is large. A magnetic gradient is generated. The magnetic particles flow into the portion where the magnetic field is dense and are captured by the magnetic field, and as a result, are adsorbed to the high gradient magnetic filter 8.

【0013】磁気フィルタの運転操作を説明する。電流
を流した超伝導空心磁石21により、磁場が、円筒状縦
型圧力容器7内に発生し、磁場は磁極9によって均一化
される。均一化された磁場によって、高勾配磁気フィル
タ8の磁性細線充填物が磁化される。磁場は、磁化され
た磁性細線充填物のために乱れを生じ、局部的に磁束の
疎密ができ、高磁場勾配となる部分が多数発生する。磁
性粒子(後述する)を含んだ原水を配管4及び下部ヘッ
ダ5を介して下方から上向流(上向流とする理由は後述
する)で円筒状縦型圧力容器7に送水すると、原水中の
磁性粒子は充填物の磁性細線表面に、大きな磁力で捕捉
され、浄化された原水は上部ヘッダ11及び配管12を
介して外部に送水される。
The operation of operating the magnetic filter will be described. A magnetic field is generated in the cylindrical vertical pressure vessel 7 by the superconducting air-core magnet 21 to which an electric current is applied, and the magnetic field is made uniform by the magnetic pole 9. The uniform magnetic field magnetizes the magnetic wire filler of the high gradient magnetic filter 8. The magnetic field is disturbed due to the magnetized magnetic wire filling material, and the magnetic flux is locally concentrated and dense, and a large number of portions having a high magnetic field gradient are generated. When raw water containing magnetic particles (described later) is sent to the cylindrical vertical pressure vessel 7 from below through the pipe 4 and the lower header 5 in an upward flow (the reason for upward flow is described below), The magnetic particles are captured by the magnetic fine wire surface of the packing with a large magnetic force, and the purified raw water is sent to the outside through the upper header 11 and the pipe 12.

【0014】本実施形態によれば、空心コイルを良好に
冷凍機で冷却された超伝導磁石で構成したので、超電導
磁石への冷媒の補給を不要とすることができ、装置の小
型化、ランニングコストを低減することができる。ま
た、コイルの直流電源を切り、再び流す操作をする時に
おいても、コイル温度の上昇も冷凍機により防止でき安
定にコイルを冷却することができる。さらに、ヘリウム
等の冷媒を介せずに冷凍機でコイルを直接冷却すること
により、これは、空心電磁石とその磁場内に高勾配磁気
フィルタの磁性粒子吸着手段を内蔵した容器を配置し、
該フィルタで原水中の磁性粒子を吸着除去する磁気分離
装置全般において有効である。
According to the present embodiment, since the air-core coil is composed of the superconducting magnet cooled well by the refrigerator, it is not necessary to replenish the superconducting magnet with the refrigerant, so that the apparatus can be downsized and running. The cost can be reduced. Further, even when the DC power supply to the coil is turned off and the coil is turned on again, the rise in the coil temperature can be prevented by the refrigerator and the coil can be cooled stably. Further, by directly cooling the coil with a refrigerator without passing through a refrigerant such as helium, this arranges an air-core electromagnet and a container having a magnetic particle adsorbing means of a high gradient magnetic filter in its magnetic field,
This filter is effective in all magnetic separation devices that adsorb and remove magnetic particles in raw water.

【0015】また、上記実施形態では、2温度レベルの
寒冷を発生するギフォードマクマフォン式冷凍機を例に
取って説明したが、3温度レベルの寒冷を発生するギフ
ォ−ドマクマフォン式冷凍機42を用いても有効であ
る。すなわち、図2において、3温度レベルの寒冷を発
生するギフォ−ドマクマフォン式冷凍機42の場合、1
00Kから20Kの寒冷を発生する第1ステ−ジ43は
超伝導空心磁石21を取り巻く第1熱シ−ルド板44を
直接冷却し、発生温度20Kから5Kの寒冷を発生する
第2ステ−ジ45は第2熱シ−ルド板46を直接冷却
し、発生温度5Kから2Kの寒冷を発生する第3ステ−
ジ47は超伝導空心磁石21を直接冷却する。この場
合、磁極9は多孔状の円盤を使用している。この磁気分
離装置はドーナツ状の中央空間に湖沼などからの原水を
通過させるものであるため、外部から超電動磁石内に熱
が侵入しやすくクエンチ現象の問題がある。本実施形態
によれば、熱シールドを夫々温度の違う2重構造とした
ので、熱の侵入を効果的に抑制することができ、クエン
チ現象を防止することができるという効果がある。
In the above embodiment, the Gifford-McMavon type refrigerator which generates cold at two temperature levels is taken as an example, but the Gifford-McMaphone type refrigerator 42 which generates cold at three temperature levels is used. But it is effective. That is, in FIG. 2, in the case of the Gifford-McMavon refrigerator 42 that produces cold at three temperature levels, 1
The first stage 43, which produces cold from 00K to 20K, directly cools the first heat shield plate 44 surrounding the superconducting air-core magnet 21, and the second stage, which produces cold from 20K to 5K. Reference numeral 45 is a third stage which directly cools the second heat shield plate 46 to generate cold from 2K to 5K.
The di 47 directly cools the superconducting air-core magnet 21. In this case, the magnetic pole 9 uses a porous disk. Since this magnetic separation device allows raw water from a lake or the like to pass through the doughnut-shaped central space, heat easily penetrates into the super-electric magnet from the outside and has a problem of a quench phenomenon. According to the present embodiment, since the heat shield has the double structure in which the temperatures are different from each other, the invasion of heat can be effectively suppressed, and the quench phenomenon can be prevented.

【0016】さらに冷凍系の構成を変えた実施形態につ
いて図3を用いて説明する。冷凍機、例えば、2温度レ
ベルの寒冷を発生するギフォ−ドマクマフォン式冷凍機
48を予冷冷凍機として使用し、ジュ−ルトムソン回路
49を組み合わせた冷凍機50の場合、ギフォードマク
マフォン式冷凍機48における寒冷発生部では、100
Kから20Kの寒冷を発生する第1ステ−ジ51は超伝
導空心磁石21を取り巻く第1熱シ−ルド板52を直接
冷却し、20Kから7Kの寒冷を発生する第2ステ−ジ
53は第2熱シ−ルド板54を直接冷却する。一方、ジ
ュ−ルトムソン回路49で発生する発生温度7Kから
1.8Kの寒冷で熱交換器55を介して超伝導空心磁石
21を直接冷却する。冷凍機48およびジュ−ルトムソ
ン回路49はヘリウムガス圧縮機56から高圧ガスの供
給を配管57、60から受け、冷凍機48内では断熱膨
張して第1ステ−ジ51と第2ステ−ジ53で寒冷を発
生し膨張後のガスは配管58を通じて圧縮機56に戻
る。ジュ−ルトムソン回路49では、高圧ガスが第1ス
テ−ジ51と第2ステ−ジ53で予冷され、回路内のジ
ュ−ルトムソン弁(図示せず)や膨張タ−ビン(図示せ
ず)等の膨張手段で寒冷を発生し、この冷媒は熱交換器
55に送られる。熱交換器55からジュ−ルトムソン回
路49に戻った冷媒は回路内でさらに膨張過程を通るか
または膨張せずに、回路内の熱交換器(図示せず)で前
記高圧ガスを冷却し、ほぼ常温になって配管59を通じ
て圧縮機56に戻る。ヘリウムガス圧縮機56はクロ−
ズドサイクルで運転され、圧縮機は水冷もしくは空冷で
運転される。冷凍機38、42、50にも、同様なヘリ
ウムガス圧縮機が備えられクロ−ズドサイクルで運転さ
れ、圧縮機は水冷もしくは空冷で運転される。
An embodiment in which the structure of the refrigeration system is further changed will be described with reference to FIG. In the case of a refrigerator 50 that uses a refrigerator, for example, a Gifford McMahon refrigerator 48 that generates cold at two temperature levels as a pre-cooling refrigerator and combines a Jult Mousson circuit 49, a Gifford McMahon refrigerator 48 is used. 100 in cold weather
The first stage 51, which produces cold from K to 20K, directly cools the first heat shield plate 52 surrounding the superconducting air-core magnet 21, and the second stage 53, which produces cold from 20K to 7K. The second heat shield plate 54 is directly cooled. On the other hand, the superconducting air-core magnet 21 is directly cooled via the heat exchanger 55 by the cold generated from the Joultmusson circuit 49 from 7K to 1.8K. The refrigerator 48 and the Jourte-Mousson circuit 49 receive the supply of high-pressure gas from the helium gas compressor 56 from the pipes 57 and 60, and adiabatically expand in the refrigerator 48 to cause the first stage 51 and the second stage 53. The cold gas is generated and the expanded gas returns to the compressor 56 through the pipe 58. In the Joultmusson circuit 49, the high-pressure gas is pre-cooled by the first stage 51 and the second stage 53, and the Dult-Moulson valve (not shown), the expansion turbine (not shown), etc. in the circuit. Chilling is generated by the expansion means, and this refrigerant is sent to the heat exchanger 55. The refrigerant returned from the heat exchanger 55 to the Dult-Mutson circuit 49 passes through an expansion process in the circuit or does not expand, and the high-pressure gas is cooled by a heat exchanger (not shown) in the circuit, When the temperature reaches room temperature, it returns to the compressor 56 through the pipe 59. Helium gas compressor 56 is
The compressor is operated by water cooling or air cooling. The refrigerators 38, 42 and 50 are also equipped with similar helium gas compressors and are operated in a closed cycle, and the compressors are operated by water cooling or air cooling.

【0017】また、以上の実施例では超電導磁石が温度
20K以下で超電導状態となる例えばニオブチタン系や
ニオブ3スズ系の超電導導体で磁石を構成した場合につ
いて述べたが、温度が20K以上150K以下で超電導
状態となる例えばビスマス系の高温超電導導体で磁石を
構成しても同様な効果が生じ、この場合冷凍機してはフ
ロンガスアンモニアガス、炭化水素系のガス、窒素ガス
等の作動ガスを使用した冷凍機が適用できる。
In the above embodiment, the superconducting magnet is in a superconducting state at a temperature of 20 K or lower. For example, the magnet is made of a superconducting conductor of niobium titanium type or niobium 3 tin type. Even if the magnet is made of a bismuth-based high-temperature superconducting conductor that is in a superconducting state, a similar effect is produced. In this case, a working gas such as CFC gas ammonia gas, hydrocarbon gas, nitrogen gas is used as the refrigerator. A refrigerator can be applied.

【0018】また、冷凍機のサイクルも、スタ−リング
式、タ−ビン式、パルスチュ−ブ式、キャピラリ−チュ
−ブによる膨張方式(通常の冷蔵庫に適用される冷凍方
式)、膨張弁による断熱膨張式を用いても同様な効果が
生じる。
The refrigerator cycle is also a Starling type, a turbine type, a pulse tube type, an expansion type using a capillary tube (a refrigeration type applied to a normal refrigerator), and an expansion valve for heat insulation. The same effect can be obtained by using the expansion type.

【0019】ところで、上述した磁気フィルタを運転す
ると、フィルタに磁性粒子が付着して目づまりを引き起
こす。そこで、磁気フィルタの逆洗という工程が必要と
なってくる。磁気フィルタへの磁場の供給が常電導磁石
で行われる場合は、電源から供給される電流を切って磁
場をなくして磁気フィルタを洗浄することができるが、
上記実施形態のように空心コイルを超電導磁石で構成す
る場合は、磁場をなくすためのコイルの直流電源を切る
運転操作は、極低温に冷却されたコイル内の電流を室温
部の抵抗器で吸収し、フィルタ洗浄後再び直流電源から
コイル内に電流を流す操作が必要となる。この操作で
は、極低温に冷却されたコイル内と室温部の抵抗器、直
流電源を線径の大きな電気伝導体で接続するため、電気
伝導体からコイルに多量の熱が侵入しコイル温度を上昇
させる。このため、この操作の間コイルの冷却冷媒例え
ば液体ヘリウムを補給しながら行う必要があり、頻繁に
行うフィルタ洗浄が煩雑となり、かつ補給用の冷却冷媒
のコストが必要となる問題がある。この問題点を解決す
る実施形態を図4に基づいて以下説明する。
By the way, when the above-mentioned magnetic filter is operated, magnetic particles adhere to the filter and cause clogging. Therefore, a step of backwashing the magnetic filter becomes necessary. When the magnetic field is supplied to the magnetic filter by a normal conducting magnet, the magnetic filter can be washed by cutting off the current supplied from the power source to eliminate the magnetic field.
When the air-core coil is composed of a superconducting magnet as in the above embodiment, the operation of turning off the DC power supply of the coil to eliminate the magnetic field is performed by absorbing the current in the coil cooled to a cryogenic temperature with the resistor in the room temperature part. However, after the filter is washed, it is necessary to again apply a current from the DC power supply into the coil. In this operation, the coil cooled to cryogenic temperature, the resistor in the room temperature part, and the DC power supply are connected by an electric conductor with a large wire diameter, so a large amount of heat enters the coil from the electric conductor and the coil temperature rises. Let Therefore, during this operation, it is necessary to replenish the cooling refrigerant of the coil, for example, liquid helium, which frequently complicates filter cleaning, and the cost of the cooling refrigerant for replenishment is required. An embodiment for solving this problem will be described below with reference to FIG.

【0020】海、湖沼または池等の浄化したい水圏であ
る原水槽1内の原水は、分離物が磁性体であればそのま
ま弁3を介して配管4に流す。しかし、分離物が、アオ
コや赤潮である場合これらは非磁性体であるので、その
ままでは、磁気フィルタによって吸着できない。そこで
これら非磁性体(藻類、らん藻類、細菌類、固形有機
物、浮遊固形物等)である被除去物を含む原水中にマグ
ネタイト等の磁性粉と硫酸バンド、PAC等の凝集剤を
添加、撹拌し、さらに高分子ポリマ−等の薬剤を添加、
撹拌して、原水中に磁性粒子体(フロック)を形成す
る。この場合、磁性粒子体は被除去物の数倍から数十倍
の体積となり、この中に含まれる磁性粉の量は少ない。
したがって、磁気分離部での原水中の磁性粒子体に対す
る流れの抗力は大きく、この抗力に逆らって磁気吸引す
るためには大きな磁場が必要となり、さらに分離効率や
分離速度を上げ、かつ運転コストを低減するためにコイ
ルを超電導で構成する必要がある。
The raw water in the raw water tank 1 which is a hydrosphere desired to be purified, such as the sea, lakes or ponds, is allowed to flow through the valve 4 to the pipe 4 if the separated substance is a magnetic substance. However, when the separated substance is water-bloom or red tide, these are non-magnetic substances and cannot be adsorbed by the magnetic filter as they are. Therefore, magnetic powder such as magnetite and coagulant such as sulfuric acid band and PAC are added to the raw water containing the non-magnetic substance (algae, cyanobacteria, bacteria, solid organic matter, suspended solid matter, etc.) to be removed and stirred. In addition, a drug such as a polymer is added,
Stir to form magnetic particles (flocs) in the raw water. In this case, the volume of the magnetic particles is several times to several tens of times that of the substance to be removed, and the amount of magnetic powder contained therein is small.
Therefore, the drag force of the flow on the magnetic particles in the raw water in the magnetic separation part is large, and a large magnetic field is required to magnetically attract against this drag force, further increasing the separation efficiency and separation speed and reducing the operating cost. In order to reduce it, it is necessary to make the coil superconducting.

【0021】磁性粒子を含んだ原水2は弁3を通じ配管
4、下部ヘッダ5、伸縮配管6を通って固液分離部の円
筒状縦型圧力容器7内に下部より流入する。円筒状縦型
圧力容器7内には、磁性粒子吸着手段として例えば磁性
細線を充填した高勾配磁気フィルタ8とそれを挟むよう
に磁極9を上下に対置している。この磁極9は、超電導
空心磁石21が発生する磁場をさらに広範囲において強
力なものとするために設けられている。すなわち、磁極
9が存在しないと、磁場は磁気フィルタ8の中央部付近
で弱まり、これをさらに強めるには通電電流を増やさざ
るを得ない。これでは、初期電力消費量があがってしま
う。このため、磁極9を設けて磁気フィルタの中央部ま
で強力な磁場が発生するようにしたものである。
Raw water 2 containing magnetic particles passes through a valve 3, a pipe 4, a lower header 5 and a telescopic pipe 6, and flows into the cylindrical vertical pressure vessel 7 of the solid-liquid separation section from below. In the cylindrical vertical pressure vessel 7, a high-gradient magnetic filter 8 filled with magnetic fine wires, for example, as magnetic particle adsorbing means, and magnetic poles 9 are vertically arranged so as to sandwich it. The magnetic pole 9 is provided to make the magnetic field generated by the superconducting air-core magnet 21 stronger in a wider range. That is, when the magnetic pole 9 is not present, the magnetic field weakens in the vicinity of the central portion of the magnetic filter 8 and the current flow must be increased in order to further strengthen the magnetic field. This increases the initial power consumption. Therefore, the magnetic pole 9 is provided so that a strong magnetic field is generated up to the central portion of the magnetic filter.

【0022】円筒状縦型圧力容器7の上部は、伸縮配管
10、上部ヘッダ11に連通し、上部ヘッダ11には配
管12、弁13を通じて処理水槽14が連通し、また、
配管15、弁16を通じて空気タンク17と配管18、
弁19と通じて原水槽1に連通している。
The upper part of the cylindrical vertical pressure vessel 7 communicates with the telescopic pipe 10 and the upper header 11, and the upper header 11 communicates with the treated water tank 14 through the pipe 12 and the valve 13.
Air tank 17 and piping 18 through piping 15 and valve 16,
It communicates with the raw water tank 1 through the valve 19.

【0023】磁場発生装置は、液体ヘリウム槽20内に
設置され電流が流れている超電導空心磁石21と液体ヘ
リウム槽20を真空断熱したクライオスタット23で構
成し、液体ヘリウム槽20は冷凍機34と断熱配管35
で連結され、液体ヘリウム槽20内で蒸発した液体ヘリ
ウム蒸発ガスは速やかに再凝縮され、超電導空心磁石2
1は常時良好に極低温に冷却される。また、前記超電導
磁石を液体ヘリウム等の冷媒を介せず上記した実施形態
のように直接冷凍機で製造する寒冷または冷凍機内部で
製造した低温冷媒で冷却しても良い。また、フィルタ8
を鉄製のヨーク24で囲むことによって、磁力線の通路
とその漏洩の防止をかねている。
The magnetic field generator comprises a superconducting air-core magnet 21 which is installed in the liquid helium tank 20 and through which an electric current flows, and a cryostat 23 which vacuum-insulates the liquid helium tank 20, and the liquid helium tank 20 is insulated from the refrigerator 34. Piping 35
, The liquid helium vaporized gas that has been vaporized in the liquid helium tank 20 is quickly recondensed, and the superconducting air-core magnet 2
1 is always satisfactorily cooled to a very low temperature. Further, the superconducting magnet may be cooled directly by a refrigerator as in the above-described embodiment without using a refrigerant such as liquid helium, or by a low-temperature refrigerant produced inside the refrigerator. In addition, the filter 8
By surrounding the iron yoke 24 with the iron yoke 24, the passage of the magnetic force line and its leakage are also prevented.

【0024】超電導空心磁石21による均一な磁場内に
設置したフィルタ8内の曲率半径の極めて小さな部分を
持つ磁性細線には、その細線表面近傍で局部的な磁場の
疎密ができ大きな磁気勾配が発生する。
In the magnetic fine wire having a very small radius of curvature in the filter 8 installed in the uniform magnetic field by the superconducting air-core magnet 21, a local magnetic field density is generated near the surface of the fine wire, and a large magnetic gradient is generated. To do.

【0025】円筒状縦型圧力容器7はロッド25に固定
され上下駆動装置26で、円筒状縦型圧力容器7は上下
に移動することができる。高勾配磁気フィルタの運転操
作は次のように行われる。電流を流した超電導空心磁石
21により、磁場が、円筒状縦型圧力容器7内に発生
し、磁場は磁極9によって均一化される。均一化された
磁場によって、フィルタ8の磁性細線充填物が磁化され
る。磁場は、磁化された磁性細線充填物のために乱れを
生じ、局部的に磁束の疎密ができ、高磁場勾配となる部
分が多数発生する。磁性粒子を含んだ原水2を弁3、配
管4、下部ヘッダ5、伸縮配管6を通じて下方から上向
流で円筒状縦型圧力容器7に送水すると、原水中の磁性
粒子は充填物の磁性細線表面に、大きな磁力で捕捉さ
れ、浄化された原水は伸縮配管10、上部ヘッダ11、
配管12、弁13を通じて処理水槽14に送水される。
The cylindrical vertical pressure vessel 7 is fixed to the rod 25 and can be moved up and down by a vertical drive device 26. The operation of the high gradient magnetic filter is performed as follows. A magnetic field is generated in the cylindrical vertical pressure vessel 7 by the superconducting air-core magnet 21 to which an electric current is applied, and the magnetic field is made uniform by the magnetic pole 9. The uniform magnetic field magnetizes the magnetic wire filler of the filter 8. The magnetic field is disturbed due to the magnetized magnetic wire filling material, and the magnetic flux is locally concentrated and dense, and a large number of portions having a high magnetic field gradient are generated. When the raw water 2 containing magnetic particles is fed from the lower side to the cylindrical vertical pressure vessel 7 through the valve 3, the pipe 4, the lower header 5 and the expansion and contraction pipe 6 from below, the magnetic particles in the raw water are filled with the magnetic fine wire. The raw water that is captured and purified with a large magnetic force on the surface is the expansion pipe 10, the upper header 11,
Water is sent to the treated water tank 14 through the pipe 12 and the valve 13.

【0026】磁性粒子が一定量捕捉されれた後、磁気分
離の性能を回復させるために逆先を行う必要がある。本
実施形態では、図5に示すように、弁3、弁13を閉
じ、弁27を開いて円筒状縦型圧力容器7内を逆洗槽2
8に連通させる。本図では、原水槽に溜っていた原水2
を全て処理してその一部を再び原水槽内に洗浄水として
蓄えるものとしているが、原水槽がなく直接湖沼などか
ら取水する場合、洗浄水を溜める容器が別途必要であ
る。ロッド25に固定した円筒状縦型圧力容器7を上下
駆動装置26で下方に動かし、円筒状縦型圧力容器7を
超電導空心磁石21の磁場外に移動し磁場を小さくす
る。このとき、超電導空心磁石21は磁場を発生し続け
ておりその漏れ磁束が磁気フィルタ8に及ぶことが懸念
されるが磁極9の上部側が磁路を形成しその影響を少な
くしている。そして、弁19及び弁16を開きフィルタ
上部から原水の洗浄処理水と空気タンク17の空気によ
り、エヤーバブリングを行いながら、磁性細線表面に付
着した磁性粒子を洗浄除去し処理水を逆洗槽28に送水
する。
After a certain amount of magnetic particles are trapped, it is necessary to perform the reverse operation to restore the magnetic separation performance. In this embodiment, as shown in FIG. 5, the valve 3 and the valve 13 are closed, and the valve 27 is opened to open the inside of the cylindrical vertical pressure vessel 7 in the backwash tank 2
Connect to 8. In this figure, the raw water stored in the raw water tank 2
All of the water is treated and part of it is stored again in the raw water tank as wash water, but if there is no raw water tank and water is taken directly from lakes or marshes, a separate container for the wash water is required. The vertical cylindrical pressure vessel 7 fixed to the rod 25 is moved downward by the vertical drive device 26, and the vertical cylindrical pressure vessel 7 is moved outside the magnetic field of the superconducting air-core magnet 21 to reduce the magnetic field. At this time, the superconducting air-core magnet 21 continues to generate a magnetic field, and it is feared that the leakage magnetic flux may reach the magnetic filter 8, but the upper side of the magnetic pole 9 forms a magnetic path to reduce the influence. Then, the valves 19 and 16 are opened to wash and remove the magnetic particles adhering to the surface of the magnetic fine wires while performing air bubbling from the upper part of the filter with the wash treated water of the raw water and the air in the air tank 17 to backwash the treated water. Send to.

【0027】磁気分離動作時の水の流れを上向流とした
理由は、洗浄用水を磁気分離機の上部に貯水するように
すれば、洗浄する際に洗浄水は重力により磁気フィルタ
部に流れるので新たに動力源を必要としないためであ
る。
The reason why the flow of water during the magnetic separation operation is the upward flow is that if the cleaning water is stored in the upper part of the magnetic separator, the cleaning water flows to the magnetic filter portion due to gravity during cleaning. Because it does not require a new power source.

【0028】また、逆洗時に磁気フィルタ8を超電導空
心磁石21よりも下側に移動させる理由は、上側に移動
させて逆洗を施すと磁気フィルタ8から剥がれ落ちた磁
性粒子が再び磁場内で捕捉されることを防止するためで
ある。
Further, the reason why the magnetic filter 8 is moved below the superconducting air-core magnet 21 during backwashing is that the magnetic particles peeled off from the magnetic filter 8 when moved back up and backwashed in the magnetic field again. This is to prevent being captured.

【0029】逆洗後、図4に示すようにロッド25に固
定した円筒状縦型圧力容器7を上下駆動装置26で上方
に動かし、円筒状縦型圧力容器7を超電導空心磁石21
の磁場内に再度移動し磁場をかける。そして、弁16、
弁19、弁27を閉じ、弁3、弁13を開いて円筒状縦
型圧力容器7内に原水2を送水する。
After backwashing, as shown in FIG. 4, the vertical cylindrical pressure vessel 7 fixed to the rod 25 is moved upward by the vertical drive device 26 to move the vertical cylindrical pressure vessel 7 into the superconducting air-core magnet 21.
Move again into the magnetic field of and apply the magnetic field. And valve 16,
The valves 19 and 27 are closed, and the valves 3 and 13 are opened to feed the raw water 2 into the cylindrical vertical pressure vessel 7.

【0030】本実施例によれば、空心コイル等の電磁石
を良好に冷凍機で冷却された超電導磁石で構成すること
ができるので、超電導磁石への冷媒の補給が不要とな
り、また磁石の電気抵抗がゼロとなるのでコイルからの
発熱量がほぼゼロとなり、通電および冷却運転コストが
大幅に低減できる。このため、通電および冷却運転電流
が大きく確保できない車上や船上や飛行物体や水陸両用
車等の移動体に装置を設置することができる。とくに、
船上(専用船でもよい)に配置すれば、アオコや赤潮が
多く発生している水域に移動可能であるので、早く対策
を講じることが可能となる。
According to this embodiment, since the electromagnet such as the air-core coil can be composed of the superconducting magnet which is cooled by the refrigerator, it is not necessary to supply the refrigerant to the superconducting magnet, and the electric resistance of the magnet is reduced. Is zero, the amount of heat generated from the coil is almost zero, and the energization and cooling operation costs can be greatly reduced. For this reason, the device can be installed on a vehicle, a ship, a flying object, an amphibious vehicle, or other moving body where a large amount of energization and cooling operation current cannot be secured. Especially,
By arranging it on board (it may be a dedicated ship), it is possible to move to the water area where a lot of water-bloom and red tide occur, so it is possible to take measures quickly.

【0031】一方、磁石の電流を切らずにフィルタを洗
浄できるので、磁石の冷却冷媒を再度補給する必要もな
く、洗浄作業を容易に行うことができる。
On the other hand, since the filter can be cleaned without turning off the magnet current, it is not necessary to resupply the cooling medium for the magnet, and the cleaning operation can be easily performed.

【0032】また、一般の固液分離用の磁場発生装置を
含む磁場発生装置では、液体ヘリウム槽20内に設置さ
れ永久電流を流している超電導空心磁石21と液体ヘリ
ウム槽20を真空断熱したクライオスタット23で構成
し、液体ヘリウム槽20は冷凍機34と断熱配管35で
連結され、液体ヘリウム槽20内で蒸発した液体ヘリウ
ム蒸発ガスを速やかに再凝縮して超電導空心磁石21を
常時良好に極低温に冷却する場合について述べたが、上
記のように冷凍機で冷却してもよい。
In addition, in a magnetic field generator including a general magnetic field generator for solid-liquid separation, a cryostat in which the superconducting air-core magnet 21 and the liquid helium tank 20 which are installed in the liquid helium tank 20 and which flow a permanent current are thermally insulated. 23, the liquid helium tank 20 is connected to the refrigerator 34 by the heat insulation pipe 35, and the liquid helium vaporized gas that has evaporated in the liquid helium tank 20 is quickly recondensed so that the superconducting air-core magnet 21 is always kept at an extremely low temperature. Although the case of cooling is described above, it may be cooled by the refrigerator as described above.

【0033】上記実施形態では伸縮配管10を利用して
磁気フィルタの移動を行っていたが、配管の耐久性が問
題になる。この点を解決した実施形態を図6を用いて説
明する。上記実施形態と異なる点は、伸縮配管10に代
えて、縦方向に長い円筒状縦型圧力容器29を設置し、
高勾配磁気フィルタ8とそれを挟む磁極9を円筒容器3
0で連結しこれらをロッド25に固定した点で相違す
る。ロッド25はOリング31で円筒状縦型圧力容器7
内外を気密状態にして上下移動できる。本図はロッド2
5に固定した高勾配磁気フィルタ8とそれを挟む磁極9
を上下駆動装置26で円筒状縦型圧力容器29の下方に
動かし、高勾配磁気フィルタ8とそれを挟む磁極9を超
電導空心磁石21の磁場外に移動しフィルタ内の磁場を
小さくする。そして、弁3、弁13を閉じ、弁27を開
いて円筒状縦型圧力容器7内を逆洗槽28に連通させ
る。弁19、弁16を開きフィルタ上部から原水の洗浄
処理水と空気タンク17の空気により、エヤーバブリン
グを行いながら磁性細線表面に付着した磁性粒子を洗浄
除去し処理水を逆洗槽28に送水する。
In the above embodiment, the expansion / contraction pipe 10 is used to move the magnetic filter, but the durability of the pipe becomes a problem. An embodiment that solves this point will be described with reference to FIG. The difference from the above embodiment is that instead of the expansion pipe 10, a cylindrical vertical pressure vessel 29 that is long in the vertical direction is installed.
The high-gradient magnetic filter 8 and the magnetic poles 9 that sandwich the high-gradient magnetic filter 8 are provided in
The difference is that they are connected with 0 and are fixed to the rod 25. The rod 25 is an O-ring 31 and is a cylindrical vertical pressure vessel 7.
The inside and outside can be moved up and down in an airtight state. This figure shows rod 2
High gradient magnetic filter 8 fixed to 5 and magnetic poles 9 sandwiching it
Is moved below the cylindrical vertical pressure vessel 29 by the up-and-down drive device 26, and the high gradient magnetic filter 8 and the magnetic poles 9 sandwiching it are moved outside the magnetic field of the superconducting air-core magnet 21 to reduce the magnetic field in the filter. Then, the valves 3 and 13 are closed, and the valve 27 is opened to connect the inside of the cylindrical vertical pressure vessel 7 to the backwash tank 28. The valves 19 and 16 are opened to wash and remove the magnetic particles adhering to the surface of the magnetic fine wires from the upper part of the filter by washing treated water with the raw water and the air in the air tank 17, and feed the treated water to the backwash tank 28. .

【0034】逆洗後、ロッド25に固定した高勾配磁気
フィルタ8とそれを挟む磁極9を上下駆動装置26で上
方に動かし、高勾配磁気フィルタ8とそれを挟む磁極9
を超電導空心磁石21の磁場内に再度移動し磁場をかけ
る。そして、弁16、弁19、弁27を閉じ、弁3、弁
13を開いて円筒状縦型圧力容器7内に原水2を送水す
る。
After backwashing, the high gradient magnetic filter 8 fixed to the rod 25 and the magnetic pole 9 sandwiching it are moved upward by the vertical drive device 26, and the high gradient magnetic filter 8 and the magnetic pole 9 sandwiching it.
Is again moved into the magnetic field of the superconducting air-core magnet 21 to apply the magnetic field. Then, the valves 16, 19, and 27 are closed, and the valves 3 and 13 are opened to feed the raw water 2 into the cylindrical vertical pressure vessel 7.

【0035】本実施形態においても、電磁石の電流を切
らずにフィルタを洗浄できるので、磁石の冷却冷媒を補
給する必要もなく洗浄作業を容易に行うことができるこ
とはもちろん、口径の大きな伸縮配管を使用しないので
伸縮部の疲労破壊も無く運転の信頼性が向上する効果が
ある。
Also in this embodiment, since the filter can be washed without turning off the electric current of the electromagnet, the washing work can be easily performed without the need to replenish the cooling medium for the magnet, and the expansion pipe having a large diameter can be used. Since it is not used, there is no fatigue failure of the expansion and contraction part, and the operation reliability is improved.

【0036】上記実施形態では、逆洗時の磁気フィルタ
内を防磁するため上部磁極9を利用していたが、さらに
防磁の必要がある場合について、図7を用いて説明す
る。本図が図7に示した実施形態と異なる点は、高勾配
磁気フィルタ8とそれを挟む磁極9の上部の磁極9の上
にさらにもう一重の磁極32を設け、高勾配磁気フィル
タ8とそれを挟む磁極9と磁極31を円筒容器33で連
結しこれらをロッド25に固定することである。本図は
ロッド25に固定した高勾配磁気フィルタ8とそれを挟
む磁極9、磁極32を上下駆動装置26で円筒状縦型圧
力容器29の下方に動かし、高勾配磁気フィルタ8とそ
れを挟む磁極9を超電導空心磁石21の磁場外に移動
し、磁極32を鉄製のヨーク24の下部と同じ位置に移
動しフィルタ内の磁場を小さくする。ここで、磁極31
は超電導磁石21の漏れ磁場を吸収するので、フィルタ
内の磁場を更に小さくできる。このため、本実施形態に
よれば、さらに多くの磁性細線表面に付着した磁性粒子
を洗浄除去できる効果がある。
In the above embodiment, the upper magnetic pole 9 is used to shield the inside of the magnetic filter during backwashing, but a case where further magnetic shielding is required will be described with reference to FIG. The difference between the present embodiment and the embodiment shown in FIG. 7 is that the high gradient magnetic filter 8 and the magnetic pole 9 above the magnetic pole 9 sandwiching the high gradient magnetic filter 8 are further provided with a single magnetic pole 32, and That is, the magnetic pole 9 and the magnetic pole 31 sandwiching the above are connected by a cylindrical container 33 and fixed to the rod 25. In this figure, the high gradient magnetic filter 8 fixed to the rod 25 and the magnetic poles 9 and 32 sandwiching the high gradient magnetic filter 8 are moved below the cylindrical vertical pressure vessel 29 by the vertical drive device 26, and the high gradient magnetic filter 8 and the magnetic poles sandwiching it. 9 is moved out of the magnetic field of the superconducting air-core magnet 21, and the magnetic pole 32 is moved to the same position as the lower part of the iron yoke 24 to reduce the magnetic field in the filter. Here, the magnetic pole 31
Absorbs the leakage magnetic field of the superconducting magnet 21, so that the magnetic field in the filter can be further reduced. Therefore, according to this embodiment, there is an effect that more magnetic particles attached to the surface of the magnetic nanowire can be removed by washing.

【0037】また、以上説明した実施形態では空心コイ
ルの電磁石を使用した磁気分離装置について述べたが、
電磁石が鞍形コイル等の電磁石や複数の空心コイルを組
み合わせた電磁石、形式の異なったコイルを組み合わせ
た電磁石を使用した場合についても同様な効果を生じ
る。
In the above-described embodiment, the magnetic separation device using the electromagnet of the air-core coil is described.
Similar effects are obtained when the electromagnet is an electromagnet such as a saddle coil, an electromagnet combining a plurality of air-core coils, or an electromagnet combining different types of coils.

【0038】また、以上の実施形態では空心コイルの電
磁石と高勾配磁気フィルタを使用した磁気分離装置につ
いて述べたが、電磁石単体または複数の電磁石の組合せ
によって生じる電磁石周りの磁気勾配を利用し、高勾配
磁気フィルタを使用せずに原水中の磁性粒子または磁性
粒子体を分離、分別する磁性粒子吸着手段を有した磁気
分離装置の場合についても、電磁石を超電導磁石で構成
し冷凍機で電磁石を直接冷却することで、分離、分別効
率の向上および運転コストの低減、装置の小型、軽量
化、移動体への装置の搭載が可能となる等の同様な効果
を生じる。この場合の分離物の分離部からの除去は、電
磁石の電源を一旦オフしてから逆洗して洗浄する。
In the above embodiment, the magnetic separation device using the electromagnet of the air-core coil and the high gradient magnetic filter is described, but the magnetic gradient around the electromagnet generated by the electromagnet alone or a combination of a plurality of electromagnets is used to obtain a high magnetic field. Even in the case of a magnetic separator having a magnetic particle adsorption means for separating and separating magnetic particles or magnetic particles in raw water without using a gradient magnetic filter, the electromagnet is composed of a superconducting magnet and the electromagnet is directly connected to the refrigerator. Cooling brings about similar effects such as separation, improvement of separation efficiency and reduction of operation cost, reduction in size and weight of the device, and mounting of the device on a moving body. In this case, the separated matter is removed from the separation section by once turning off the power source of the electromagnet and then backwashing.

【0039】[0039]

【発明の効果】本発明によれば、空心コイルを良好に冷
凍機で冷却された超電導磁石で構成することができるの
で冷媒の補給が不要となる。また、磁石の電気抵抗がゼ
ロとなるのでコイルからの発熱量がほぼゼロとなり、通
電および冷却運転コストが大幅に低減できる。このた
め、通電および冷却運転電流が大きく確保できない車上
や船上に装置を設置することができる。また、磁石の電
流を切らずにフィルタを洗浄できるので、洗浄作業を容
易に行うことができる。
According to the present invention, since the air-core coil can be composed of the superconducting magnet cooled well by the refrigerator, it is not necessary to replenish the refrigerant. Further, since the electric resistance of the magnet becomes zero, the amount of heat generated from the coil becomes almost zero, and the energization and cooling operation costs can be greatly reduced. Therefore, the device can be installed on the vehicle or on the ship where the energization and cooling operation current cannot be secured large. Further, since the filter can be cleaned without turning off the current of the magnet, the cleaning work can be easily performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】冷凍機を搭載した超電導磁気分離装置の一実施
形態を示す図。
FIG. 1 is a diagram showing an embodiment of a superconducting magnetic separation device equipped with a refrigerator.

【図2】冷凍機を搭載した超電導磁気分離装置の他の実
施形態を示す図。
FIG. 2 is a diagram showing another embodiment of a superconducting magnetic separation device equipped with a refrigerator.

【図3】冷凍機を搭載した超電導磁気分離装置の他の実
施形態を示す図。
FIG. 3 is a diagram showing another embodiment of a superconducting magnetic separation device equipped with a refrigerator.

【図4】超電導磁気分離装置における磁気分離動作時の
説明図である。
FIG. 4 is an explanatory diagram during magnetic separation operation in the superconducting magnetic separation device.

【図5】図4に示す超電導磁気分離装置の逆先時の説明
図である。
5 is an explanatory view of the superconducting magnetic separation device shown in FIG.

【図6】逆先時における磁場の影響をなくす他の実施形
態を示す図。
FIG. 6 is a diagram showing another embodiment for eliminating the influence of the magnetic field at the time of reverse.

【図7】逆先時における磁場の影響をなくす他の実施形
態を示す図。
FIG. 7 is a diagram showing another embodiment for eliminating the influence of the magnetic field at the time of reverse.

【符号の説明】[Explanation of symbols]

6、10…伸縮配管、7…円筒状縦型圧力容器、8…高
勾配磁気フィルタ、9、32…磁極、21…超電導空心
磁石、25…ロッド、26…上下駆動装置、34、3
8、42、50…冷凍機。
6, 10 ... Telescopic piping, 7 ... Cylindrical vertical pressure vessel, 8 ... High gradient magnetic filter, 9, 32 ... Magnetic pole, 21 ... Superconducting air core magnet, 25 ... Rod, 26 ... Vertical drive device, 34, 3
8, 42, 50 ... Refrigerator.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】電磁石と、その磁場内に配置され流入する
原水中の磁性粒子を吸着する磁性粒子吸着手段を備えた
磁気分離装置において、前記電磁石を超電導電磁石とし
た磁気分離装置。
1. A magnetic separation device comprising an electromagnet and a magnetic particle adsorbing means for adsorbing magnetic particles in raw water which is disposed in the magnetic field of the electromagnet, wherein the electromagnet is a superconducting electromagnet.
【請求項2】電磁石と、その磁場内に配置され流入する
原水中の磁性粒子を吸着する磁性粒子吸着手段を備えた
磁気分離装置において、前記電磁石を超電導電磁石と
し、この超電導電磁石を冷却する冷凍機を備えた磁気分
離装置。
2. A magnetic separation device comprising an electromagnet and a magnetic particle adsorbing means for adsorbing magnetic particles in raw water which is disposed in the magnetic field of the electromagnet, and the electromagnet is a superconducting electromagnet, and the refrigerating device cools the superconducting electromagnet. Separator equipped with a machine.
【請求項3】電磁石と、その磁場内に配置され流入する
原水中の磁性粒子を吸着する磁性粒子吸着手段を備えた
磁気分離装置において、前記電磁石を超電導電磁石と
し、前記磁性粒子吸着手段のフィルタ能力回復のための
逆洗時、前記超電導電磁石の励磁電流を切らずに逆洗を
行うようにした磁気分離装置。
3. A magnetic separation device equipped with an electromagnet and a magnetic particle adsorbing means for adsorbing magnetic particles in raw water which is disposed in the magnetic field of the electromagnet, wherein the electromagnet is a superconducting electromagnet, and a filter for the magnetic particle adsorbing means. A magnetic separation device adapted to perform backwashing without turning off the exciting current of the superconducting electromagnet during backwashing for recovering the ability.
【請求項4】電磁石と、その磁場内に配置され流入する
原水中の磁性粒子を吸着する磁性粒子吸着手段を備えた
磁気分離装置において、前記電磁石を超電導電磁石と
し、前記磁性粒子吸着手段のフィルタ能力回復のための
逆洗時、超電導電磁石により発生する磁場の小さい箇所
に移動する移動手段を備えた磁気分離装置。
4. A magnetic separation device comprising an electromagnet and a magnetic particle adsorbing means for adsorbing magnetic particles in raw water which is disposed in the magnetic field of the electromagnet, wherein the electromagnet is a superconducting electromagnet, and a filter for the magnetic particle adsorbing means. A magnetic separation device equipped with a moving unit that moves to a location where the magnetic field generated by the superconducting electromagnet is small during backwashing to recover the capacity.
【請求項5】電磁石と、その磁場内に配置され流入する
原水中の磁性粒子を吸着する磁性粒子吸着手段を備えた
磁気分離装置において、前記電磁石を超電導電磁石と
し、前記磁性粒子吸着手段とそれを挟むように上下に対
置した磁極と、前記磁性粒子吸着手段のフィルタ能力回
復のための逆洗時、超電導電磁石により発生する磁場の
小さい箇所に移動する移動手段とを備えた磁気分離装
置。
5. A magnetic separation device comprising an electromagnet and a magnetic particle adsorbing means for adsorbing magnetic particles in raw water which is disposed in a magnetic field of the electromagnet, wherein the electromagnet is a superconducting electromagnet, and the magnetic particle adsorbing means and the magnetic particle adsorbing means. A magnetic separation device having magnetic poles which are vertically opposed to each other so as to sandwich the magnetic particle, and a moving means which moves to a location where the magnetic field generated by the superconducting electromagnet is small during backwashing for recovering the filter ability of the magnetic particle adsorbing means.
【請求項6】電磁石と、その磁場内に配置され流入する
原水中の磁性粒子を吸着する磁性粒子吸着手段を備えた
磁気分離装置において、前記電磁石を超電導電磁石と
し、前記磁性粒子吸着手段を挟むように上下に対置した
磁極と、前記磁性粒子吸着手段のフィルタ能力回復のた
めの逆洗時、前記磁性粒子吸着手段を前記上側に配置さ
れた磁極が超電導電磁石より下に位置するように前記磁
性粒子吸着手段を移動する移動手段とを備えた磁気分離
装置。
6. A magnetic separation device comprising an electromagnet and a magnetic particle adsorbing means for adsorbing magnetic particles in raw water which is placed in the magnetic field of the electromagnet, wherein the electromagnet is a superconducting electromagnet, and the magnetic particle adsorbing means is sandwiched. As described above, when the magnetic poles that are vertically opposed to each other are backwashed to recover the filter performance of the magnetic particle adsorption means, the magnetic particles that are disposed above the magnetic particle adsorption means are positioned below the superconducting electromagnet. A magnetic separation device comprising: a moving unit that moves the particle adsorption unit.
【請求項7】電磁石と、その磁場内に配置され流入する
原水中の磁性粒子を吸着する磁性粒子吸着手段を備えた
磁気分離装置において、前記電磁石を超電導電磁石と
し、この超電導電磁石を囲うヨークと、前記磁性粒子吸
着手段を挟むように上に2つ下に1つ対置した磁極と、
前記磁性粒子吸着手段のフィルタ能力回復のための逆洗
時、前記磁性粒子吸着手段を前記最も上側に配置された
磁極が前記ヨーク下部と共に磁路を形成する位置に前記
磁性粒子吸着手段を移動する移動手段とを備えた磁気分
離装置。
7. A magnetic separation device comprising an electromagnet and a magnetic particle adsorbing means for adsorbing magnetic particles in raw water which is disposed in the magnetic field of the electromagnet, wherein the electromagnet is a superconducting electromagnet, and a yoke surrounding the superconducting electromagnet. A pair of magnetic poles arranged one above the other, sandwiching the magnetic particle adsorption means, one pair below and one pair below.
During backwashing for recovering the filter performance of the magnetic particle adsorbing means, the magnetic particle adsorbing means is moved to a position where the magnetic pole arranged at the uppermost side forms a magnetic path with the lower part of the yoke. A magnetic separation device having a moving means.
【請求項8】電磁石と、その磁場内に配置され流入する
原水中の磁性粒子を吸着する磁性粒子吸着手段を備えた
磁気分離装置において、前記電磁石を超電導電磁石と
し、この超電導電磁石を冷却する冷凍機を備え、車両、
船舶、水陸両用車、飛行物体等の移動体上に配置した磁
気分離装置。
8. A magnetic separation device comprising an electromagnet and a magnetic particle adsorbing means for adsorbing magnetic particles in raw water which is disposed in a magnetic field of the electromagnet, wherein the electromagnet is a superconducting electromagnet, and a refrigerating device for cooling the superconducting electromagnet is used. Equipped with a vehicle,
A magnetic separation device placed on a moving body such as a ship, amphibious vehicle, or flying object.
JP7298079A 1994-11-16 1995-11-16 Magnetic separator Pending JPH08206420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7298079A JPH08206420A (en) 1994-11-16 1995-11-16 Magnetic separator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28165794 1994-11-16
JP6-281657 1994-11-16
JP7298079A JPH08206420A (en) 1994-11-16 1995-11-16 Magnetic separator

Publications (1)

Publication Number Publication Date
JPH08206420A true JPH08206420A (en) 1996-08-13

Family

ID=26554270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7298079A Pending JPH08206420A (en) 1994-11-16 1995-11-16 Magnetic separator

Country Status (1)

Country Link
JP (1) JPH08206420A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2346099A (en) * 1998-11-25 2000-08-02 Cryogenic Ltd Intermediate temperature superconducting magnetic separator
CN102527507A (en) * 2012-02-28 2012-07-04 无锡泰全环保机械有限公司 Magnet arrangement structure of magnetic separator
WO2013025643A2 (en) * 2011-08-12 2013-02-21 Mcalister Technologies, Llc Dynamic filtration system and associated methods
CN103418490A (en) * 2012-05-22 2013-12-04 四川环能德美科技股份有限公司 Ring wheel horizontal magnetic field permanent magnetism high-gradient magnetic separator
WO2015060265A1 (en) * 2013-10-21 2015-04-30 株式会社日進製作所 Magnetic filter device, liquid washing system and liquid washing method
CN105057094A (en) * 2015-07-15 2015-11-18 安徽理工大学 High-gradient permanent magnetic separator of continuous dynamic magnetic pole vibrating bed
US9409126B2 (en) 2009-02-17 2016-08-09 Mcalister Technologies, Llc Apparatuses and methods for storing and/or filtering a substance
US9511663B2 (en) 2013-05-29 2016-12-06 Mcalister Technologies, Llc Methods for fuel tank recycling and net hydrogen fuel and carbon goods production along with associated apparatus and systems
US9534296B2 (en) 2013-03-15 2017-01-03 Mcalister Technologies, Llc Methods of manufacture of engineered materials and devices
CN107755088A (en) * 2017-12-05 2018-03-06 赣州金环磁选设备有限公司 Double uniform cloth charge bar medium dry powder high gradient magnetic separator
CN109772580A (en) * 2019-03-20 2019-05-21 江苏旌凯中科超导高技术有限公司 It is able to achieve the superconducting magnetic separator parallel connection sorting mechanism of water distribution uniformity
WO2022047833A1 (en) * 2020-09-04 2022-03-10 长沙理工大学 Intelligent durable buried drainage pipe and separation conveying method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2346099A (en) * 1998-11-25 2000-08-02 Cryogenic Ltd Intermediate temperature superconducting magnetic separator
GB2346099B (en) * 1998-11-25 2003-02-12 Cryogenic Ltd Intermediate temperature superconducting magnetic separator
US9409126B2 (en) 2009-02-17 2016-08-09 Mcalister Technologies, Llc Apparatuses and methods for storing and/or filtering a substance
WO2013025643A3 (en) * 2011-08-12 2013-04-25 Mcalister Technologies, Llc Dynamic filtration system and associated methods
US8617399B2 (en) 2011-08-12 2013-12-31 Mcalister Technologies, Llc Dynamic filtration system and associated methods
WO2013025643A2 (en) * 2011-08-12 2013-02-21 Mcalister Technologies, Llc Dynamic filtration system and associated methods
US9327226B2 (en) 2011-08-12 2016-05-03 Mcalister Technologies, Llc Dynamic filtration system and associated methods
CN102527507A (en) * 2012-02-28 2012-07-04 无锡泰全环保机械有限公司 Magnet arrangement structure of magnetic separator
CN102527507B (en) * 2012-02-28 2016-05-11 无锡泰全环保机械有限公司 The magnet arrangement structure of magnetic separator
CN103418490A (en) * 2012-05-22 2013-12-04 四川环能德美科技股份有限公司 Ring wheel horizontal magnetic field permanent magnetism high-gradient magnetic separator
US9534296B2 (en) 2013-03-15 2017-01-03 Mcalister Technologies, Llc Methods of manufacture of engineered materials and devices
US9511663B2 (en) 2013-05-29 2016-12-06 Mcalister Technologies, Llc Methods for fuel tank recycling and net hydrogen fuel and carbon goods production along with associated apparatus and systems
CN105658298A (en) * 2013-10-21 2016-06-08 株式会社日进制作所 Magnetic filter device, liquid washing system and liquid washing method
WO2015060265A1 (en) * 2013-10-21 2015-04-30 株式会社日進製作所 Magnetic filter device, liquid washing system and liquid washing method
CN105658298B (en) * 2013-10-21 2017-06-16 株式会社日进制作所 Magnetic filter device, liquid rinse system and liquid rinse method
CN105057094A (en) * 2015-07-15 2015-11-18 安徽理工大学 High-gradient permanent magnetic separator of continuous dynamic magnetic pole vibrating bed
CN107755088A (en) * 2017-12-05 2018-03-06 赣州金环磁选设备有限公司 Double uniform cloth charge bar medium dry powder high gradient magnetic separator
CN109772580A (en) * 2019-03-20 2019-05-21 江苏旌凯中科超导高技术有限公司 It is able to achieve the superconducting magnetic separator parallel connection sorting mechanism of water distribution uniformity
WO2022047833A1 (en) * 2020-09-04 2022-03-10 长沙理工大学 Intelligent durable buried drainage pipe and separation conveying method

Similar Documents

Publication Publication Date Title
US5932096A (en) Magnetic purifying apparatus for purifying a fluid
JPH08206420A (en) Magnetic separator
US20080236171A1 (en) Magnetic refrigerating device and magnetic refrigerating method
US4110222A (en) Apparatus for separating magnetizable particles from a fluid
EP0856359B1 (en) Apparatus for magnetic purification
JP5077821B2 (en) Magnetic separation device
JP5172817B2 (en) Magnetic field generator for physical treatment of water
US5743410A (en) Supraconducting magnetic separator
JP3374658B2 (en) Superconducting magnetic separation device
JP2002119888A (en) Purifying device and device for magnetizing superconductive bulk body
JPH10192619A (en) Purifying device
JP3314350B2 (en) Purification device
JP3463254B2 (en) Magnetic separation device
JP5846536B2 (en) Magnetic precipitation magnetic separation apparatus and magnetic separation method
JPH11244625A (en) Purifying apparatus
JPH08131731A (en) Magnetic separating device
JPH0975630A (en) Magnetic separator and magnetic separation method
JP4288555B2 (en) Separation and purification device using magnetic material
JP3580117B2 (en) Magnetic separation device
CN114001507B (en) Method and device for quickly precooling magnetic fluid
JPH08131730A (en) Magnetic separating device
JPS63264155A (en) Liquid oxygen separator
JP3788007B2 (en) Purification device
JPH11226320A (en) Magnetic separation apparatus
JPH1028823A (en) Magnetic separator