JPH08198601A - Decomposing method for water using titanium oxide or derivative thereof having laminar structure as photocatalyst - Google Patents

Decomposing method for water using titanium oxide or derivative thereof having laminar structure as photocatalyst

Info

Publication number
JPH08198601A
JPH08198601A JP6083986A JP8398694A JPH08198601A JP H08198601 A JPH08198601 A JP H08198601A JP 6083986 A JP6083986 A JP 6083986A JP 8398694 A JP8398694 A JP 8398694A JP H08198601 A JPH08198601 A JP H08198601A
Authority
JP
Japan
Prior art keywords
water
titanium oxide
oxygen
light
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6083986A
Other languages
Japanese (ja)
Other versions
JP2681030B2 (en
Inventor
Takayoshi Sasaki
高義 佐々木
Jun Watanabe
遵 渡辺
Yoshinori Fujiki
良規 藤木
Kazunari Doumen
一成 堂免
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP6083986A priority Critical patent/JP2681030B2/en
Publication of JPH08198601A publication Critical patent/JPH08198601A/en
Application granted granted Critical
Publication of JP2681030B2 publication Critical patent/JP2681030B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

PURPOSE: To efficiently obtain hydrogen and/or oxygen by dispersing titanium oxide of a specified compsn. having a laminar structure as a catalyst in water, inorg. salt soln. or mixture of water and org. solvent and irradiating the soln. with light of specified wavelength. CONSTITUTION: A crystal or powder of titanium oxide having a laminar structure expressed by formula I (A is Na, K, Rb, or Cs, (n) is 2, 3, 4, 5 and (m) is 0 to 4) is dispersed as a catalyst in water, inorg. salt soln. or mixture of water and org. solvent. Then the soln. is irradiated with light of <=800nm wavelength to obtain hydrogen or oxygen or both. As for examples of the titanium oxide expressed by formula I, K2 Ti2 O5 , Na2 Ti3 O7 , K2 Ti4 O9 , or scale iron-ore type titanate expressed by formula II ((x) is 0.65 to 0.75 and formula III represents a vacancy). These compds. can be synthesized by mixing titanium dioxide and alkali metal oxides in the stoichiometric ratio and calcining at >=800 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は層状構造を有するチタン
酸化物及びその誘導体を光触媒とする水の分解方法に関
し、製造される水素ガス、酸素ガスはクリーンエネルギ
ー原料として多岐の分野に利用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for decomposing water using a titanium oxide having a layered structure and a derivative thereof as a photocatalyst, and hydrogen gas and oxygen gas produced can be used in various fields as raw materials for clean energy.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来よ
り、二酸化チタン等の表面反応型の触媒は光エネルギー
を吸収して活性を示すことが知られている。
2. Description of the Related Art It has been conventionally known that a surface-reactive catalyst such as titanium dioxide absorbs light energy and exhibits activity.

【0003】これら対して、本発明者らは、これまで
に、ニオブやチタンをベースとした層状化合物の光触媒
活性を調べ、特にニオブをベースとした層状ペロブスカ
イト型複合酸化物粉末が非常に高い活性を示し、更に、
可視光応答性を持つものもあることを報告してきた。
On the other hand, the present inventors have investigated the photocatalytic activity of layered compounds based on niobium or titanium, and found that layered perovskite type complex oxide powders based on niobium had a very high activity. And further,
It has been reported that some have visible light responsiveness.

【0004】本発明は、前記調査結果を更に進めて、各
種のTi系層状化合物の光触媒活性を利用して水を分解
する方法を提供することを目的とするものである。
An object of the present invention is to further advance the above-mentioned investigation results and to provide a method for decomposing water by utilizing the photocatalytic activity of various Ti-based layered compounds.

【0005】[0005]

【課題を解決するための手段】チタンとアルカリ金属の
複合酸化物は、組成に依存して多様な結晶構造をとる
が、そのなかに図1に示すような5種類の層状構造物質
が存在する。これらの化合物は層状ホスト骨格の間に1
価の陽イオンが電荷を補償する形で入り込んでいる。こ
こで、ホスト骨格はチタンと酸素のネットワークと見做
すことができ、多くのチタン酸化物について知られてい
るように光を吸収して励起電子と正孔を生成する。
[Means for Solving the Problems] Composite oxides of titanium and alkali metals have various crystal structures depending on the composition, and among them, there are five types of layered structure substances as shown in FIG. . These compounds have 1 between the layered host skeletons.
Valuable cations enter to compensate for the charge. Here, the host skeleton can be regarded as a network of titanium and oxygen, and absorbs light to generate excited electrons and holes as is known for many titanium oxides.

【0006】一方、このホスト層とホスト層の間の空間
は化学的に活性で、存在するアルカリ金属イオンはホス
ト骨格構造を変化させることなく室温付近の緩やかな条
件下で他の陽イオンや水素イオンに置き換えることがで
きるし、また外部から水や有機分子等が容易に出入りす
ることも可能である。
On the other hand, the space between the host layers is chemically active, and the existing alkali metal ions do not change the host skeleton structure, and other cations or hydrogen ions are added under mild conditions near room temperature. It can be replaced with ions, and water, organic molecules, etc. can easily enter and leave from the outside.

【0007】以上の2つの性質を利用してホスト骨格で
吸収した光エネルギーを効率良く層間に入り込んだ水に
渡してこれを水素と酸素に分解しようとというのが本発
明の骨子であり、従来より研究されてきた二酸化チタン
等の表面反応型の触媒に比べて高い活性が得られる。
The essence of the present invention is to utilize the above two properties to efficiently transfer the light energy absorbed in the host skeleton to the water that has entered the layers to decompose it into hydrogen and oxygen. Higher activity can be obtained compared to the more studied surface-reactive catalysts such as titanium dioxide.

【0008】具体的には、本発明は、組成式Specifically, the present invention provides a composition formula

【化3】 (但し、AはNa、K、Rb、Csで、n=2、3、4又
は5で、mは0〜4)で示される層状構造を有するチタ
ン酸化物の結晶若しくは粉体を、水若しくは塩を含む水
溶液或いは水と有機溶媒の混合系中に、触媒として分散
し、波長800nm以下の光を照射することにより、水素
若しくは酸素又はその両方を得る方法を要旨としてい
る。
Embedded image (Wherein A is Na, K, Rb, Cs, n = 2, 3, 4 or 5, and m is 0-4), and the titanium oxide crystal or powder having a layered structure is The gist is a method of obtaining hydrogen or oxygen or both by dispersing as a catalyst in an aqueous solution containing a salt or a mixed system of water and an organic solvent and irradiating with light having a wavelength of 800 nm or less.

【0009】また、他の本発明は、組成式The present invention also provides a composition formula

【化4】 (但し、xは0.65〜0.75、mは0〜4、□は空
孔)で示されるウロコ鉄鉱型の層状構造を有するチタン
酸化物の結晶若しくは粉体を、水若しくは塩を含む水溶
液或いは水と有機溶媒の混合系中に、触媒として分散
し、波長800nm以下の光を照射することにより、水素
若しくは酸素又はその両方を得る方法を要旨としてい
る。
[Chemical 4] (However, x is 0.65 to 0.75, m is 0 to 4, and □ is a hole), and a titanium oxide crystal or powder having a layered structure of a scale of iron ore type is contained in water or salt. The gist is a method of obtaining hydrogen or oxygen or both by dispersing as a catalyst in an aqueous solution or a mixed system of water and an organic solvent and irradiating with light having a wavelength of 800 nm or less.

【0010】更に、他の本発明は、上記の2つの分類の
いずれかに属する化合物の層間陽イオンの一部又は全部
をイオン交換法で水素イオン、アンモニウムイオン又は
他の金属イオン又は有機物で置換した物質を、水若しく
は塩を含む水溶液或いは水と有機溶媒の混合系中に、触
媒として分散し、波長800nm以下の光を照射すること
により、水素若しくは酸素又はその両方を得る方法を要
旨としている。
Furthermore, in another aspect of the present invention, a part or all of the interlayer cations of the compounds belonging to either of the above two categories are replaced by hydrogen ions, ammonium ions or other metal ions or organic substances by an ion exchange method. The main point is a method for obtaining hydrogen or oxygen or both by irradiating with light having a wavelength of 800 nm or less by dispersing the above substance as a catalyst in an aqueous solution containing water or a salt or a mixed system of water and an organic solvent. .

【0011】更に、他の本発明は、上記の3つのいずれ
かの化合物に遷移金属(Ni、Pt、Ru、Pd等)若しく
はその酸化物を担持させたものを、水若しくは塩を含む
水溶液或いは水と有機溶媒の混合系中に、触媒として分
散し、波長800nm以下の光を照射することにより、水
素若しくは酸素又はその両方を得る方法を要旨としてい
る。
Further, in another aspect of the present invention, any one of the above three compounds, on which a transition metal (Ni, Pt, Ru, Pd, etc.) or an oxide thereof is supported, is added to an aqueous solution containing water or a salt, or The gist is a method of obtaining hydrogen or oxygen or both by dispersing as a catalyst in a mixed system of water and an organic solvent and irradiating with light having a wavelength of 800 nm or less.

【0012】[0012]

【作用】以下に本発明を更に詳細に説明する。The present invention will be described in more detail below.

【0013】本発明が対象とする層状チタン酸化物は、
図1中に示したように二チタン酸塩K2Ti25、三チタ
ン酸塩Na2Ti37、四チタン酸塩A2Ti49(A=K、
Rb)、五チタン酸塩Cs2Ti511、ウロコ鉄鉱型チタン
酸塩
The layered titanium oxide targeted by the present invention is
As shown in FIG. 1, dititanate K 2 Ti 2 O 5 , trititanate Na 2 Ti 3 O 7 , tetratitanate A 2 Ti 4 O 9 (A = K,
Rb), five titanates Cs 2 Ti 5 O 11, lepidocrocite type titanate

【化5】 の5種類である。Embedded image There are five types.

【0014】これらの化合物は、原料として、二酸化チ
タン若しくは加熱により二酸化チタンに変化する物質
と、アルカリ金属酸化物若しくは加熱によってアルカリ
金属酸化物を生成する物質を、化学量論比に混合し80
0℃以上の温度で焼成することにより粉末状の試料とし
て合成することができる。またフラックス法、溶融法等
によって針状、繊維状、板状等のマクロな晶癖を呈する
結晶として合成することも可能である。
These compounds are prepared by mixing, as raw materials, titanium dioxide or a substance which is converted into titanium dioxide by heating, and an alkali metal oxide or a substance which forms an alkali metal oxide by heating in a stoichiometric ratio.
A powdery sample can be synthesized by baking at a temperature of 0 ° C. or higher. It is also possible to synthesize by a flux method, a melting method, or the like as a crystal exhibiting a macroscopic crystal habit such as a needle shape, a fiber shape, or a plate shape.

【0015】次に、これらの層状チタン酸化物の層間組
成変換誘導体は、主にイオン交換法を駆使して得られ
る。イオン交換は置換させたい金属を含む溶融塩を接触
させても良いし、更に緩やかな条件で行う場合には水溶
液を介しても可能である。例えば、前者の例としては、
四チタン酸カリウムK2Ti49に硝酸ナトリウムNa2
3を350℃で反応させると層間のカリウムイオンが
全てナトリウムイオンに置き換わってNa2Ti49を得
ることができる。一方、後者の例としては、四チタン酸
カリウムK2Ti49に塩酸水溶液を室温付近で作用させ
ると層間のカリウムイオンが全て水素イオンに置き換わ
ってH2Ti49・mH2Oを得ることができる。同様の処
理により、H2Ti37、H2Ti511・mH2O、
Next, the interlayer composition conversion derivative of these layered titanium oxides can be obtained mainly by using the ion exchange method. The ion exchange may be carried out by contacting with a molten salt containing the metal to be replaced, or through an aqueous solution if it is carried out under milder conditions. For example, as an example of the former,
Potassium tetratitanate K 2 Ti 4 O 9 with sodium nitrate Na 2 N
When O 3 is reacted at 350 ° C., all potassium ions between layers are replaced with sodium ions, and Na 2 Ti 4 O 9 can be obtained. On the other hand, as an example of the latter, when potassium tetratitanate K 2 Ti 4 O 9 is allowed to act with an aqueous hydrochloric acid solution at around room temperature, potassium ions between layers are all replaced by hydrogen ions and H 2 Ti 4 O 9 .mH 2 O is converted. Obtainable. By the same treatment, H 2 Ti 3 O 7 , H 2 Ti 5 O 11 · mH 2 O,

【化6】 も得られる。[Chemical 6] Can also be obtained.

【0016】更に、これらの水素型の物質を各種金属水
溶液に接触させることにより水素イオンの一部若しくは
全てを金属イオンに置換することも可能である。例え
ば、H2Ti49・mH2Oを水酸化カリウム溶液で滴定す
ると水素イオンの1/4ずつが段階的に置換され、以下
に示すような4種類の相が得られる。
Further, it is possible to replace some or all of hydrogen ions with metal ions by bringing these hydrogen type substances into contact with various metal aqueous solutions. For example, when H 2 Ti 4 O 9 .mH 2 O is titrated with a potassium hydroxide solution, ¼ of each hydrogen ion is replaced stepwise, and the following four types of phases are obtained.

【0017】H2Ti49・1.2H2O(9.1Å)→K0.5
1.5Ti49・0.6H2O(8.6Å)→KHTi49・0.
5H2O(9.0Å)→K1.50.5Ti49・1.2H2O(9.
8Å)→K2Ti49・2.2H2O(10.9Å)。但し、括
弧内の数字は層間距離を示す。
[0017] H 2 Ti 4 O 9 · 1.2H 2 O (9.1Å) → K 0. 5
H 1. 5 Ti 4 O 9 · 0.6H 2 O (8.6Å) → KHTi 4 O 9 · 0.
5H 2 O (9.0Å) → K 1. 5 H 0. 5 Ti 4 O 9 · 1.2H 2 O (9.
8Å) → K 2 Ti 4 O 9・ 2.2H 2 O (10.9Å). However, the number in parentheses indicates the interlayer distance.

【0018】このほか、アミン溶液等と反応させること
により有機物を導入することもできる。
In addition to this, an organic substance can be introduced by reacting with an amine solution or the like.

【0019】以上のようにして得られた層状構造を有す
るチタン酸化物及びその組成変換体は、以下に記述する
通り、水若しくは無機塩の水溶液若しくは水と有機溶媒
の混合系中に懸濁させて、光を照射すると水素ガス若し
くは酸素ガス若しくはその両方を発生することが判明し
た。
The titanium oxide having a layered structure and the compositional converter obtained as described above are suspended in water or an aqueous solution of an inorganic salt or a mixed system of water and an organic solvent, as described below. It was revealed that hydrogen gas, oxygen gas, or both are generated when light is irradiated.

【0020】表1に幾つかのチタン酸化物の水素発生効
率をまとめて示す。実験条件は、チタン酸塩0.1g、
液相はメタノール/水(50cm3+300cm3)混合系を用
いた。反応セルは内部照射型のパイレックス製、照射源
としては450W高圧水銀ランプを用いた。照射される
波長は300nm以上である。反応系は閉鎖循環型であ
り、発生したガスは圧力計又はガスクロマトグラフィー
で同定定量した。表1に示す通り、いずれの物質につい
ても水素生成が示され、良好な光触媒機能を有すること
が確認された。また、硝酸銀水溶液を用いて同様の実験
を行ったところ、酸素生成活性も確認された。これらの
ことより、前述の層状チタン酸化物及びその組成変換体
は、光照射下での水分解に有効な化合物であると結論さ
れた。
Table 1 shows the hydrogen generation efficiency of some titanium oxides. The experimental conditions are 0.1 g of titanate,
As the liquid phase, a mixed system of methanol / water (50 cm 3 +300 cm 3 ) was used. The reaction cell was an internal irradiation type, made by Pyrex, and a 450 W high pressure mercury lamp was used as an irradiation source. The wavelength of irradiation is 300 nm or more. The reaction system was a closed circulation type, and the generated gas was identified and quantified by a pressure gauge or gas chromatography. As shown in Table 1, hydrogen production was shown for all the substances, and it was confirmed that they have a good photocatalytic function. Further, when the same experiment was performed using an aqueous solution of silver nitrate, the oxygen production activity was also confirmed. From these, it was concluded that the above-mentioned layered titanium oxide and its compositional converter are effective compounds for water decomposition under light irradiation.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【実施例】次に本発明の実施例を示す。EXAMPLES Examples of the present invention will be described below.

【0024】[0024]

【実施例1】本例は請求項1に記載した化合物のうち、
n=2、A=Rbの場合についての例である。
Example 1 In this example, among the compounds described in claim 1,
This is an example of the case where n = 2 and A = Rb.

【0025】二酸化チタン(純度99.99%)と炭酸ル
ビジウム(純度99.9%)をモル比2/1の割合に秤り
とり、混合した後、白金ルツボに入れ電気炉中で800
℃で30分間加熱して脱炭酸を行なった。一度炉より出
して粉砕した後、850℃で12時間焼成した。得られ
た白色粉末はそのX線回折図形から目的のRb2Ti25
であることが確認された。
Titanium dioxide (purity 99.99%) and rubidium carbonate (purity 99.9%) were weighed out in a molar ratio of 2/1, mixed, put in a platinum crucible and placed in an electric furnace at 800
Decarbonation was performed by heating at 30 ° C. for 30 minutes. The product was once taken out of the furnace, pulverized, and then fired at 850 ° C. for 12 hours. The white powder obtained was identified as Rb 2 Ti 2 O 5 by the X-ray diffraction pattern.
Was confirmed.

【0026】上記の操作により調製したRb2Ti250.
1gとメタノール50cm3、水300cm3の混合溶液をパ
イレックス製の内部照射型の反応管中に入れ撹拌した。
なお、溶液中には0.1wt%程度のPt担持量に相当する
濃度の塩化白金酸H2PtCl6を溶かし込んだ。ロータリ
ーポンプで排気を数回繰り返して溶存気体を脱気させた
後、アルゴンガスを100Torr導入して系を閉鎖し
た。次に450W高圧水銀ランプを点灯し発生した気体
成分を系内に循環させると共に逐次ガスクロマトグラフ
ィー法により同定定量した。図2にその結果を示す。水
素ガスが初期誘導期の後毎時ほぼ44μmolの速度で発
生することが確認された。
[0026] Rb 2 Ti 2 O 5 0 prepared by the above procedure.
1g and methanol 50 cm 3, a mixed solution of water 300 cm 3 stirred placed in a reaction tube of an internal illumination type made of Pyrex.
Incidentally, chloroplatinic acid H 2 PtCl 6 having a concentration corresponding to the amount of Pt supported on the order of 0.1 wt% was dissolved in the solution. Exhaust was repeated several times with a rotary pump to degas the dissolved gas, and then 100 Torr of argon gas was introduced to close the system. Next, a 450 W high-pressure mercury lamp was turned on, the generated gas component was circulated in the system, and identification and quantification was performed by the sequential gas chromatography method. The results are shown in FIG. It was confirmed that hydrogen gas was generated at a rate of approximately 44 μmol / hr after the initial induction period.

【0027】[0027]

【実施例2】本例は請求項3に記載した化合物におい
て、n=4、A=Kに相当する化合物の層間Kイオンを
すべて水素イオンに置換した誘導体の光触媒性を調べた
例である。
Example 2 This example is an example in which the photocatalytic properties of the compound of claim 3 in which all interlayer K ions of the compound corresponding to n = 4 and A = K were replaced with hydrogen ions were investigated.

【0028】二酸化チタン(純度99.99%)と炭酸カ
リウム(純度99.9%)をモル比4/1の割合に秤りと
り、混合した後、白金ルツボに入れ電気炉中で850℃
で30分間加熱して脱炭酸を行った。一度炉より出して
粉砕した後、1000℃で24時間焼成した。空気中で
放冷した試料はそのX線回折図形からK2Ti49である
と同定された。次にこの物質10gを1規定の塩酸水溶
液1dm3中で撹拌した。この操作は24時間毎に新しい
酸溶液に入れ換えて3回繰り返した。濾過、洗浄後風乾
した試料について化学分析、粉末X線回折法等で調べた
ところ層状の基本構造は保ったまま層間のKイオンがほ
ぼ全部水素イオンに置き換わった物質H2Ti49・1.
2H2Oが得られたことが確認された。
Titanium dioxide (purity 99.99%) and potassium carbonate (purity 99.9%) were weighed out in a molar ratio of 4/1, mixed, put in a platinum crucible and placed in an electric furnace at 850 ° C.
It was heated for 30 minutes to decarboxylate. The product was once taken out of the furnace, pulverized, and then baked at 1000 ° C. for 24 hours. The sample left to cool in air was identified as K 2 Ti 4 O 9 by its X-ray diffraction pattern. Next, 10 g of this substance was stirred in 1 dm 3 of a 1N aqueous hydrochloric acid solution. This operation was repeated 3 times with replacement of fresh acid solution every 24 hours. Chemical analysis and powder X-ray diffractometry of the sample that had been filtered, washed, and air-dried revealed that H 2 Ti 4 O 9・ 1 was a substance in which K ions between layers were replaced by hydrogen ions while maintaining the basic layered structure. .
It was confirmed that 2H 2 O was obtained.

【0029】以上の手順で得られた物質を硝酸銀水溶液
(濃度0.01moldm-3)350cm3中に分散し、実施例1
と同一の条件下で光照射したところ、酸素ガスの初期生
成活性としてほぼ19μmolh-1の値が得られた。
The substance obtained by the above procedure is treated with an aqueous silver nitrate solution.
Example 1 was dispersed in 350 cm 3 (concentration 0.01 moldm -3 ).
When irradiated with light under the same conditions as above, a value of approximately 19 μmol h −1 was obtained as the initial generation activity of oxygen gas.

【0030】[0030]

【発明の効果】以上説明したように、本発明によれば、
層状構造を有する特定のチタン酸化物及びその組成変換
体の高い光触媒活性を利用できるので、水若しくは無機
塩の水溶液若しくは水と有機溶媒の混合系を分解して、
水素ガス若しくは酸素ガス若しくはその両方を効率的に
発生させることが可能である。
As described above, according to the present invention,
Since the high photocatalytic activity of the specific titanium oxide having a layered structure and its composition converter can be utilized, water or an aqueous solution of an inorganic salt or a mixed system of water and an organic solvent is decomposed,
It is possible to efficiently generate hydrogen gas, oxygen gas, or both.

【図面の簡単な説明】[Brief description of drawings]

【図1】層状構造を有する各種チタン酸化物の結晶構造
の模式図で、(010)面への投影図である。
FIG. 1 is a schematic view of a crystal structure of various titanium oxides having a layered structure, and is a projection view onto a (010) plane.

【図2】二チタン酸塩Rb2Ti25上での水素発生効率
を示す図で、液相はメタノール/水混合系(50+30
0cm3)で、固相はRb2Ti25(0.1wt%Pt担持)0.1
gである。
FIG. 2 is a diagram showing the hydrogen generation efficiency on dititanate Rb 2 Ti 2 O 5 in which the liquid phase is a methanol / water mixed system (50 + 30).
0 cm 3 ) and the solid phase is Rb 2 Ti 2 O 5 (0.1 wt% Pt supported) 0.1
g.

【図3】四チタン酸塩H2Ti49・1.2H2O上での酸
素発生効率を示す図で、液相は硝酸銀水溶液(濃度0.0
1moldm-3)350cm3で、固相はH2Ti49・1.2H2
O(0.1wt%Pt担持)0.1gである。
FIG. 3 is a diagram showing the oxygen generation efficiency on tetratitanate H 2 Ti 4 O 9 · 1.2H 2 O, in which the liquid phase is a silver nitrate aqueous solution (concentration: 0.0
1 moldm -3 ) 350 cm 3 , solid phase is H 2 Ti 4 O 9 1.2H 2
O (0.1 wt% Pt supported) 0.1 g.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/30 // C01G 23/00 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C02F 1/30 // C01G 23/00 B

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 組成式 【化1】 (但し、AはNa、K、Rb、Csで、n=2、3、4又
は5で、mは0〜4)で示される層状構造を有するチタ
ン酸化物の結晶若しくは粉体を、水若しくは塩を含む水
溶液或いは水と有機溶媒の混合系中に、触媒として分散
し、波長800nm以下の光を照射することにより、水素
若しくは酸素又はその両方を得る方法。
1. A composition formula: (Wherein A is Na, K, Rb, Cs, n = 2, 3, 4 or 5, and m is 0-4), and the titanium oxide crystal or powder having a layered structure is A method of obtaining hydrogen and / or oxygen by dispersing as a catalyst in an aqueous solution containing a salt or a mixed system of water and an organic solvent and irradiating with light having a wavelength of 800 nm or less.
【請求項2】 組成式 【化2】 (但し、xは0.65〜0.75、mは0〜4、□は空
孔)で示されるウロコ鉄鉱型の層状構造を有するチタン
酸化物の結晶若しくは粉体を、水若しくは塩を含む水溶
液或いは水と有機溶媒の混合系中に、触媒として分散
し、波長800nm以下の光を照射することにより、水素
若しくは酸素又はその両方を得る方法。
2. A composition formula: (However, x is 0.65 to 0.75, m is 0 to 4, and □ is a hole), and a titanium oxide crystal or powder having a layered structure of a scale of iron ore type is contained in water or salt. A method of obtaining hydrogen and / or oxygen by dispersing as a catalyst in an aqueous solution or a mixed system of water and an organic solvent and irradiating with light having a wavelength of 800 nm or less.
【請求項3】 請求項1又は2に記載の化合物の層間陽
イオンの一部又は全部をイオン交換法で水素イオン、ア
ンモニウムイオン又は他の金属イオン又は有機物で置換
した物質を、水若しくは塩を含む水溶液或いは水と有機
溶媒の混合系中に、触媒として分散し、波長800nm以
下の光を照射することにより、水素若しくは酸素又はそ
の両方を得る方法。
3. A substance obtained by substituting a part or all of the interlayer cations of the compound according to claim 1 or 2 by hydrogen ion, ammonium ion or other metal ion or organic substance by an ion exchange method, and water or salt A method of obtaining hydrogen or oxygen, or both by irradiating with light having a wavelength of 800 nm or less in an aqueous solution containing it or a mixed system of water and an organic solvent as a catalyst.
【請求項4】 請求項1、2又は3に記載の化合物に遷
移金属(Ni、Pt、Ru、Pd等)若しくはその酸化物を
担持させたものを、水若しくは塩を含む水溶液或いは水
と有機溶媒の混合系中に、触媒として分散し、波長80
0nm以下の光を照射することにより、水素若しくは酸素
又はその両方を得る方法。
4. An aqueous solution containing water or a salt, or an aqueous solution containing a transition metal (Ni, Pt, Ru, Pd, etc.) or an oxide thereof supported on the compound according to claim 1, 2, or 3 It is dispersed as a catalyst in a mixed system of solvents and has a wavelength of 80.
A method of obtaining hydrogen, oxygen, or both by irradiating with light of 0 nm or less.
JP6083986A 1994-03-29 1994-03-29 Method of decomposing water using titanium oxide having a layered structure and its derivative as a photocatalyst Expired - Lifetime JP2681030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6083986A JP2681030B2 (en) 1994-03-29 1994-03-29 Method of decomposing water using titanium oxide having a layered structure and its derivative as a photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6083986A JP2681030B2 (en) 1994-03-29 1994-03-29 Method of decomposing water using titanium oxide having a layered structure and its derivative as a photocatalyst

Publications (2)

Publication Number Publication Date
JPH08198601A true JPH08198601A (en) 1996-08-06
JP2681030B2 JP2681030B2 (en) 1997-11-19

Family

ID=13817865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6083986A Expired - Lifetime JP2681030B2 (en) 1994-03-29 1994-03-29 Method of decomposing water using titanium oxide having a layered structure and its derivative as a photocatalyst

Country Status (1)

Country Link
JP (1) JP2681030B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999033564A1 (en) * 1997-12-23 1999-07-08 Studiengesellschaft Kohle Mbh Highly porous photocatalyst for utilising visible light
JP2001087654A (en) * 1999-09-21 2001-04-03 Otsuka Chem Co Ltd Visible light-activated catalyst
JP2007234233A (en) * 2006-02-27 2007-09-13 National Institute Of Advanced Industrial & Technology Active material for lithium secondary battery, its manufacturing method, and lithium secondary cell using it
JP2009054298A (en) * 2007-08-23 2009-03-12 Toshiba Corp Anode material for nonaqueous electrolyte secondary battery, manufacturing method of anode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and battery pack
JP2012012248A (en) * 2010-06-30 2012-01-19 Kubota Corp Lithium titanium complex oxide, method for producing the same, and lithium ion secondary battery using the same
JP2012167007A (en) * 2012-03-21 2012-09-06 Kubota Corp Potassium tetratitanate and hydrated tetratitanate compound
WO2016024530A1 (en) * 2014-08-14 2016-02-18 国立研究開発法人産業技術総合研究所 Polycrystalline material and production method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02172535A (en) * 1988-12-26 1990-07-04 Nikon Corp New photolysis catalyst for water
JPH0788380A (en) * 1993-09-22 1995-04-04 Riken Corp Catalyst for photodegradation of water and production of hydrogen by using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02172535A (en) * 1988-12-26 1990-07-04 Nikon Corp New photolysis catalyst for water
JPH0788380A (en) * 1993-09-22 1995-04-04 Riken Corp Catalyst for photodegradation of water and production of hydrogen by using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999033564A1 (en) * 1997-12-23 1999-07-08 Studiengesellschaft Kohle Mbh Highly porous photocatalyst for utilising visible light
JP2001087654A (en) * 1999-09-21 2001-04-03 Otsuka Chem Co Ltd Visible light-activated catalyst
JP2007234233A (en) * 2006-02-27 2007-09-13 National Institute Of Advanced Industrial & Technology Active material for lithium secondary battery, its manufacturing method, and lithium secondary cell using it
JP2009054298A (en) * 2007-08-23 2009-03-12 Toshiba Corp Anode material for nonaqueous electrolyte secondary battery, manufacturing method of anode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and battery pack
JP2012012248A (en) * 2010-06-30 2012-01-19 Kubota Corp Lithium titanium complex oxide, method for producing the same, and lithium ion secondary battery using the same
JP2012167007A (en) * 2012-03-21 2012-09-06 Kubota Corp Potassium tetratitanate and hydrated tetratitanate compound
WO2016024530A1 (en) * 2014-08-14 2016-02-18 国立研究開発法人産業技術総合研究所 Polycrystalline material and production method therefor
CN106575756A (en) * 2014-08-14 2017-04-19 国立研究开发法人产业技术综合研究所 Polycrystalline material and production method therefor
JPWO2016024530A1 (en) * 2014-08-14 2017-06-01 国立研究開発法人産業技術総合研究所 Polycrystal and method for producing the same

Also Published As

Publication number Publication date
JP2681030B2 (en) 1997-11-19

Similar Documents

Publication Publication Date Title
JP7045662B2 (en) Photocatalyst manufacturing method and hydrogen generation method
JP3845720B2 (en) Potassium niobate photocatalyst and method for producing the same
CN113477252B (en) Preparation method and application of composite porous catalyst containing titanium and other transition metals simultaneously
JP5892478B2 (en) BiVO4 particles and method for producing the same
JPH08198601A (en) Decomposing method for water using titanium oxide or derivative thereof having laminar structure as photocatalyst
JP2001002419A (en) Process for soft synthesis of bismuth vanadate and bismuth vanadate produced by the process
WO2019107098A1 (en) Method for oxidizing ammonia
JP2730111B2 (en) New water photolysis catalyst
JP4107815B2 (en) Phosphate photocatalysts containing metal ions in the d10 or d0 electronic state
JP2001276621A (en) Potassium titanate photocatalyst and manufacturing method thereof
JP3249776B2 (en) Interlayer crosslinked product of layered titanium oxide and photocatalyst
JP2002059008A (en) Photocatalyst using oxide containing metal ions of d10 electron state
JP2681031B2 (en) Water decomposition method using titanium oxide having a layered structure and a tunnel structure as a photocatalyst
JPH0889800A (en) Photocatalyst
JPH0889799A (en) Photocatalyst
JP3136339B2 (en) Titanium oxide photocatalyst and method for producing the same
JP4051247B2 (en) Photocatalyst using composite oxide containing metal ions in d10 and d0 electronic states
JP4090827B2 (en) Photocatalyst using composite oxide containing metal ions in d10s2 and d0 electronic states
JP3834776B2 (en) Catalyst for photo-water splitting containing germanium nitride structure
JP3138738B1 (en) Photocatalyst and method for producing the same
JPH04305018A (en) Compound of h2ti5o11-nh2o having monoclinic layer structure and its production
JPH0970541A (en) Photocatalyst
JPH0970533A (en) Photocatalyst
JP3146351B2 (en) Method for producing layered compound having interlayer crosslinked structure
WO2024070179A1 (en) Method for producing tantalum nitride material, and tantalum nitride material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term