JPH08193587A - Rotary type compressor - Google Patents

Rotary type compressor

Info

Publication number
JPH08193587A
JPH08193587A JP420195A JP420195A JPH08193587A JP H08193587 A JPH08193587 A JP H08193587A JP 420195 A JP420195 A JP 420195A JP 420195 A JP420195 A JP 420195A JP H08193587 A JPH08193587 A JP H08193587A
Authority
JP
Japan
Prior art keywords
valve mechanism
oil supply
compressor
pipe
lubricating oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP420195A
Other languages
Japanese (ja)
Inventor
Ichiro Morita
一郎 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP420195A priority Critical patent/JPH08193587A/en
Publication of JPH08193587A publication Critical patent/JPH08193587A/en
Pending legal-status Critical Current

Links

Landscapes

  • Check Valves (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE: To smoothly drive a sliding part such as vane and roller by supplying a lubricant directly into a compression chamber while the machine is at a standstill and supplying the lubricant directly into the compression chamber for a certain period from immediately after the start. CONSTITUTION: A lubricating oil 18 in an enclosure casing 1 is in communication with inside a suction pipe 19 via an oil supply pipe 22b, valve mechanism 20, and oil supply pipe 21, and when a compressor is started, the oil 18 gets a high pressure, and the inside of the suction pipe 19 gets a low pressure while the inside of the valve mechanism 20 a middle pressure. By this pressure difference, the oil 18 is led into the suction pipe 19 through the valve mechanism 20 and supplied to a compression chamber 11. A continued operation causes enlargement of the pressure difference, and the direct oil supply is no more conducted. When the compressor stops, the internal pressure of the oil supply pipe 22b drops, followed by a rise of the internal pressure of the suction pipe 19, sinking of the pressure difference to cause lessening smaller than the spring energizing force, separation of the plate 20b from the oil supply pipe 21, and generation of the communication of inside the valve mechanism 20 with the suction pipe 19, and thereby the lubricating oil 18 stagnating in the valve mechanism 20 during the operation flows into the compression chamber 11 by its self-weight so that oil supply is made to all sliding parts.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷凍サイクル等に使用
する回転式圧縮機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotary compressor used in a refrigeration cycle or the like.

【0002】[0002]

【従来の技術】従来の回転式圧縮機としては、特開昭6
3−134888号公報に示されているものがある。以
下、図面を参照しながら上記従来の回転式圧縮機の一例
を説明する。
2. Description of the Related Art As a conventional rotary compressor, Japanese Patent Laid-Open No.
There is one disclosed in Japanese Patent Publication No. 3-134888. Hereinafter, an example of the conventional rotary compressor will be described with reference to the drawings.

【0003】従来の構成を図5、図6に示す。図5、図
6において、1は密閉ケーシング、2は電動機部であ
り、シャフト3を介してシリンダ4,ローラ5,ベーン
6,主軸受7,副軸受8により構成される機械部本体9
と連結している。シャフト3は主軸3a,副軸3b,ク
ランク3cよりなる。10はベーン背面に設けられたス
プリングである。
A conventional configuration is shown in FIGS. In FIG. 5 and FIG. 6, 1 is a closed casing, 2 is an electric motor part, and a machine part main body 9 composed of a cylinder 4, a roller 5, a vane 6, a main bearing 7, and a sub bearing 8 via a shaft 3.
Connected with. The shaft 3 includes a main shaft 3a, a sub shaft 3b, and a crank 3c. Reference numeral 10 is a spring provided on the back surface of the vane.

【0004】11はシリンダ4内で、ローラ5,ベーン
6,主軸受7,副軸受8により構成される圧縮室であ
る。12はシャフト3と連結する給油機構である。13
はシリンダ4に固定された吸入管であり、シリンダ4の
吸入通路14を介して圧縮室11と連通している。
Reference numeral 11 denotes a compression chamber in the cylinder 4, which is constituted by the roller 5, the vane 6, the main bearing 7, and the auxiliary bearing 8. Reference numeral 12 is an oil supply mechanism connected to the shaft 3. Thirteen
Is a suction pipe fixed to the cylinder 4, and communicates with the compression chamber 11 via a suction passage 14 of the cylinder 4.

【0005】15は吐出孔であり吐出弁16を介して密
閉ケーシング1内と連通している。17は吐出管であり
密閉ケーシング1内に開放している。18は潤滑油であ
る。また、電動機部2は回転子2aと固定子2bにより
構成され回転子2aにはバランスウェイト2c,2dが
固定されている。
A discharge hole 15 communicates with the inside of the closed casing 1 through a discharge valve 16. A discharge pipe 17 is open to the inside of the closed casing 1. Reference numeral 18 is a lubricating oil. The electric motor unit 2 is composed of a rotor 2a and a stator 2b, and balance weights 2c and 2d are fixed to the rotor 2a.

【0006】冷却システム(図示せず)からの冷媒ガス
は、吸入管13,吸入通路14より導かれシリンダ4内
の圧縮室11に至る。圧縮室11に至った冷媒ガスは、
シャフト3のクランク3cに嵌合されたローラ5とベー
ン6により仕切られた圧縮室11で、電動機部2の回転
に伴うシャフト3及びローラ5の回転運動により漸次圧
縮される。従って圧縮過程において、高圧室11aと低
圧室11bとが存在することになる。
Refrigerant gas from a cooling system (not shown) is introduced from a suction pipe 13 and a suction passage 14 to reach a compression chamber 11 in the cylinder 4. The refrigerant gas reaching the compression chamber 11 is
In the compression chamber 11 partitioned by the roller 5 and the vane 6 fitted to the crank 3c of the shaft 3, the shaft 3 and the roller 5 are gradually compressed due to the rotational motion of the electric motor unit 2. Therefore, in the compression process, the high pressure chamber 11a and the low pressure chamber 11b exist.

【0007】圧縮された冷媒ガスは、副軸受8に備えて
いる吐出孔15,吐出弁16を介して密閉ケーシング1
内に一旦吐出された後吐出管17を介し冷却システムに
吐出される。
The compressed refrigerant gas passes through the discharge hole 15 and the discharge valve 16 provided in the auxiliary bearing 8 and the hermetic casing 1
After being once discharged into the inside, it is discharged to the cooling system through the discharge pipe 17.

【0008】また、潤滑油18は、給油機構12により
シャフト3とローラ5,主軸受7,副軸受8等の摺動部
に供給される。シャフト3とローラ5間の摺動部は高圧
であるため、シャフト3とローラ5間の摺動部に供給さ
れた潤滑油18は、ローラ5と主軸受7,副軸受8間の
隙間を介して、より低圧であるシリンダ4内の圧縮室1
1に差圧により供給される。
Lubricating oil 18 is supplied to the sliding portions of shaft 3, roller 5, main bearing 7, auxiliary bearing 8 and the like by oil supply mechanism 12. Since the sliding portion between the shaft 3 and the roller 5 has a high pressure, the lubricating oil 18 supplied to the sliding portion between the shaft 3 and the roller 5 passes through the gap between the roller 5 and the main bearing 7 and the sub bearing 8. The compression chamber 1 in the cylinder 4 that has a lower pressure
1 by differential pressure.

【0009】さらに、ベーン6はシリンダ4の溝内を往
復運動する際に、密閉ケーシング1内に溜められた潤滑
油18中に浸り、ベーン6とシリンダ4間の隙間を介し
て、高圧である密閉ケーシング1内からより低圧である
シリンダ4内の圧縮室11に差圧により供給される。
Further, when the vane 6 reciprocates in the groove of the cylinder 4, the vane 6 is immersed in the lubricating oil 18 accumulated in the closed casing 1 and has a high pressure through the gap between the vane 6 and the cylinder 4. The pressure is supplied from the inside of the closed casing 1 to the compression chamber 11 in the cylinder 4, which has a lower pressure, by a differential pressure.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記従
来の回転式圧縮機の構成では、圧縮機が停止中、特に冷
蔵庫における除霜時や圧縮機の起動直後において、冷凍
サイクルから圧縮機の圧縮室11にガス状態の冷媒でな
く凝縮した液冷媒が戻る場合、圧縮室11を構成するシ
リンダ4,ローラ5,ベーン6,主軸受7,副軸受8等
の各摺動部に付着している潤滑油18を除去する可能性
がある。
However, in the structure of the conventional rotary compressor described above, the compressor is stopped from the refrigeration cycle to the compression chamber of the compressor while the compressor is stopped, especially when the refrigerator is defrosted or immediately after the compressor is started. When condensed liquid refrigerant returns to 11 instead of the gaseous refrigerant, the lubrication adhered to the sliding parts such as the cylinder 4, the roller 5, the vane 6, the main bearing 7, and the auxiliary bearing 8 that constitute the compression chamber 11. The oil 18 may be removed.

【0011】従って、圧縮機の起動時、密閉ケーシング
1内の圧力が上昇し、差圧により各摺動部に隙間を介し
て潤滑油18が供給されるまでの間、摺動部の潤滑油が
不足状態で運転される。そのため、摺動部、特にベーン
6とローラ5との摺動部の摩耗が促進されるという長期
耐久信頼性面から改善を要する点があった。
Therefore, when the compressor is started, the pressure in the closed casing 1 rises, and until the lubricating oil 18 is supplied to each sliding portion through the gap due to the differential pressure, the lubricating oil in the sliding portion is supplied. Is operated in a shortage condition. Therefore, there is a point that improvement is required from the viewpoint of long-term durability and reliability, in which abrasion of the sliding portion, particularly the sliding portion between the vane 6 and the roller 5 is promoted.

【0012】また、圧縮室11を構成する各摺動部の摩
耗は摺動部の加工精度及び潤滑油18にてシールされて
いる各シール部のシール性を低下させ、長期的にみて圧
縮機の効率に影響を及ぼす可能性があった。
Further, the wear of each sliding portion constituting the compression chamber 11 deteriorates the processing accuracy of the sliding portion and the sealing performance of each sealing portion sealed by the lubricating oil 18, and in the long term, the compressor is improved. Could affect the efficiency of the.

【0013】また、圧縮機の運転状態や、冷媒及び潤滑
油18の種類によっては、冷媒が密閉ケーシング1内で
凝縮して液冷媒となり、密閉ケーシング1底部に滞留す
る。特に非相溶性の潤滑油18を使用した場合、その比
重が液冷媒の比重よりも小さいため密閉ケーシング1底
部に溜まり易く給油機構12あるいはベーン6駆動によ
り各摺動部に導かれ潤滑油18を除去し摩耗を促進させ
る。
Further, depending on the operating condition of the compressor and the types of the refrigerant and the lubricating oil 18, the refrigerant condenses in the closed casing 1 to become a liquid refrigerant and stays at the bottom of the closed casing 1. In particular, when an incompatible lubricating oil 18 is used, its specific gravity is smaller than that of the liquid refrigerant, so that the lubricating oil 18 is easily accumulated in the bottom portion of the closed casing 1 and is guided to each sliding portion by the oil supply mechanism 12 or the vane 6 to drive the lubricating oil 18 Removes and promotes wear.

【0014】また、圧縮機起動後の密閉ケーシング1内
の圧力は、起動後の初期においては上昇を続けるが、冷
凍サイクルの運転状態等によっては、その後密閉ケーシ
ング1内の圧力が低下し摺動部への給油が不充分となり
摩耗を促進する可能性がある。
The pressure in the closed casing 1 after the compressor starts up continues to rise in the initial stage after the start up, but the pressure in the closed casing 1 then drops and slides depending on the operating conditions of the refrigeration cycle. There is a possibility that lubrication to parts will be insufficient and wear will be promoted.

【0015】本発明は上記課題を解決するもので、圧縮
機の運転停止中や、起動直後に冷凍サイクルから圧縮室
に液冷媒が戻ってきても、圧縮機の停止中に圧縮室内に
直接潤滑油を供給し、かつ圧縮機起動直後から一定時間
圧縮室内に直接潤滑油を供給することによって、圧縮室
を構成するベーンやローラ等の摺動部を円滑に駆動させ
ることにより耐摩耗性を向上させ耐久信頼性を確保し、
同時に潤滑油による各シール部のシール性を維持させる
ことにより圧縮機の効率の低下を防止することを目的と
するものである。
The present invention solves the above-mentioned problems. Even if the liquid refrigerant returns from the refrigeration cycle to the compression chamber immediately after the operation of the compressor is stopped or immediately after startup, the compressor is directly lubricated while the liquid refrigerant is stopped. By supplying oil and directly supplying lubricating oil into the compression chamber for a certain period of time immediately after starting the compressor, wear resistance is improved by smoothly driving the sliding parts of the compression chamber, such as vanes and rollers. To ensure durability and reliability,
At the same time, it is an object of the invention to prevent the efficiency of the compressor from being lowered by maintaining the sealing property of each seal portion by the lubricating oil.

【0016】[0016]

【課題を解決するための手段】この目的を達成するため
に本発明の回転式圧縮機は、一端が密閉ケーシング外に
連通し、他端がシリンダに設けられた吸入通路に連通し
た吸入パイプと、密閉ケーシング内に収納され吸入パイ
プ、低圧室、吸入通路のいずれかより重力方向上方に配
設されたバルブ機構と、一端がバルブ機構より重力方向
下方に配設された吸入パイプ、低圧室、吸入通路のいず
れかに連通し、他端がバルブ機構の下部に連通した給油
管と、一端がバルブ機構の上部に連通し、他端が密閉ケ
ーシング内に溜められた潤滑油中に開口した給油路と、
バルブ機構の重力方向下方に配設されたタンクと、一端
がバルブ機構の下部に連通し他端がタンク内に連通した
排液管と、一端がタンク内に連通し、他端がバルブ機構
の上部に連通した均圧管と、バルブ機構に連通した排液
管の開口端に配設され潤滑油より比重が大きく且つ液冷
媒より比重が小さい材料にて形成されたフロートから構
成された均圧機構とから構成されている。
To achieve this object, a rotary compressor according to the present invention comprises a suction pipe having one end communicating with the outside of a hermetic casing and the other end communicating with a suction passage provided in a cylinder. A valve mechanism which is housed in a closed casing and is disposed above the suction pipe, the low pressure chamber, or the suction passage in the direction of gravity, and an intake pipe whose one end is disposed below the valve mechanism in the direction of gravity, the low pressure chamber, An oil supply pipe that communicates with one of the suction passages and the other end communicates with the lower part of the valve mechanism, and one end communicates with the upper part of the valve mechanism, and the other end opens into the lubricating oil accumulated in the closed casing. Road,
A tank disposed below the valve mechanism in the direction of gravity, a drain pipe having one end communicating with the lower portion of the valve mechanism and the other end communicating with the tank, one end communicating with the tank, and the other end of the valve mechanism. A pressure equalizing mechanism that is composed of a pressure equalizing pipe that communicates with the upper portion, and a float that is disposed at the open end of a drainage pipe that communicates with the valve mechanism and that is made of a material that has a specific gravity greater than that of lubricating oil and less than that of a liquid refrigerant. It consists of and.

【0017】また、密閉ケーシング内の圧力変動を配慮
し、給油路を形成する給油管に逆止弁機構を備えた構成
としている。
Further, in consideration of the pressure fluctuation in the closed casing, the oil supply pipe forming the oil supply passage is provided with a check valve mechanism.

【0018】[0018]

【作用】本発明の回転式圧縮機は上記構成において圧縮
機の運転停止中や圧縮機起動直後に冷凍サイクルから圧
縮室に液冷媒が戻ってきても、バルブ機構を介して圧縮
機の停止中に圧縮室内に直接潤滑油を供給し、かつ圧縮
機起動直後から一定時間圧縮室内に直接潤滑油を供給す
ることができる。そのため、圧縮室を構成する各摺動部
が潤滑油不足の状態で圧縮機が起動することを防止で
き、圧縮室を構成する各摺動部等の耐摩耗性を向上さ
せ、同時に各シール部のシール性を維持させ圧縮機の効
率の低下を防止することができる。
In the rotary compressor of the present invention having the above-described structure, even when the liquid refrigerant returns from the refrigeration cycle to the compression chamber immediately after the compressor is stopped or immediately after the compressor is started, the compressor is stopped through the valve mechanism. It is possible to directly supply the lubricating oil into the compression chamber and to directly supply the lubricating oil into the compression chamber for a certain period of time immediately after the compressor is started. Therefore, it is possible to prevent the compressor from starting when each sliding part that constitutes the compression chamber is insufficient in lubricating oil, improve the wear resistance of each sliding part that configures the compression chamber, and at the same time to seal each seal part. It is possible to maintain the sealability of the compressor and prevent the efficiency of the compressor from lowering.

【0019】また、密閉ケーシング内で冷媒が凝縮して
密閉ケーシング底部に液冷媒として滞留し、その液冷媒
をバルブ機構内に吸入しても、均圧機構によりバルブ機
構内に滞留することなくすみやかにタンクに排出できる
ため、圧縮室には液冷媒が流入せず、潤滑油のみを供給
することができる。したがって、圧縮室を構成する各摺
動部等の耐摩耗性を向上させ同時に、各シール部のシー
ル性を維持し圧縮機の効率の低下を防止することができ
る。
Further, even if the refrigerant condenses in the closed casing and stays as a liquid refrigerant at the bottom of the closed casing and the liquid refrigerant is sucked into the valve mechanism, the pressure equalizing mechanism prevents the refrigerant from staying in the valve mechanism. Since it can be discharged to the tank, the liquid refrigerant does not flow into the compression chamber, and only the lubricating oil can be supplied. Therefore, it is possible to improve the wear resistance of each sliding portion that constitutes the compression chamber, and at the same time, maintain the sealing performance of each sealing portion and prevent the efficiency of the compressor from being lowered.

【0020】また、逆止弁機構を給油管内に備えた給油
路を備えたものであるから、圧縮機の運転中において、
一旦上昇した密閉ケーシング内の圧力がその後に低下し
ても、バルブ機構内の潤滑油が密閉ケーシング内に流出
することを防止できる。そのため、いかなる圧力状態で
圧縮機が運転されても、圧縮機の運転中において、バル
ブ機構に確実に潤滑油を溜め、その潤滑油を圧縮機の停
止中に圧縮室内に供給することにより、ベーンやローラ
等の摺動部を円滑に潤滑させた状態で圧縮機を起動させ
ることができる。
Further, since the oil supply passage having the check valve mechanism in the oil supply pipe is provided, the
Even if the pressure in the hermetically-sealed casing that has risen once decreases thereafter, the lubricating oil in the valve mechanism can be prevented from flowing out into the hermetically-sealed casing. Therefore, no matter what pressure the compressor is operating under, the lubricating oil is reliably accumulated in the valve mechanism during the operation of the compressor, and the lubricating oil is supplied into the compression chamber while the compressor is stopped. The compressor can be started in a state where the sliding parts such as rollers and rollers are smoothly lubricated.

【0021】[0021]

【実施例】以下、本発明による回転式圧縮機の第1の実
施例について、図面を参照しながら説明する。なお、従
来と同一構成部については、同一符号を付して詳細な説
明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the rotary compressor according to the present invention will be described below with reference to the drawings. The same components as those of the related art will be designated by the same reference numerals and detailed description thereof will be omitted.

【0022】図1は本発明の第1の実施例による回転式
圧縮機の要部断面図である。図2は同実施例の回転式圧
縮機の縦断面図である。
FIG. 1 is a sectional view of a main part of a rotary compressor according to a first embodiment of the present invention. FIG. 2 is a vertical sectional view of the rotary compressor of the same embodiment.

【0023】図1、図2において、14はシリンダ4に
設けられた吸入通路、19は一端が密閉ケーシング1外
に連通し、他端が吸入通路14に連通した吸入パイプ、
20は密閉ケーシング1内に収納され吸入パイプ19の
重力方向上方に配設されたバルブ機構である。
In FIGS. 1 and 2, 14 is a suction passage provided in the cylinder 4, 19 is a suction pipe having one end communicating with the outside of the closed casing 1 and the other end communicating with the suction passage 14,
Reference numeral 20 denotes a valve mechanism housed in the closed casing 1 and arranged above the suction pipe 19 in the direction of gravity.

【0024】21は一端が吸入パイプ19の重力方向上
方に連通し、他端がバルブ機構20の下部に連通した給
油管であり、22は一端がバルブ機構20の上部に連通
し、他端が密閉ケーシング1内に溜められた潤滑油18
中に開口した給油路で給油管22bで構成している。
Reference numeral 21 denotes an oil supply pipe having one end communicating with the suction pipe 19 above the gravity direction and the other end communicating with the lower portion of the valve mechanism 20, and 22 has one end communicating with the upper portion of the valve mechanism 20 and the other end. Lubricating oil 18 stored in the closed casing 1
An oil supply passage opened to the inside is configured by an oil supply pipe 22b.

【0025】23はバルブ機構20の重力方向下方に配
設されたタンクである。24は一端がバルブ機構20の
下部に連通し他端がタンク23上部に連通した排液管で
ある。
Reference numeral 23 is a tank disposed below the valve mechanism 20 in the direction of gravity. Reference numeral 24 is a drain pipe having one end communicating with the lower portion of the valve mechanism 20 and the other end communicating with the upper portion of the tank 23.

【0026】25は一端がタンク23上部に連通し、他
端がバルブ機構20の上方部に連通した均圧管であり、
26はバルブ機構20に連通した排液管24の上方開口
端24aに配設され潤滑油より比重が大きく且つ液冷媒
より比重が小さい材料にて形成されたフロート26aで
構成された均圧機構である。
Reference numeral 25 is a pressure equalizing pipe, one end of which communicates with an upper portion of the tank 23 and the other end of which communicates with an upper portion of the valve mechanism 20,
Reference numeral 26 denotes a pressure equalizing mechanism which is disposed at the upper opening end 24a of the drainage pipe 24 communicating with the valve mechanism 20 and is composed of a float 26a made of a material having a specific gravity higher than that of the lubricating oil and lower than that of the liquid refrigerant. is there.

【0027】バルブ機構20は、ホルダー20a,プレ
ート20b,バネ20cとから構成されている。バネ2
0cはプレート20bをホルダー20a上部の給油管2
2bの開口部22aに付勢するように配設されている。
The valve mechanism 20 comprises a holder 20a, a plate 20b and a spring 20c. Spring 2
0c refers to the plate 20b and the oil supply pipe 2 above the holder 20a.
It is arranged so as to urge the opening 22a of 2b.

【0028】以上のように構成された回転式圧縮機にお
いて、以下その動作を説明する。まず、圧縮機の起動直
後において、蒸発器に滞留していた液冷媒が圧縮機に吸
い込まれることがある。圧縮機に液冷媒が吸い込まれる
と、まず、吸入パイプ19内を液冷媒が流れ、シリンダ
4に設けられた吸入通路14を介して圧縮室11に導か
れ、シリンダ4,ローラ5,ベーン6,主軸受7,副軸
受8等の各摺動部に付着している潤滑油18を除去して
しまう可能性がある。
The operation of the rotary compressor configured as described above will be described below. First, immediately after the start of the compressor, the liquid refrigerant that has accumulated in the evaporator may be sucked into the compressor. When the liquid refrigerant is sucked into the compressor, first, the liquid refrigerant flows in the suction pipe 19 and is guided to the compression chamber 11 via the suction passage 14 provided in the cylinder 4, and the cylinder 4, the roller 5, the vane 6, The lubricating oil 18 adhering to the sliding parts of the main bearing 7, the sub bearing 8, etc. may be removed.

【0029】しかしながら、まず圧縮機起動前において
は、プレート20bはバネ20cによりホルダー20a
上部の給油管22bの開口部22aに付勢されているた
め、プレート20bと給油管21とは接触シールせず隙
間が保たれている。その後圧縮機が起動すると、吸入パ
イプ19内及び給油管21内の圧力は低下し、密閉ケー
シング1内の圧力より低くなる。
However, first, before starting the compressor, the plate 20b is held by the spring 20c in the holder 20a.
Since the opening 20a of the upper oil supply pipe 22b is biased, the plate 20b and the oil supply pipe 21 are not contact-sealed with each other, but a gap is maintained. After that, when the compressor is activated, the pressure in the suction pipe 19 and the pressure in the oil supply pipe 21 decrease, and become lower than the pressure in the closed casing 1.

【0030】給油路22を形成する給油管22b内は密
閉ケーシング1内と同じ圧力であるため、給油管22b
内の圧力がバルブ機構20内の圧力よりも高くなり圧力
差が生じる。圧縮機の起動初期においてはこの圧力差は
小さいが、プレート20bを給油管22bの開口部22
aに付勢するバネ20cの付勢力より僅かに大きくな
る。そのため、プレート20bは給油管22bの開口部
22aから離れるが、圧力差がバネ20cの付勢力に対
して十分大きくないため、プレート20bは給油管21
に押しつけられず、バルブ機構20と給油管21は連通
している。
Since the inside of the oil supply pipe 22b forming the oil supply passage 22 has the same pressure as the inside of the closed casing 1, the oil supply pipe 22b is formed.
The internal pressure becomes higher than the internal pressure of the valve mechanism 20, and a pressure difference occurs. Although this pressure difference is small in the initial stage of starting the compressor, the plate 20b is connected to the opening 22 of the oil supply pipe 22b.
It is slightly larger than the biasing force of the spring 20c that biases a. Therefore, the plate 20b moves away from the opening 22a of the oil supply pipe 22b, but since the pressure difference is not sufficiently large with respect to the urging force of the spring 20c, the plate 20b has the oil supply pipe 21b.
The valve mechanism 20 and the oil supply pipe 21 communicate with each other without being pressed against.

【0031】したがって、密閉ケーシング1内の潤滑油
18と吸入パイプ19内は、給油管22b、バルブ機構
20、給油管21を介して連通しているが、潤滑油18
は高圧、吸入パイプ19内は低圧でバルブ機構20内は
その中間の圧力となる。そのため、この圧力差により潤
滑油18がバルブ機構20を介して吸入パイプ19内に
導かれ、圧縮室11に供給される。
Therefore, the lubricating oil 18 in the closed casing 1 and the suction pipe 19 are communicated with each other through the oil supply pipe 22b, the valve mechanism 20, and the oil supply pipe 21.
Is high pressure, the suction pipe 19 has a low pressure, and the valve mechanism 20 has an intermediate pressure. Therefore, due to this pressure difference, the lubricating oil 18 is guided into the suction pipe 19 via the valve mechanism 20 and is supplied to the compression chamber 11.

【0032】また、圧縮機の運転状態、また冷媒や潤滑
油18の種類によっては、圧縮機の停止中や運転中にお
いて、冷媒ガスが密閉ケーシング1内で凝縮して液冷媒
となり、密閉ケーシング1内底部に滞留する。特に非相
溶性の潤滑油18を使用した場合には、潤滑油18の比
重は液冷媒の比重よりも小さく滞留しやすい。
Further, depending on the operating condition of the compressor and the types of the refrigerant and the lubricating oil 18, the refrigerant gas is condensed in the closed casing 1 to become a liquid refrigerant during the stop or operation of the compressor, and the closed casing 1 Remains on the inner bottom. In particular, when the incompatible lubricating oil 18 is used, the specific gravity of the lubricating oil 18 is smaller than the specific gravity of the liquid refrigerant and tends to stay.

【0033】その場合、圧縮機が運転中において、密閉
ケーシング1内とバルブ機構20内の圧力差が大きくな
り、プレート20bが給油管21上部を閉鎖するととも
に密閉ケーシング1内底部に滞留している液冷媒が、潤
滑油18と共に給油管22bを介してバルブ機構20内
に流入する。しかし、均圧機構26を構成するフロート
26aは液冷媒より比重が小さい材料にて形成されてい
るため均圧機構26の入口側であるバルブ機構20内と
出口側であるタンク23内は均圧管25により常に圧力
を均一に保持する機能をもつため、フロート26aが開
き、液冷媒がタンク23に流出し、給油管21内に流れ
込むことはない。
In this case, when the compressor is in operation, the pressure difference between the closed casing 1 and the valve mechanism 20 becomes large, and the plate 20b closes the upper part of the oil supply pipe 21 and stays at the inner bottom of the closed casing 1. The liquid refrigerant flows into the valve mechanism 20 together with the lubricating oil 18 via the oil supply pipe 22b. However, since the float 26a constituting the pressure equalizing mechanism 26 is made of a material having a smaller specific gravity than the liquid refrigerant, the pressure equalizing pipe is provided inside the valve mechanism 20 on the inlet side and the tank 23 on the outlet side of the pressure equalizing mechanism 26. Since 25 has a function of always maintaining a uniform pressure, the float 26a is opened, and the liquid refrigerant does not flow into the tank 23 and flow into the oil supply pipe 21.

【0034】なお、潤滑油18のみがバルブ機構20内
に流入した際には、フロート26aは潤滑油18より比
重の大きな材料にて形成されているので、排液管開口部
24aは閉じたままであり、潤滑油18がタンク23に
流出することはなく、バルブ機構20内に溜まる。
When only the lubricating oil 18 flows into the valve mechanism 20, since the float 26a is made of a material having a larger specific gravity than the lubricating oil 18, the drain pipe opening 24a remains closed. Therefore, the lubricating oil 18 does not flow out into the tank 23, but collects in the valve mechanism 20.

【0035】さらに圧縮機の運転が継続して、密閉ケー
シング1内の圧力が更に上昇し、吸入パイプ19内との
圧力差が大きくなり、バネ20cの付勢力より圧力差が
十分大きくなると、プレート20bが給油管21に接触
するまでバネ20cが縮む。そのため、プレート20b
と給油管21とが接触シールしバルブ機構20内と給油
管21とは連通しなくなり、バルブ機構20から吸入パ
イプ19を介して行われていた圧縮室11への直接給油
は行われなくなる。しかし、バルブ機構20内にはそれ
まで給油管22bを介して流入していた潤滑油18が溜
まったままとなる。
When the operation of the compressor is further continued and the pressure inside the closed casing 1 further rises, the pressure difference between the inside of the suction pipe 19 becomes large, and the pressure difference becomes sufficiently larger than the biasing force of the spring 20c, the plate The spring 20c contracts until 20b contacts the oil supply pipe 21. Therefore, the plate 20b
And the oil supply pipe 21 are in contact with each other and the valve mechanism 20 and the oil supply pipe 21 do not communicate with each other, and the direct oil supply from the valve mechanism 20 to the compression chamber 11 via the suction pipe 19 is not performed. However, the lubricating oil 18 that has flowed in through the oil supply pipe 22b until then remains in the valve mechanism 20.

【0036】そして、バルブ機構20、吸入パイプ19
を介して行われていた圧縮室11への直接給油は行われ
なくなった後は、従来のローラ5と主軸受7,副軸受8
間の隙間及びベーン6とシリンダ4の溝間の隙間を介し
て圧縮室11内に給油される。
Then, the valve mechanism 20 and the suction pipe 19
After the direct oil supply to the compression chamber 11 which has been performed via the oil is no longer performed, the conventional roller 5, the main bearing 7, and the auxiliary bearing 8 are used.
Oil is supplied into the compression chamber 11 through a gap therebetween and a gap between the vane 6 and the groove of the cylinder 4.

【0037】したがって、圧縮機の起動直後に冷凍サイ
クルから液冷媒が戻ってきても、起動と同時に圧縮室1
1に直接給油を行うことにより、圧縮室11を構成する
シリンダ4,ローラ5,ベーン6,主軸受7,副軸受8
等の各摺動部において、液冷媒により付着している潤滑
油18が除去される状態で摺動することが防止できる。
Therefore, even if the liquid refrigerant returns from the refrigeration cycle immediately after the compressor is started, the compression chamber 1
By directly supplying oil to the cylinder 1, the cylinder 4, the roller 5, the vane 6, the main bearing 7, and the auxiliary bearing 8 which form the compression chamber 11 are formed.
It is possible to prevent the sliding of each of the sliding parts such as the above while the lubricating oil 18 adhering to the liquid refrigerant is removed.

【0038】また、圧縮機の運転状態、また冷媒や潤滑
油の種類によって、圧縮機の停止中や運転中において、
冷媒ガスが密閉ケーシング1内で凝縮して液冷媒とな
り、密閉ケーシング1内底部に滞留した際でも、潤滑油
18と共に給油管22bを介してバルブ機構20内に流
入した液冷媒は、タンク23に流出し、給油管21内に
流れ込むことはない。
Further, depending on the operating condition of the compressor, the type of refrigerant or lubricating oil, the compressor may be stopped or operating,
Even when the refrigerant gas is condensed in the closed casing 1 to become a liquid refrigerant and stays at the bottom of the closed casing 1, the liquid refrigerant flowing into the valve mechanism 20 through the oil supply pipe 22b together with the lubricating oil 18 is stored in the tank 23. It does not flow out and flow into the oil supply pipe 21.

【0039】また、圧縮室11内に過多の潤滑油18が
供給されオイル圧縮を引き起こすこともなく、圧縮機か
ら冷凍サイクルへ流出する潤滑油量が増大することもな
い。
Further, the excessive amount of lubricating oil 18 is not supplied to the compression chamber 11 to cause oil compression, and the amount of lubricating oil flowing from the compressor to the refrigeration cycle does not increase.

【0040】なお、給油管22b、バルブ機構20を介
して圧縮室11内へ直接給油を行う時間は、バネ20c
の付勢力を変えることによって調整できることは言うま
でもない。
The time during which oil is directly supplied into the compression chamber 11 via the oil supply pipe 22b and the valve mechanism 20 is the spring 20c.
Needless to say, it can be adjusted by changing the urging force of.

【0041】さらに時間が経過して圧縮機が停止する
と、圧縮機内部は時間経過と共に均圧状態になる。すな
わち、給油管22b内の圧力が徐々に低下し、吸入パイ
プ19内の圧力が徐々に上昇することにより、その圧力
差が次第に小さくなる。したがって、圧力差がバネ20
cの付勢力より小さくなり、プレート20bが給油管2
1から離れ、バルブ機構20内と吸入パイプ19とが給
油管21を介して連通する。
When the compressor is stopped after a further lapse of time, the pressure inside the compressor becomes equalized with the lapse of time. That is, the pressure in the oil supply pipe 22b gradually decreases and the pressure in the suction pipe 19 gradually increases, so that the pressure difference gradually decreases. Therefore, the pressure difference is
It becomes smaller than the urging force of c and the plate 20b becomes
1, the inside of the valve mechanism 20 and the suction pipe 19 communicate with each other via the oil supply pipe 21.

【0042】そして、圧縮機の運転中にバルブ機構20
内に溜まっていた潤滑油18がその自重により給油管2
1、吸入パイプ19内を介して圧縮室11内に流入し、
圧縮室11を構成するシリンダ4,ローラ5,ベーン
6,主軸受7,副軸受8等の各摺動部に供給される。な
お、本実施例において、吸入パイプ19が圧縮室11に
対して重力方向上方となるよう傾斜している方がより効
果的であることは言うまでもない。
The valve mechanism 20 is operated while the compressor is operating.
The lubricating oil 18 accumulated inside the oil supply pipe 2 due to its own weight.
1, flow into the compression chamber 11 through the suction pipe 19,
It is supplied to each sliding portion such as the cylinder 4, the roller 5, the vane 6, the main bearing 7, the auxiliary bearing 8 and the like which form the compression chamber 11. Needless to say, in this embodiment, it is more effective if the suction pipe 19 is inclined so as to be upward with respect to the compression chamber 11 in the direction of gravity.

【0043】したがって、圧縮機の運転停止中に、冷凍
サイクルから圧縮機の圧縮室11に液冷媒が戻ってきて
も、バルブ機構20内に溜まっていた潤滑油18を直接
圧縮室11に供給することができ、圧縮室11を構成す
るシリンダ4,ローラ5,ベーン6,主軸受7,副軸受
8等の各摺動部において、潤滑油が液冷媒によって除去
されることを防止できる。そのため、圧縮機の起動直前
から圧縮室11内には十分な潤滑油18が供給されてお
り、圧縮室11を構成する各摺動部が潤滑油不足状態で
起動することを防止できる。
Therefore, even if the liquid refrigerant returns from the refrigeration cycle to the compression chamber 11 of the compressor while the compressor is stopped, the lubricating oil 18 accumulated in the valve mechanism 20 is directly supplied to the compression chamber 11. Therefore, it is possible to prevent the lubricating oil from being removed by the liquid refrigerant in each of the sliding parts such as the cylinder 4, the roller 5, the vane 6, the main bearing 7, the auxiliary bearing 8 that constitute the compression chamber 11. Therefore, sufficient lubricating oil 18 has been supplied into the compression chamber 11 immediately before the compressor is started, and it is possible to prevent the sliding portions forming the compression chamber 11 from starting in a lubricating oil shortage state.

【0044】以上本実施例の回転式圧縮機は、上記構成
からわかるように、従来の方式にあらたにバルブ機構お
よび均圧機構を設けた構造になっているため圧縮機の起
動直後や圧縮機の運転停止中に冷凍サイクルから圧縮室
に液冷媒が戻ってきても圧縮機の起動直後から一定時間
及び圧縮機の運転停止中に、圧縮室内に直接潤滑油を供
給できる。
As can be seen from the above structure, the rotary compressor of this embodiment has a structure in which a valve mechanism and a pressure equalizing mechanism are newly provided in the conventional system. Even if the liquid refrigerant returns from the refrigeration cycle to the compression chamber during the suspension of operation, the lubricating oil can be directly supplied into the compression chamber for a certain period of time immediately after the compressor is started and during the suspension of the compressor.

【0045】また、圧縮機の運転状態、また冷媒や潤滑
油の種類によって圧縮機の停止中や運転中において、冷
媒ガスが密閉ケーシング内で凝縮して液冷媒となり、密
閉ケーシング内下部に滞留した場合でも潤滑油とともに
給油管を介してバルブ機構内に流入した液冷媒はタンク
に流出し、給油管内及び圧縮室に流れ込むことなく圧縮
機の起動と同時に各摺動部に常に潤滑油を確保すること
ができかつ圧縮機の起動前から圧縮室内に十分な潤滑油
を供給することができるため、圧縮室を構成する各摺動
部の耐摩耗性を改善でき、耐久信頼性を向上することが
でき、同時に摺動部の加工精度及び潤滑油にてシールさ
れている各シール部のシール性の低下を防止でき、圧縮
機の効率の低下を防止することができる。
Further, depending on the operating condition of the compressor, and also during stop or operation of the compressor depending on the types of refrigerant and lubricating oil, the refrigerant gas condenses in the hermetic casing to become liquid refrigerant and stays in the lower part of the hermetic casing. Even when the lubricating oil flows into the valve mechanism through the oil supply pipe together with the lubricating oil, the liquid refrigerant flows out into the tank and does not flow into the oil supply pipe and the compression chamber, so that the lubricating oil is always secured in each sliding part at the same time when the compressor starts up. Since it is possible to supply sufficient lubricating oil into the compression chamber before the compressor is started, it is possible to improve the wear resistance of each sliding part that constitutes the compression chamber and improve the durability and reliability. At the same time, it is possible to prevent the processing accuracy of the sliding portion and the sealing performance of each sealing portion sealed by the lubricating oil from being lowered, and to prevent the efficiency of the compressor from being lowered.

【0046】また、圧縮機の運転が続くと圧縮室内への
給油は、従来のローラと主軸受,副軸受間の隙間及びベ
ーンとシリンダの溝間の隙間を介しての供給となる。そ
のため、圧縮室内に過多の潤滑油が供給されオイル圧縮
を引き起こすこともなく、また圧縮機から冷凍サイクル
へ流出する潤滑油量が増大することもない。
When the compressor continues to be operated, oil is supplied into the compression chamber through the gap between the conventional roller and the main bearing and the sub bearing, and the gap between the vane and the groove of the cylinder. Therefore, neither excessive amount of lubricating oil is supplied into the compression chamber to cause oil compression, nor does the amount of lubricating oil flowing from the compressor to the refrigeration cycle increase.

【0047】なお、本実施例では、給油管が吸入パイプ
に連通しているが、給油管がシリンダ内の低圧室や吸入
通路等の、圧縮機の起動により圧力が低下する箇所に連
通していれば同様の効果が得られることは言うまでもな
い。また、圧縮機の運転停止中にプレートが給油路の開
口部に接触していなくても、プレートが給油管と接触シ
ールしていなければ良いことは言うまでもない。また、
本実施例では、バルブ機構は、ホルダー、プレート、バ
ネとから構成されているが、他の構成であっても同様の
効果が得られることは言うまでもない。
In this embodiment, the oil supply pipe communicates with the suction pipe, but the oil supply pipe communicates with a low pressure chamber in the cylinder, a suction passage, or the like, where the pressure decreases due to activation of the compressor. Needless to say, the same effect can be obtained. Needless to say, even if the plate is not in contact with the opening of the oil supply passage while the compressor is stopped, the plate need not be in contact with and sealed by the oil supply pipe. Also,
In the present embodiment, the valve mechanism is composed of the holder, the plate and the spring, but it goes without saying that the same effect can be obtained with other configurations.

【0048】次に、本発明の回転式圧縮機の第2の実施
例について、図面を参照しながら説明する。なお、第1
の実施例と同一構成については、同一符号を付して詳細
な説明は省略する。
Next, a second embodiment of the rotary compressor of the present invention will be described with reference to the drawings. The first
The same configurations as those of the embodiment are given the same reference numerals and detailed description thereof will be omitted.

【0049】図3は本発明の第2の実施例による回転式
圧縮機の要部断面図である。図4は同実施例の回転式圧
縮機の縦断面図である。図3、図4において、27は逆
止弁機構であり、給油路22を形成する給油管22b内
に配設されている。
FIG. 3 is a sectional view of the essential parts of a rotary compressor according to the second embodiment of the present invention. FIG. 4 is a vertical sectional view of the rotary compressor of the same embodiment. In FIG. 3 and FIG. 4, 27 is a check valve mechanism, which is arranged in the oil supply pipe 22 b forming the oil supply passage 22.

【0050】逆止弁機構27は、弁体27a、弁27
b、スプリング27cとから構成されている。スプリン
グ27cは弁27bを弁体27a下部のシート面27d
に付勢するように配設されている。なお、図3中の矢印
は、潤滑油18の流れ方向を示しており、流れの上流側
が密閉ケーシング1内の下部に滞留している潤滑油18
側であり、下流側がバルブ機構20側である。
The check valve mechanism 27 includes a valve body 27a and a valve 27.
b and a spring 27c. The spring 27c connects the valve 27b to the seat surface 27d below the valve body 27a.
It is arranged so as to bias. The arrows in FIG. 3 indicate the flow direction of the lubricating oil 18, and the lubricating oil 18 whose upstream side of the flow stays in the lower portion of the closed casing 1 is shown.
And the downstream side is the valve mechanism 20 side.

【0051】以上のように構成された回転式圧縮機にお
いて、以下その動作を説明する。まず、圧縮機起動前
は、弁27bはスプリング27cにより弁体27a下部
のシート面27dに付勢され接触シールされている。そ
の後圧縮機が起動すると吸入パイプ19内、給油管21
内及びバルブ機構20内の圧力は低下し、密閉ケーシン
グ1内の圧力より低くなり、圧力差が生じる。この圧力
差がスプリング27cの付勢力より大きくなると弁27
bはシート面27dから離れる。
The operation of the rotary compressor having the above structure will be described below. First, before the compressor is activated, the valve 27b is urged by the spring 27c against the seat surface 27d below the valve body 27a to be contact-sealed. After that, when the compressor starts, the suction pipe 19 and the oil supply pipe 21
The pressure inside and inside the valve mechanism 20 decreases and becomes lower than the pressure inside the closed casing 1, resulting in a pressure difference. When this pressure difference becomes larger than the biasing force of the spring 27c, the valve 27
b is separated from the seat surface 27d.

【0052】したがって、密閉ケーシング1内の潤滑油
18と吸入パイプ19内は、給油管22b、逆止弁機構
27、バルブ機構20、給油管21を介して連通し、潤
滑油18は高圧、吸入パイプ19内は低圧、バルブ機構
20内はその中間の圧力となる。そのため、この圧力差
により潤滑油18がバルブ機構20を介して吸入パイプ
19内に導かれ、圧縮室11に供給される。
Therefore, the lubricating oil 18 inside the closed casing 1 and the inside of the suction pipe 19 communicate with each other through the oil supply pipe 22b, the check valve mechanism 27, the valve mechanism 20 and the oil supply pipe 21. The pipe 19 has a low pressure, and the valve mechanism 20 has an intermediate pressure. Therefore, due to this pressure difference, the lubricating oil 18 is guided into the suction pipe 19 via the valve mechanism 20 and is supplied to the compression chamber 11.

【0053】さらに圧縮機の運転が継続して、密閉ケー
シング1内の圧力が更に上昇し、吸入パイプ19内との
圧力差が大きくなり、バルブ機構20内のバネ20cの
付勢力より圧力差が十分大きくなると、プレート20b
が給油管21に接触するまでバネ20cが縮む。そのた
め、プレート20bと給油管21とが接触シールし、バ
ルブ機構20内と給油管21とは連通しなくなり、バル
ブ機構20、吸入パイプ19を介して行われていた圧縮
室11への直接給油は停止する。しかし、バルブ機構2
0内にはそれまで給油管22bを介して流入していた潤
滑油18が溜まったままとなる。
Further, as the compressor continues to operate, the pressure inside the closed casing 1 further rises, the pressure difference between the inside of the suction pipe 19 becomes large, and the pressure difference becomes greater than the biasing force of the spring 20c inside the valve mechanism 20. When it is large enough, the plate 20b
The spring 20c contracts until it contacts the oil supply pipe 21. Therefore, the plate 20b and the oil supply pipe 21 are contact-sealed with each other, the communication between the inside of the valve mechanism 20 and the oil supply pipe 21 is lost, and direct oil supply to the compression chamber 11 performed via the valve mechanism 20 and the suction pipe 19 is not performed. Stop. However, the valve mechanism 2
The lubricating oil 18 that has flowed in through 0 through the oil supply pipe 22b remains accumulated in 0.

【0054】そして、バルブ機構20内と給油管21内
が連通しなくなると、バルブ機構20内と密閉ケーシン
グ1内との圧力差はなくなり、その結果、弁27bはス
プリング27cの付勢力により弁体27a下部のシート
面27dに付勢され、接触シールされる。
When the inside of the valve mechanism 20 and the inside of the oil supply pipe 21 are no longer communicated with each other, the pressure difference between the inside of the valve mechanism 20 and the inside of the closed casing 1 disappears, and as a result, the valve 27b is moved by the urging force of the spring 27c. The seat surface 27d at the lower part of 27a is urged and contact-sealed.

【0055】そのため、バルブ機構20内は、吸入管2
1及び密閉ケーシング1内とは連通せず、高圧の状態で
維持される。
Therefore, the inside of the valve mechanism 20 includes the suction pipe 2
1 and the inside of the closed casing 1 do not communicate with each other and are maintained in a high pressure state.

【0056】その後、更に圧縮機の運転が継続し冷凍サ
イクルの運転状態等によっては、密閉ケーシング1内の
圧力がそれまでの圧力よりも低下することがある。その
時には、バルブ機構20内の方が密閉ケーシング1内よ
りも圧力が高い状態となり、逆止弁機構27によりバル
ブ機構20内と密閉ケーシング1内とは連通しない。
After that, the pressure in the closed casing 1 may be lower than the pressure up to that point, depending on the operation state of the refrigeration cycle, etc. of the compressor. At that time, the pressure inside the valve mechanism 20 is higher than that inside the closed casing 1, and the check valve mechanism 27 does not allow communication between the inside of the valve mechanism 20 and the inside of the closed casing 1.

【0057】そのため、一旦バルブ機構20内に溜まっ
た潤滑油18は、圧縮機運転中はそのままバルブ機構2
0内に滞留したままとなる。
Therefore, the lubricating oil 18 once stored in the valve mechanism 20 remains as it is during operation of the compressor.
It stays in 0.

【0058】さらに時間が経過して圧縮機が停止する
と、圧縮機内部は時間経過と共に均圧状態になる。すな
わち、給油管21内の圧力が徐々に上昇し、バルブ機構
20内との圧力差が次第に小さくなり、圧力差がバネ2
0cの付勢力より小さくなり、プレート20bが給油管
21から離れ、バルブ機構20内と吸入パイプ19とが
給油管21を介して連通する。
When the compressor is stopped after a further lapse of time, the interior of the compressor becomes in a pressure equalizing state with the lapse of time. That is, the pressure inside the oil supply pipe 21 gradually rises, the pressure difference between the inside of the valve mechanism 20 gradually decreases, and the pressure difference becomes equal to that of the spring 2.
The force becomes smaller than the urging force of 0c, the plate 20b separates from the oil supply pipe 21, and the inside of the valve mechanism 20 communicates with the suction pipe 19 via the oil supply pipe 21.

【0059】そして、圧縮機の運転中にバルブ機構20
内に溜まっていた潤滑油18がその自重により給油管2
1、吸入パイプ19内を介して圧縮室11内に流入し、
圧縮室11を構成するシリンダ4,ローラ5,ベーン
6,主軸受7,副軸受8等の各摺動部に供給される。
Then, the valve mechanism 20 is operated during the operation of the compressor.
The lubricating oil 18 accumulated inside the oil supply pipe 2 due to its own weight.
1, flow into the compression chamber 11 through the suction pipe 19,
It is supplied to each sliding portion such as the cylinder 4, the roller 5, the vane 6, the main bearing 7, the auxiliary bearing 8 and the like which form the compression chamber 11.

【0060】以上のように本実施例の回転式圧縮機は、
給油路を形成する給油管に逆止弁機構を備えた構成であ
るから、圧縮機の運転中において、一旦上昇した密閉ケ
ーシング内の圧力がその後に低下しても、バルブ機構内
の潤滑油が密閉ケーシング内に流出することを防止でき
る。そのため、いかなる圧力状態で圧縮機が運転されて
も、圧縮機運転中において、バルブ機構に確実に潤滑油
を溜め、その潤滑油を圧縮機停止中に圧縮室内に供給す
ることにより、圧縮室を構成するベーンやローラ等の摺
動部が潤滑油不足の状態で圧縮機が起動することを防止
できる。
As described above, the rotary compressor of this embodiment is
Since the oil supply pipe forming the oil supply passage is provided with a check valve mechanism, even if the pressure in the closed casing that has once risen during the operation of the compressor decreases thereafter, the lubricating oil in the valve mechanism will It can be prevented from flowing out into the closed casing. Therefore, no matter what pressure the compressor is operated under, the lubricating oil is reliably accumulated in the valve mechanism during the operation of the compressor, and the lubricating oil is supplied into the compression chamber while the compressor is stopped, so that the compression chamber is maintained. It is possible to prevent the compressor from starting when the sliding portions such as the vanes and the rollers that are formed have insufficient lubricating oil.

【0061】なお、本実施例では、逆止弁機構は、弁
体、弁、スプリングとから構成されているが、他の構成
であっても同様の効果が得られることは言うまでもな
い。
In the present embodiment, the check valve mechanism is composed of the valve body, the valve and the spring, but it goes without saying that the same effect can be obtained with other configurations.

【0062】[0062]

【発明の効果】本発明は上記説明からわかるように、一
端が密閉ケーシング外に連通し、他端がシリンダに設け
られた吸入通路に連通した吸入パイプと、密閉ケーシン
グ内に収納され吸入パイプ、低圧室、吸入通路のいずれ
かより重力方向上方に配設されたバルブ機構と、一端が
バルブ機構より重力方向下方に配設された吸入パイプ、
低圧室、吸入通路のいずれかに連通し、他端がバルブ機
構の下部に連通した給油管と、一端がバルブ機構の上部
に連通し、他端が密閉ケーシング内に溜められた潤滑油
中に開口した給油路を形成する給油管と、バルブ機構の
重力方向下方に配設されたタンクと、一端がバルブ機構
の下部に連通し、他端がタンク内に連通した排液管と、
一端がタンク内に連通し他端がバルブ機構の上部に連通
した均圧管と、バルブ機構に連通した排液管の開口端に
配設され潤滑油より比重が大きく、かつ液冷媒より比重
が小さい材料にて形成されたフロートで構成した均圧機
構を備えたものであるから、圧縮機の起動直後や圧縮機
の停止中に冷凍サイクルから圧縮室に液冷媒が戻ってき
ても、圧縮機の起動直後から一定時間及び圧縮機の運転
停止中に、圧縮室内に直接潤滑油を供給できる。
As can be seen from the above description, the present invention has a suction pipe having one end communicating with the outside of the closed casing and the other end communicating with a suction passage provided in the cylinder, and a suction pipe housed in the closed casing. A valve mechanism disposed above the low-pressure chamber or the suction passage in the direction of gravity, and a suction pipe whose one end is disposed below the valve mechanism in the direction of gravity.
An oil supply pipe that communicates with either the low-pressure chamber or the suction passage and the other end communicates with the lower part of the valve mechanism, and one end communicates with the upper part of the valve mechanism, and the other end with the lubricating oil stored in the closed casing. An oil supply pipe forming an open oil supply passage, a tank disposed below the valve mechanism in the direction of gravity, a drain pipe having one end communicating with the lower portion of the valve mechanism and the other end communicating with the tank,
The pressure equalizing pipe, one end of which communicates with the inside of the tank and the other end of which communicates with the upper part of the valve mechanism, and the drain pipe, which communicates with the valve mechanism, are disposed at the open ends of the pressure equalizing pipe, and have a specific gravity higher than that of the lubricating oil and lower than that of the liquid refrigerant. Since it is equipped with a pressure equalizing mechanism composed of a float formed of material, even if the liquid refrigerant returns from the refrigeration cycle to the compression chamber immediately after the compressor is started or while the compressor is stopped, The lubricating oil can be directly supplied into the compression chamber for a certain period of time immediately after the start-up and while the compressor is stopped.

【0063】また、圧縮機の運転状態、また冷媒や潤滑
油の種類によって、圧縮機の運転停止中や運転中におい
て、冷媒ガスが密閉ケーシング内で凝縮して液冷媒とな
り、密閉ケーシング内下部に滞留したときでも、潤滑油
とともに給油路を介してバルブ機構内に流入した液冷媒
は、タンクに流出し、給油管内及び圧縮室に流れ込むこ
とはない。
Further, depending on the operating condition of the compressor and the types of the refrigerant and the lubricating oil, the refrigerant gas is condensed in the closed casing to become a liquid refrigerant during the stoppage or the operation of the compressor, and the refrigerant gas is formed in the lower part of the closed casing. Even when accumulated, the liquid refrigerant that has flowed into the valve mechanism together with the lubricating oil through the oil supply passage flows out into the tank and does not flow into the oil supply pipe or the compression chamber.

【0064】そのため、圧縮室を構成する各摺動部にお
いて、圧縮機の起動と同時に常に潤滑油を確保すること
ができ、且つ圧縮機の起動前から圧縮室内に十分な潤滑
油を供給することができるため、圧縮室を構成する各摺
動部の摩耗を防止でき圧縮機の耐久信頼性が向上し、同
時に圧縮室を構成する各摺動部の摩耗を防止することに
より、摺動部の加工精度及び潤滑油にてシールされてい
る各シール部のシール性の低下が防止でき、圧縮機の効
率の低下を防止することができる。
Therefore, the lubricating oil can be always ensured at the same time when the compressor is started in each sliding portion forming the compression chamber, and sufficient lubricating oil can be supplied into the compression chamber before the start of the compressor. Therefore, it is possible to prevent wear of the sliding parts that make up the compression chamber, improve the durability reliability of the compressor, and at the same time prevent wear of the sliding parts that make up the compression chamber, It is possible to prevent deterioration of the processing accuracy and the sealing property of each seal portion sealed by the lubricating oil, and prevent the efficiency of the compressor from decreasing.

【0065】また、圧縮機の運転が続くと、圧縮室内へ
の給油は、従来のローラと主軸受,副軸受間の隙間及び
ベーンとシリンダの溝間の隙間を介してなされるが、圧
力変動にも影響されないため圧縮室内に過多の潤滑油が
供給されオイル圧縮を引き起こすこともなく、また圧縮
機から冷凍サイクルへ流出する潤滑油量が増大すること
もない。
When the compressor continues to be operated, oil is supplied into the compression chamber through the gap between the conventional roller and the main bearing and the sub bearing and the gap between the vane and the groove of the cylinder. Therefore, the excessive amount of lubricating oil supplied to the compression chamber does not cause oil compression, and the amount of lubricating oil flowing from the compressor to the refrigeration cycle does not increase.

【0066】また、逆止弁機構を備えた給油路を備えた
ものであるから、圧縮機の運転中において、一旦上昇し
た密閉ケーシング内の圧力がその後に低下しても、バル
ブ機構内の潤滑油が密閉ケーシング内に流出することを
防止できる。したがって、いかなる圧力状態で圧縮機が
運転されても、圧縮機運転中においてバルブ機構に確実
に潤滑油を溜め、その潤滑油を圧縮機の運転停止中に圧
縮室内に供給することにより、圧縮室を構成するベーン
やローラ等の摺動部が潤滑油不足なく円滑な状態で圧縮
機を起動させることができる。
Further, since the oil supply passage provided with the check valve mechanism is provided, even if the pressure in the closed casing which once rises during the operation of the compressor decreases thereafter, lubrication in the valve mechanism is performed. It is possible to prevent oil from flowing out into the closed casing. Therefore, no matter what pressure the compressor is operated under, the lubricating oil is reliably accumulated in the valve mechanism during operation of the compressor, and the lubricating oil is supplied into the compression chamber while the compressor is not operating. It is possible to start the compressor in a smooth state in which the sliding parts such as the vanes and rollers that make up the above are smooth without lack of lubricating oil.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による第1の実施例を示す回転式圧縮機
の要部断面図
FIG. 1 is a sectional view of a main part of a rotary compressor showing a first embodiment according to the present invention.

【図2】同実施例の回転式圧縮機の縦断面図FIG. 2 is a vertical cross-sectional view of the rotary compressor of the same embodiment.

【図3】本発明による第2の実施例を示す回転式圧縮機
の要部断面図
FIG. 3 is a sectional view of an essential part of a rotary compressor showing a second embodiment according to the present invention.

【図4】同実施例の回転式圧縮機の縦断面図FIG. 4 is a vertical cross-sectional view of the rotary compressor of the same embodiment.

【図5】従来の回転式圧縮機の縦断面図FIG. 5 is a vertical sectional view of a conventional rotary compressor.

【図6】図5のA−A線断面図6 is a sectional view taken along line AA of FIG.

【符号の説明】[Explanation of symbols]

1 密閉ケーシング 4 シリンダ 6 ベーン 11 圧縮室 11a 高圧室 11b 低圧室 14 吸入通路 18 潤滑油 19 吸入パイプ 20 バルブ機構 21 給油管 22 給油路 22a 給油管開口部 22b 給油管 23 タンク 24 排液管 24a 排液管の開口端 25 均圧管 26 均圧機構 26a フロート 27 逆止弁機構 27a 弁体 27b 弁 27c スプリング 27d シート面 1 Closed Casing 4 Cylinder 6 Vane 11 Compression Chamber 11a High Pressure Chamber 11b Low Pressure Chamber 14 Suction Passage 18 Lubricating Oil 19 Suction Pipe 20 Valve Mechanism 21 Oil Supply Pipe 22 Oil Supply Path 22a Oil Supply Pipe Opening 22b Oil Supply Pipe 23 Tank 24 Drainage Pipe 24a Discharge Open end of liquid pipe 25 Pressure equalizing pipe 26 Pressure equalizing mechanism 26a Float 27 Check valve mechanism 27a Valve body 27b Valve 27c Spring 27d Seat surface

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 密閉ケーシングと、前記密閉ケーシング
内に配設された圧縮要素を構成するシリンダと、前記シ
リンダ内をローラとベーンで分割形成する低圧室と高圧
室と、一端が前記密閉ケーシング外に連通し、他端が前
記シリンダに形成された吸入通路に連通した吸入パイプ
と、前記密閉ケーシング内に収納され前記吸入パイプ、
前記低圧室、前記吸入通路のいずれかより重力方向上方
に配設されたバルブ機構と、一端が前記バルブ機構より
重力方向下方に配設された前記吸入パイプ、前記低圧
室、前記吸入通路のいずれかに連通し他端が前記バルブ
機構の下部に連通した給油管と、一端が前記バルブ機構
上部に連通し他端が前記密閉ケーシング内に溜められた
潤滑油中に開口した給油路を形成する給油管と、前記バ
ルブ機構の重力方向下方に配設されたタンクと、一端が
前記バルブ機構の下部に連通し他端が前記タンク内に連
通した排液管と、一端が前記タンク内に連通し他端が前
記バルブ機構の上部に連通した均圧管と、前記バルブ機
構に連通した前記排液管の開口端に配設され潤滑油より
比重が大きく且つ液冷媒より比重が小さい材料にて形成
されたフロートで構成する均圧機構とからなる回転式圧
縮機。
1. A hermetic casing, a cylinder constituting a compression element disposed in the hermetic casing, a low pressure chamber and a high pressure chamber in which the interior of the cylinder is divided by rollers and vanes, and one end of which is outside the hermetic casing. A suction pipe, the other end of which is in communication with a suction passage formed in the cylinder, and the suction pipe housed in the closed casing,
Any one of the low pressure chamber and the valve mechanism arranged above the suction passage in the gravity direction, and the suction pipe whose one end is arranged below the valve mechanism in the gravity direction, the low pressure chamber, and the suction passage. An oil supply pipe communicating with the crab and the other end communicating with the lower part of the valve mechanism, and an oil supply passage having one end communicating with the upper part of the valve mechanism and the other end opening into the lubricating oil accumulated in the closed casing. An oil supply pipe, a tank disposed below the valve mechanism in the direction of gravity, a drain pipe having one end communicating with the lower portion of the valve mechanism and the other end communicating with the tank, and one end communicating with the tank. And the other end of the pressure equalizing pipe that communicates with the upper portion of the valve mechanism, and a material that is disposed at the open end of the drainage pipe that communicates with the valve mechanism and that has a specific gravity higher than that of the lubricating oil and lower than that of the liquid refrigerant. With a float Rotary compressor comprising a pressure equalization mechanism.
【請求項2】 給油路を形成する給油管に逆止弁機構を
備えた請求項1記載の回転式圧縮機。
2. A rotary compressor according to claim 1, wherein the oil supply pipe forming the oil supply passage is provided with a check valve mechanism.
JP420195A 1995-01-13 1995-01-13 Rotary type compressor Pending JPH08193587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP420195A JPH08193587A (en) 1995-01-13 1995-01-13 Rotary type compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP420195A JPH08193587A (en) 1995-01-13 1995-01-13 Rotary type compressor

Publications (1)

Publication Number Publication Date
JPH08193587A true JPH08193587A (en) 1996-07-30

Family

ID=11578050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP420195A Pending JPH08193587A (en) 1995-01-13 1995-01-13 Rotary type compressor

Country Status (1)

Country Link
JP (1) JPH08193587A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110159535A (en) * 2019-07-01 2019-08-23 珠海凌达压缩机有限公司 Oil applying assembly of floating switching oil suction hole and compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110159535A (en) * 2019-07-01 2019-08-23 珠海凌达压缩机有限公司 Oil applying assembly of floating switching oil suction hole and compressor

Similar Documents

Publication Publication Date Title
US8202071B2 (en) Motor-driven scroll type compressor
JP3730260B2 (en) Scroll compressor
JP3731068B2 (en) Rotary compressor
CN112253457B (en) Compressor and air conditioner
JP2007315261A (en) Hermetic compressor
WO2007077856A1 (en) Compressor
JP4145830B2 (en) Oil-cooled compressor
JPH08193587A (en) Rotary type compressor
JP5209279B2 (en) Scroll compressor
CN113167278B (en) Screw compressor
JPH08159071A (en) Rotary compressor
JPH07293470A (en) Rotary compressor
JPH062682A (en) Scroll compressor
JP7130133B2 (en) Scroll compressor and refrigeration cycle equipment
JPH05141376A (en) Rotary compressor
JPH07293474A (en) Rotary compressor
JPH06346880A (en) Rotary compressor
JPS63129177A (en) Lubricating oil return device for gas compressor
JP3374081B2 (en) Hermetic rotary compressor
JPH04219486A (en) Rotary compressor
JPH07247980A (en) Rotary compressor
JPH07247981A (en) Rotary compressor
JPH07293476A (en) Rotary compressor
JPH0552193A (en) Oil returning device of compressor
JPH07310689A (en) Rotary compressor