JPH07293470A - Rotary compressor - Google Patents

Rotary compressor

Info

Publication number
JPH07293470A
JPH07293470A JP8827194A JP8827194A JPH07293470A JP H07293470 A JPH07293470 A JP H07293470A JP 8827194 A JP8827194 A JP 8827194A JP 8827194 A JP8827194 A JP 8827194A JP H07293470 A JPH07293470 A JP H07293470A
Authority
JP
Japan
Prior art keywords
compressor
lubricating oil
valve mechanism
oil supply
compression chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8827194A
Other languages
Japanese (ja)
Inventor
Ichiro Morita
一郎 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP8827194A priority Critical patent/JPH07293470A/en
Publication of JPH07293470A publication Critical patent/JPH07293470A/en
Pending legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To prevent starting in the shortage state of lubricating oil so as to improve reliability of respective sliding parts by directly supplying lubricating oil into a compression chamber through a valve mechanism even if liquid refrigerant is returned into the compression chamber from a refrigerating cycle while the compressor is stopped or just after being started. CONSTITUTION:Before a compressor is started, a clearance is formed between a plate 20b and an oil supply pipe 21 by energizing force of a spring 20. While, when the compressor is started, pressure in an intake pipe 19 and in the oil supply pipe 21 is lowered than the internal pressure of a closed casing. Since the oil supply pipe 22 has pressure equal to pressure in the closed casing, internal pressure of a valve mechanism 20 becomes higher than pressure in the oil supply passage 22 and overcomes energizing force of a spring 20c, so as to press and separate a place 20b from an opening part 22 of the oil supply passage 22. At this time, since differential pressure is not so large to press the plate to a pipe 21, lubricating oil in an oil supply closed casing is communicated with an oil supply pipe 19, and lubricating oil is supplied to the compression chamber.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は冷凍サイクル等に使用す
る回転式圧縮機に関し、特に信頼性の向上に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotary compressor used in a refrigeration cycle or the like, and more particularly to improving reliability.

【0002】[0002]

【従来の技術】従来の回転式圧縮機としては、特開昭6
3−134888号公報に示されているものがある。以
下、図面を参照しながら上記従来の回転式圧縮機の一例
を説明する。
2. Description of the Related Art As a conventional rotary compressor, Japanese Patent Laid-Open No.
There is one disclosed in Japanese Patent Publication No. 3-134888. Hereinafter, an example of the conventional rotary compressor will be described with reference to the drawings.

【0003】従来の構成を図4、図5に示す。図4、図
5において、1は密閉ケーシング、2は電動機部であ
り、シャフト3を介してシリンダ4,ローラ5,ベーン
6,主軸受7,副軸受8により構成される機械部本体9
と連結している。シャフト3は主軸3a,副軸3b,ク
ランク3cよりなる。10はベーン背面に設けられたス
プリングである。
A conventional configuration is shown in FIGS. In FIG. 4 and FIG. 5, 1 is a closed casing, 2 is an electric motor part, and a machine part main body 9 composed of a cylinder 4, a roller 5, a vane 6, a main bearing 7, and a sub bearing 8 via a shaft 3.
Connected with. The shaft 3 includes a main shaft 3a, a sub shaft 3b, and a crank 3c. Reference numeral 10 is a spring provided on the back surface of the vane.

【0004】11はシリンダ4内で、ローラ5,ベーン
6,主軸受7,副軸受8により構成される圧縮室であ
る。12はシャフト3と連結する給油機構である。13
はシリンダ4に固定された吸入管であり、シリンダ4の
吸入通路14を介して圧縮室11と連通している。
Reference numeral 11 denotes a compression chamber in the cylinder 4, which is constituted by the roller 5, the vane 6, the main bearing 7, and the auxiliary bearing 8. Reference numeral 12 is an oil supply mechanism connected to the shaft 3. Thirteen
Is a suction pipe fixed to the cylinder 4, and communicates with the compression chamber 11 via a suction passage 14 of the cylinder 4.

【0005】15は吐出孔であり吐出弁16を介して密
閉ケーシング1内と連通している。17は吐出管であり
密閉ケーシング1内に開放している。18は潤滑油であ
る。また、電動機部2は回転子2aと固定子2bにより
構成され回転子2aにはバランスウェイト2c,2dが
固定されている。
A discharge hole 15 communicates with the inside of the closed casing 1 through a discharge valve 16. A discharge pipe 17 is open to the inside of the closed casing 1. Reference numeral 18 is a lubricating oil. The electric motor unit 2 is composed of a rotor 2a and a stator 2b, and balance weights 2c and 2d are fixed to the rotor 2a.

【0006】冷却システム(図示せず)からの冷媒ガス
は、吸入管13,吸入通路14より導かれシリンダ4内
の圧縮室11に至る。圧縮室11に至った冷媒ガスは、
シャフト3のクランク3cに嵌合されたローラ5とベー
ン6により仕切られた圧縮室11で、電動機部2の回転
に伴うシャフト3及びローラ5の回転運動により漸次圧
縮される。従って圧縮途中において、高圧室11aと低
圧室11bとが存在することになる。
Refrigerant gas from a cooling system (not shown) is introduced from a suction pipe 13 and a suction passage 14 to reach a compression chamber 11 in the cylinder 4. The refrigerant gas reaching the compression chamber 11 is
In the compression chamber 11 partitioned by the roller 5 and the vane 6 fitted to the crank 3c of the shaft 3, the shaft 3 and the roller 5 are gradually compressed due to the rotational motion of the electric motor unit 2. Therefore, the high pressure chamber 11a and the low pressure chamber 11b exist during the compression.

【0007】圧縮された冷媒ガスは、副軸受8に備えて
いる吐出孔15,吐出弁16を介して密閉ケーシング1
内に一旦吐出された後、吐出管17を介し冷却システム
に吐出される。
The compressed refrigerant gas passes through the discharge hole 15 and the discharge valve 16 provided in the auxiliary bearing 8 and the hermetic casing 1
After being once discharged into the inside, it is discharged to the cooling system through the discharge pipe 17.

【0008】又、潤滑油18は、給油機構12によりシ
ャフト3とローラ5,主軸受7,副軸受8等の摺動部に
供給される。シャフト3とローラ5間の摺動部は高圧で
あるため、シャフト3とローラ5間の摺動部に供給され
た潤滑油18は、ローラ5と主軸受7,副軸受8間の隙
間を介して、より低圧であるシリンダ4内の圧縮室11
に差圧により供給される。
Lubricating oil 18 is supplied to the sliding portions of shaft 3, roller 5, main bearing 7, auxiliary bearing 8 and the like by oil supply mechanism 12. Since the sliding portion between the shaft 3 and the roller 5 has a high pressure, the lubricating oil 18 supplied to the sliding portion between the shaft 3 and the roller 5 passes through the gap between the roller 5 and the main bearing 7 and the sub bearing 8. The compression chamber 11 in the cylinder 4 that has a lower pressure
Is supplied by differential pressure.

【0009】さらに、ベーン6はシリンダ4の溝内を往
復運動する際に、密閉ケーシング1内に溜められた潤滑
油18中に浸り、ベーン6とシリンダ4間の隙間を介し
て、高圧である密閉ケーシング1内からより低圧である
シリンダ4内の圧縮室11に差圧により供給される。
Further, when the vane 6 reciprocates in the groove of the cylinder 4, the vane 6 is immersed in the lubricating oil 18 accumulated in the closed casing 1 and has a high pressure through the gap between the vane 6 and the cylinder 4. The pressure is supplied from the inside of the closed casing 1 to the compression chamber 11 in the cylinder 4, which has a lower pressure, by a differential pressure.

【0010】[0010]

【発明が解決しようとする課題】しかしながら上記従来
のような構成では、圧縮機が停止中、特に冷蔵庫におけ
る除霜時や、圧縮機の起動直後において、冷凍サイクル
から圧縮機の圧縮室11にガス状態の冷媒でなく凝縮し
た液冷媒が戻り、圧縮室11を構成するシリンダ4,ロ
ーラ5,ベーン6,主軸受7,副軸受8等の各摺動部に
付着している潤滑油を取り除いてしまう。
However, in the above-described conventional configuration, gas is transferred from the refrigeration cycle to the compression chamber 11 of the compressor while the compressor is stopped, particularly when the refrigerator is defrosted or immediately after the compressor is started. The condensed liquid refrigerant returns instead of the refrigerant in the state, and the lubricating oil adhering to each sliding portion such as the cylinder 4, the roller 5, the vane 6, the main bearing 7, the auxiliary bearing 8 and the like which configures the compression chamber 11 is removed. I will end up.

【0011】従って、圧縮機が運転し、密閉ケーシング
1内の圧力が上昇し、差圧により各摺動部に隙間を介し
て潤滑油18が供給されるまでの間、摺動部が潤滑油が
ほとんど無い状態で運転される。そのため、摺動部、特
に潤滑油18が供給されていても摺動状態が金属接触に
近いベーン6の先端とローラ5との摺動部が摩耗すると
いった信頼性上の問題があった。
Therefore, until the compressor operates, the pressure in the closed casing 1 rises, and the lubricating oil 18 is supplied to the respective sliding parts through the gaps due to the differential pressure, the sliding parts are lubricated with the lubricating oil. There is almost no Therefore, there is a reliability problem that the sliding portion, especially the sliding portion between the tip of the vane 6 and the roller 5 whose sliding state is close to metal contact is worn even if the lubricating oil 18 is supplied.

【0012】また、圧縮室11を構成する各摺動部が摩
耗することにより、摺動部の加工精度及び潤滑油にてシ
ールされている各シール部のシール性が低下し、圧縮機
の効率が低下するといった問題があった。
Further, as the sliding parts constituting the compression chamber 11 are worn, the processing accuracy of the sliding parts and the sealing performance of each sealing part sealed by the lubricating oil are deteriorated, and the efficiency of the compressor is reduced. There was a problem that it decreased.

【0013】本発明は従来の課題を解決するものであ
り、簡単な構成で圧縮機停止中や、圧縮機起動直後に冷
凍サイクルから圧縮室に液冷媒が戻ってきても、圧縮機
の停止中に圧縮室内に直接潤滑油を供給し、かつ圧縮機
起動直後から一定時間圧縮室内に直接潤滑油を供給する
ことによって、圧縮室を構成する各摺動部が潤滑油不足
の状態で圧縮機が起動することを防止し、圧縮室を構成
する各摺動部等の信頼性を向上させるとともに、各シー
ル部のシール性の低下による圧縮機の効率の低下を防止
することを目的とするものである。
The present invention solves the problems of the prior art. While the compressor is stopped with a simple structure, or even when the liquid refrigerant returns from the refrigeration cycle to the compression chamber immediately after the compressor is started, the compressor is stopped. By directly supplying the lubricating oil into the compression chamber for a certain period of time immediately after the compressor is started, the compressor can be operated in a state where each sliding part that constitutes the compression chamber is insufficient in lubricating oil. The purpose is to prevent the start-up, improve the reliability of each sliding part that constitutes the compression chamber, and prevent the efficiency of the compressor from being deteriorated due to the deterioration of the sealing property of each sealing part. is there.

【0014】また、圧縮機の運転状態や、冷媒及び潤滑
油の種類によっては、冷媒ガスが密閉ケーシング1内で
凝縮して液冷媒となり、密閉ケーシング1下部に滞留す
る。特に非相溶性の潤滑油を使用した際には、潤滑油に
比重は液冷媒の比重よりも小さい。
Further, depending on the operating condition of the compressor and the types of the refrigerant and the lubricating oil, the refrigerant gas is condensed in the closed casing 1 to become a liquid refrigerant and stays below the closed casing 1. In particular, when an incompatible lubricating oil is used, the specific gravity of the lubricating oil is smaller than that of the liquid refrigerant.

【0015】本発明は、圧縮室内に直接潤滑油を供給す
る際に液冷媒の混入を防止し、圧縮室を構成する各摺動
部等の信頼性を向上させるとともに、各シール部のシー
ル性の低下による圧縮機の効率の低下を防止する。
The present invention prevents the mixture of the liquid refrigerant when directly supplying the lubricating oil into the compression chamber, improves the reliability of the sliding parts and the like which form the compression chamber, and seals the sealing parts. To prevent the efficiency of the compressor from decreasing due to

【0016】[0016]

【課題を解決するための手段】この目的を達成するため
本発明の回転式圧縮機は、一端が密閉ケーシング外に連
通し、他端がシリンダに設けられた吸入通路に連通した
吸入パイプと、密閉ケーシング内に収納され吸入パイ
プ、低圧室、吸入通路のいずれかより重力方向上方に配
設されたバルブ機構と、一端がバルブ機構より重力方向
下方に配設され記吸入パイプ、低圧室、吸入通路のいず
れかに連通し、他端がバルブ機構の下部に連通した給油
管と、一端がバルブ機構の上部に連通し、他端が密閉ケ
ーシング内に溜められた潤滑油中に開口した給油路とか
ら構成されている。
To achieve this object, a rotary compressor according to the present invention has a suction pipe having one end communicating with the outside of a hermetic casing and the other end communicating with a suction passage provided in a cylinder. A valve mechanism that is housed in a closed casing and is disposed above the suction pipe, the low pressure chamber, or the suction passage in the direction of gravity, and one end is disposed below the valve mechanism in the direction of gravity. An oil supply pipe that communicates with one of the passages and the other end communicates with the lower part of the valve mechanism, and an oil supply passage that has one end communicating with the upper part of the valve mechanism and the other end that opens into the lubricating oil stored in the closed casing. It consists of and.

【0017】また、吸入パイプ、低圧室、吸入通路のい
ずれかの重力方向下方に配設されたタンクと、一端がバ
ルブ機構の下部に連通し他端がタンクに連通した排液管
と、一端がタンクの上部に連通し他端が吸入パイプ、低
圧室、吸入通路のいずれかに連通したガス路と、バルブ
機構に連通した排液管の開口端に配設され潤滑油より比
重が大きく且つ液冷媒より比重が小さい材料にて形成さ
れたフロート機構とから構成されている。
Further, a tank disposed below the suction pipe, the low pressure chamber, or the suction passage in the direction of gravity, a drain pipe having one end communicating with the lower portion of the valve mechanism and the other end communicating with the tank, and one end Is connected to the upper part of the tank and the other end is connected to the suction pipe, the low pressure chamber, or the suction passage, and is disposed at the open end of the drain pipe that communicates with the valve mechanism. The float mechanism is made of a material having a smaller specific gravity than the liquid refrigerant.

【0018】[0018]

【作用】本発明の回転式圧縮機は、圧縮機の停止中や圧
縮機起動直後に冷凍サイクルから圧縮室に液冷媒が戻っ
てきても、バルブ機構を介して圧縮機の停止中に圧縮室
内に直接潤滑油を供給し、かつ圧縮機起動直後から一定
時間圧縮室内に直接潤滑油を供給することができる。そ
のため、圧縮室を構成する各摺動部が潤滑油不足の状態
で圧縮機が起動することを防止でき、圧縮室を構成する
各摺動部等の信頼性が向上するとともに、各シール部の
シール性の低下による圧縮機の効率の低下を防止するこ
とができる。
In the rotary compressor of the present invention, even if the liquid refrigerant returns from the refrigeration cycle to the compression chamber during the stop of the compressor or immediately after the compressor is started, the compression chamber is stopped during the stop of the compressor via the valve mechanism. It is possible to directly supply the lubricating oil to the compressor and to directly supply the lubricating oil into the compression chamber for a certain period of time immediately after the compressor is started. Therefore, it is possible to prevent the compressor from starting in a state where each sliding portion that constitutes the compression chamber is insufficient in lubricating oil, improve the reliability of each sliding portion that constitutes the compression chamber, and improve the reliability of each sealing portion. It is possible to prevent a decrease in the efficiency of the compressor due to a decrease in the sealing property.

【0019】また、圧縮室を構成する各摺動部の摩耗を
防止することにより、摺動部の加工精度及び潤滑油にて
シールされている各シール部のシール性の低下を防止で
き、圧縮機の効率の低下を防止することができる。
Further, by preventing the sliding parts constituting the compression chamber from being worn, it is possible to prevent the working accuracy of the sliding parts and the deterioration of the sealing property of each sealing part sealed by the lubricating oil from being deteriorated. It is possible to prevent the efficiency of the machine from decreasing.

【0020】また、密閉ケーシング内で冷媒が凝縮し、
密閉ケーシング下部に液冷媒として滞留しても、その液
冷媒をバルブ機構を介して直接圧縮室に供給することを
防止し、潤滑油のみを供給することができ、圧縮室を構
成する各摺動部等の信頼性が向上するとともに、各シー
ル部のシール性の低下による圧縮機の効率の低下を防止
することができる。
Further, the refrigerant is condensed in the closed casing,
Even if it stays as a liquid refrigerant in the lower part of the closed casing, it is possible to prevent the liquid refrigerant from being directly supplied to the compression chamber through the valve mechanism, and only the lubricating oil can be supplied. It is possible to improve the reliability of the parts and the like, and prevent the efficiency of the compressor from being deteriorated due to the deterioration of the sealing property of each seal part.

【0021】[0021]

【実施例】以下、本発明による回転式圧縮機の第1の実
施例について、図面を参照しながら説明する。尚、従来
と同一構成については、同一符号を付して詳細な説明を
省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the rotary compressor according to the present invention will be described below with reference to the drawings. It should be noted that the same components as those of the related art are denoted by the same reference numerals and detailed description thereof will be omitted.

【0022】図1は本発明の第1の実施例による回転式
圧縮機の要部断面図である。図2は同実施例の回転式圧
縮機の縦断面図である。
FIG. 1 is a sectional view of a main part of a rotary compressor according to a first embodiment of the present invention. FIG. 2 is a vertical sectional view of the rotary compressor of the same embodiment.

【0023】図1、図2において、14はシリンダ4に
設けられた吸入通路、19は一端が密閉ケーシング1外
に連通し、他端が吸入通路14に連通した吸入パイプで
あり、20は密閉ケーシング1内に収納され吸入パイプ
19の重力方向上方に配設されたバルブ機構である。
In FIGS. 1 and 2, 14 is a suction passage provided in the cylinder 4, 19 is a suction pipe having one end communicating with the outside of the closed casing 1 and the other end communicating with the suction passage 14, and 20 is a hermetic seal. The valve mechanism is housed in the casing 1 and arranged above the suction pipe 19 in the direction of gravity.

【0024】21は一端が吸入パイプ19の重力方向上
方に連通し、他端がバルブ機構20の下部に連通した給
油管であり、22は一端がバルブ機構20に連通し、他
端が密閉ケーシング1内に溜められた潤滑油18中に開
口した給油路である。
Reference numeral 21 is an oil supply pipe having one end communicating with the suction pipe 19 above the gravity direction and the other end communicating with the lower portion of the valve mechanism 20, and 22 is one end communicating with the valve mechanism 20 and the other end being a closed casing. 1 is an oil supply passage that opens into the lubricating oil 18 stored in 1.

【0025】バルブ機構20は、ホルダー20a,プレ
ート20b,バネ20cとから構成されている。バネ2
0cはプレート20bをホルダー20a上部の給油路2
2の開口部22aに不勢するように配設されている。
The valve mechanism 20 comprises a holder 20a, a plate 20b and a spring 20c. Spring 2
0c refers to the plate 20b and the oil supply passage 2 above the holder 20a.
The second opening 22a is arranged so as not to be biased.

【0026】以上のように構成された回転式圧縮機にお
いて、以下その動作を説明する。まず、圧縮機の起動直
後において、蒸発器に滞留していた液冷媒が圧縮機に吸
い込まれることがある。圧縮機に液冷媒が吸い込まれる
際には、まず、吸入パイプ19内を液冷媒が流れ、シリ
ンダ4に設けられた吸入通路14を介して圧縮室11に
導かれ、シリンダ4,ローラ5,ベーン6,主軸受7,
副軸受8等の各摺動部に付着している潤滑油18を取り
除いてしまう。
The operation of the rotary compressor having the above structure will be described below. First, immediately after the start of the compressor, the liquid refrigerant that has accumulated in the evaporator may be sucked into the compressor. When the liquid refrigerant is sucked into the compressor, first, the liquid refrigerant flows in the suction pipe 19 and is guided to the compression chamber 11 through the suction passage 14 provided in the cylinder 4, and then the cylinder 4, the roller 5, the vane. 6, main bearing 7,
The lubricating oil 18 adhering to each sliding portion such as the sub bearing 8 is removed.

【0027】しかしながら、まず圧縮機起動前は、プレ
ート20bはバネ20cによりホルダー20a上部の給
油路22の開口部22aに不勢されているため、プレー
ト20bと給油管21とは接触シールせず、隙間が保た
れている。その後圧縮機が起動した際には、吸入パイプ
19内及び給油管21内の圧力は低下し、密閉ケーシン
グ1内の圧力より低くなる。
However, first, since the plate 20b is biased by the spring 20c to the opening 22a of the oil supply passage 22 above the holder 20a before the compressor is activated, the plate 20b and the oil supply pipe 21 do not contact and seal, A gap is maintained. After that, when the compressor is started, the pressure in the suction pipe 19 and the pressure in the oil supply pipe 21 decrease and become lower than the pressure in the closed casing 1.

【0028】給油路22内は密閉ケーシング1内と同じ
圧力であるため、給油路22内の圧力がバルブ機構20
内の圧力よりも高くなり圧力差が生じる。圧縮機の起動
初期においてはこの圧力差は小さいが、プレート20b
を給油路22の開口部22aに不勢するバネ20cの不
勢力より僅かに大きくなる。そのため、プレート20b
は給油路22の開口部22aから離れるが、圧力差がバ
ネ20cの不勢力に対して十分大きくないため、プレー
ト20bは給油管21に押しつけられない。
Since the pressure in the oil supply passage 22 is the same as that in the closed casing 1, the pressure in the oil supply passage 22 is equal to that in the valve mechanism 20.
It becomes higher than the internal pressure and a pressure difference occurs. Although the pressure difference is small in the initial stage of starting the compressor, the plate 20b
Is slightly larger than the biasing force of the spring 20c biasing the opening 22a of the oil supply passage 22. Therefore, the plate 20b
Is separated from the opening 22a of the oil supply passage 22, but the plate 20b cannot be pressed against the oil supply pipe 21 because the pressure difference is not sufficiently large with respect to the biasing force of the spring 20c.

【0029】したがって、密閉ケーシング1内の潤滑油
18と給油パイプ19内は、給油路22、バルブ機構2
0、給油管21を介して連通し、潤滑油18は高圧、吸
入パイプ19内は低圧、バルブ機構20内はその中間の
圧力となる。そのため、この圧力差により潤滑油18が
バルブ機構20を介して吸入パイプ19内に導かれ、圧
縮室11に供給される。
Therefore, the lubricating oil 18 inside the closed casing 1 and the inside of the oil supply pipe 19 are provided with the oil supply passage 22 and the valve mechanism 2.
0, the oil is communicated through the oil supply pipe 21, the lubricating oil 18 has a high pressure, the suction pipe 19 has a low pressure, and the valve mechanism 20 has an intermediate pressure. Therefore, due to this pressure difference, the lubricating oil 18 is guided into the suction pipe 19 via the valve mechanism 20 and is supplied to the compression chamber 11.

【0030】さらに圧縮機の運転が継続して、密閉ケー
シング1内の圧力が更に上昇し、吸入パイプ19内との
圧力差が大きくなり、バネ20cの不勢力より圧力差が
十分大きくなると、プレート20bが給油管21に接触
するまでバネ20cが縮む。そのため、プレート20b
と給油管21とが接触シールし、バルブ機構20内と給
油管21とは連通しなくなり、バルブ機構20、吸入パ
イプ19を介して行われていた圧縮室11への直接給油
は行われなくなる。しかし、バルブ機構20内にはそれ
まで給油路22を介して流入していた潤滑油18が溜ま
ったままとなる。
When the operation of the compressor is further continued and the pressure inside the closed casing 1 further rises, the pressure difference between the inside of the suction pipe 19 becomes large, and the pressure difference becomes sufficiently larger than the biasing force of the spring 20c, the plate The spring 20c contracts until 20b contacts the oil supply pipe 21. Therefore, the plate 20b
And the oil supply pipe 21 are in contact with each other, the communication between the inside of the valve mechanism 20 and the oil supply pipe 21 is lost, and the direct oil supply to the compression chamber 11 which is performed via the valve mechanism 20 and the suction pipe 19 is not performed. However, the lubricating oil 18 that has flowed in through the oil supply passage 22 until then remains in the valve mechanism 20.

【0031】そして、バルブ機構20、吸入パイプ19
を介して行われていた圧縮室11への直接給油は行われ
なくなった後は、従来のローラ5と主軸受7,副軸受8
間の隙間及びベーン6とシリンダ4の溝間の隙間を介し
て圧縮室11内への給油となる。
Then, the valve mechanism 20 and the suction pipe 19
After the direct oil supply to the compression chamber 11 which has been performed via the oil is no longer performed, the conventional roller 5, the main bearing 7, and the auxiliary bearing 8 are used.
Oil is supplied into the compression chamber 11 through the gap between them and the gap between the vane 6 and the groove of the cylinder 4.

【0032】従って、圧縮機の起動直後に冷凍サイクル
から液冷媒が戻ってきても、起動と同時に圧縮室11に
直接給油を行うことにより、圧縮室11を構成するシリ
ンダ4,ローラ5,ベーン6,主軸受7,副軸受8等の
各摺動部において、液冷媒により付着している潤滑油1
8が取り除かれて摺動することを防止できる。
Therefore, even if the liquid refrigerant returns from the refrigeration cycle immediately after the compressor is started, the cylinder 4, the roller 5, and the vane 6 forming the compression chamber 11 are directly supplied with oil at the same time as the startup. Lubricating oil 1 adhered by the liquid refrigerant on the sliding parts of the main bearing 7, the sub bearing 8, etc.
It is possible to prevent 8 from being removed and sliding.

【0033】また、圧縮室11内に過多の潤滑油18が
供給されオイル圧縮を引き起こすこともなく、圧縮機か
ら冷凍サイクルへ流出する潤滑油量が増大することもな
い。
Further, the excessive amount of the lubricating oil 18 is not supplied to the compression chamber 11 to cause oil compression, and the amount of the lubricating oil flowing out from the compressor to the refrigeration cycle does not increase.

【0034】尚、給油路22,バルブ機構20を介して
圧縮室11内へ直接給油を行う時間は、バネ20cの不
勢力を変えることによって調整できることは言うまでも
ない。
Needless to say, the time for directly supplying oil into the compression chamber 11 via the oil supply passage 22 and the valve mechanism 20 can be adjusted by changing the biasing force of the spring 20c.

【0035】更に時間が経過して圧縮機が停止すると、
圧縮機内部は時間経過と共に均圧する。即ち、給油路2
2内の圧力が徐々に低下し、吸入パイプ19内の圧力が
徐々に上昇し、その圧力差が次第に小さくなる。従っ
て、圧力差がバネ20cの不勢力より小さくなり、プレ
ート20bが給油管21から離れ、バルブ機構20内と
吸入パイプ19とが給油管21を介して連通する。
When the compressor stops after a further time elapses,
The pressure inside the compressor is equalized over time. That is, the oil supply passage 2
The pressure in 2 gradually decreases, the pressure in the suction pipe 19 gradually increases, and the pressure difference gradually decreases. Therefore, the pressure difference becomes smaller than the biasing force of the spring 20c, the plate 20b separates from the oil supply pipe 21, and the valve mechanism 20 and the suction pipe 19 communicate with each other via the oil supply pipe 21.

【0036】そして、圧縮機の運転中にバルブ機構20
内に溜まっていた潤滑油18がその自重により給油管2
1、吸入パイプ19内を介して圧縮室11内に流入し、
圧縮室11を構成するシリンダ4,ローラ5,ベーン
6,主軸受7,副軸受8等の各摺動部に供給される。
尚、本実施例において、吸入パイプ19が圧縮室11に
対して重力方向上方となるよう傾斜している方がより効
果的であることは言うまでもない。
The valve mechanism 20 is operated during the operation of the compressor.
The lubricating oil 18 accumulated inside the oil supply pipe 2 due to its own weight.
1, flow into the compression chamber 11 through the suction pipe 19,
It is supplied to each sliding portion such as the cylinder 4, the roller 5, the vane 6, the main bearing 7, the auxiliary bearing 8 and the like which form the compression chamber 11.
Needless to say, in the present embodiment, it is more effective if the suction pipe 19 is inclined with respect to the compression chamber 11 so as to be upward in the gravity direction.

【0037】従って、圧縮機の停止中に、冷凍サイクル
から圧縮機の圧縮室11に液冷媒が戻ってきても、バル
ブ機構20内に溜まっていた潤滑油18を直接圧縮室1
1に供給することができ、圧縮室11を構成するシリン
ダ4,ローラ5,ベーン6,主軸受7,副軸受8等の各
摺動部において、潤滑油が液冷媒によって取り除かれる
ことを防止できる。そのため、圧縮機の起動直前から圧
縮室11内には十分な潤滑油が供給されており、圧縮室
11を構成する各摺動部が潤滑油不足状態で起動するこ
とを防止できる。
Therefore, even if the liquid refrigerant returns from the refrigeration cycle to the compression chamber 11 of the compressor while the compressor is stopped, the lubricating oil 18 accumulated in the valve mechanism 20 is directly transferred to the compression chamber 1
It is possible to prevent the lubricating oil from being removed by the liquid refrigerant in each of the sliding parts such as the cylinder 4, the roller 5, the vane 6, the main bearing 7, the auxiliary bearing 8 that constitute the compression chamber 11. . Therefore, a sufficient amount of lubricating oil is supplied into the compression chamber 11 immediately before the compressor is started, and it is possible to prevent each sliding portion that constitutes the compression chamber 11 from starting in a lubricating oil shortage state.

【0038】以上のように本実施例の回転式圧縮機は、
一端が密閉ケーシング外に連通し、他端がシリンダに設
けられた吸入通路に連通した吸入パイプと、密閉ケーシ
ング内に収納され吸入パイプより重力方向上方に配設さ
れたバルブ機構と、一端がバルブ機構より重力方向下方
に配設された吸入パイプに連通し、他端がバルブ機構の
下部に連通した給油管と、一端がバルブ機構の上部に連
通し、他端が密閉ケーシング内に溜められた潤滑油中に
開口した給油路を備えたものであるから、圧縮機の起動
直後や圧縮機の停止中に冷凍サイクルから圧縮室に液冷
媒が戻ってきても、圧縮機の起動直後から一定時間及び
圧縮機の停止中に、圧縮室内に直接潤滑油を供給でき
る。
As described above, the rotary compressor of this embodiment is
A suction pipe having one end communicating with the outside of the closed casing and the other end communicating with a suction passage provided in the cylinder, a valve mechanism housed in the closed casing and disposed above the suction pipe in the direction of gravity, and a valve at one end. An oil supply pipe that communicates with a suction pipe disposed below the mechanism in the direction of gravity and the other end communicates with the lower part of the valve mechanism, and one end communicates with the upper part of the valve mechanism, and the other end is stored in a closed casing. Since it has an oil supply path that opens into the lubricating oil, even if the liquid refrigerant returns from the refrigeration cycle to the compression chamber immediately after the compressor is started or while the compressor is stopped, it will continue for a certain period of time immediately after the compressor starts. Also, the lubricating oil can be directly supplied into the compression chamber while the compressor is stopped.

【0039】そのため、圧縮室を構成する各摺動部にお
いて、圧縮機の起動と同時に常に潤滑油を確保すること
ができ、且つ圧縮機の起動前から圧縮室内に十分な潤滑
油を供給することができるため、圧縮室を構成する各摺
動部の摩耗等を防止でき、信頼性が向上する。
Therefore, in each of the sliding parts constituting the compression chamber, the lubricating oil can be always secured at the same time as the compressor is started, and sufficient lubricating oil can be supplied into the compression chamber before the compressor is started. As a result, it is possible to prevent abrasion of each sliding portion that constitutes the compression chamber and improve reliability.

【0040】また、圧縮室を構成する各摺動部の摩耗を
防止することにより、摺動部の加工精度及び潤滑油にて
シールされている各シール部のシール性の低下を防止で
き、圧縮機の効率の低下を防止することができる。
Further, by preventing the wear of the sliding parts constituting the compression chamber, it is possible to prevent the processing accuracy of the sliding parts and the deterioration of the sealing property of each sealing part sealed by the lubricating oil from being deteriorated. It is possible to prevent the efficiency of the machine from decreasing.

【0041】また、圧縮機の運転が続くと、圧縮室内へ
の給油は、従来のローラと主軸受,副軸受間の隙間及び
ベーンとシリンダの溝間の隙間を介しての供給となる。
そのため、圧縮室内に過多の潤滑油が供給されオイル圧
縮を引き起こすこともなく、また圧縮機から冷凍サイク
ルへ流出する潤滑油量が増大することもない。
When the compressor continues to be operated, oil is supplied into the compression chamber through the gap between the conventional roller and the main bearing and the sub bearing, and the gap between the vane and the groove of the cylinder.
Therefore, the excessive amount of lubricating oil is not supplied to the compression chamber to cause oil compression, and the amount of lubricating oil flowing from the compressor to the refrigeration cycle does not increase.

【0042】尚、本実施例では、給油管が吸入パイプに
連通しているが、給油管がシリンダ内の低圧室や吸入通
路等の、圧縮機の起動により圧力が低下する箇所に連通
していれば同様の効果が得られることは言うまでもな
い。また、圧縮機の停止中にプレートが給油路の開口部
に接触していなくても、プレートが給油管と接触シール
していなければ良いことは言うまでもない。
In this embodiment, the oil supply pipe is communicated with the suction pipe, but the oil supply pipe is communicated with the low pressure chamber in the cylinder, the suction passage, and the like where the pressure is reduced by the start of the compressor. Needless to say, the same effect can be obtained. Needless to say, even if the plate is not in contact with the opening of the oil supply passage while the compressor is stopped, it is sufficient if the plate is not in contact with and sealed by the oil supply pipe.

【0043】次に、本発明の回転式圧縮機の第2の実施
例について、図面を参照しながら説明する。尚、第1の
実施例と同一構成については、同一符号を付して詳細な
説明は省略する。
Next, a second embodiment of the rotary compressor of the present invention will be described with reference to the drawings. The same components as those in the first embodiment are designated by the same reference numerals and detailed description thereof will be omitted.

【0044】図3は本発明の第2の実施例による回転式
圧縮機の要部断面図である。図3において、23は吸入
パイプ19の重力方向下方に配設されたタンクである。
24は一端がバルブ機構20の下部に連通し他端がタン
ク23に連通した排液管である。
FIG. 3 is a sectional view of the essential parts of a rotary compressor according to the second embodiment of the present invention. In FIG. 3, reference numeral 23 is a tank disposed below the suction pipe 19 in the direction of gravity.
Reference numeral 24 is a drain pipe having one end communicating with the lower portion of the valve mechanism 20 and the other end communicating with the tank 23.

【0045】25は一端がタンク23の上部に連通し他
端が吸入パイプ19に連通したガス路であり、26はバ
ルブ機構20に連通した排液管24の開口端24aに配
設され潤滑油より比重が大きく且つ液冷媒より比重が小
さい材料にて形成されたたフロート機構である。
Reference numeral 25 is a gas passage, one end of which communicates with the upper portion of the tank 23 and the other end of which communicates with the suction pipe 19. Reference numeral 26 denotes a gas passage which is disposed at an opening end 24a of a drainage pipe 24 which communicates with the valve mechanism 20. The float mechanism is made of a material having a higher specific gravity and a lower specific gravity than the liquid refrigerant.

【0046】以上のように構成された回転式圧縮機にお
いて、以下その動作を説明する。圧縮機の運転状態、ま
た冷媒や潤滑油の種類によっては、圧縮機の停止中や運
転中において、冷媒ガスが密閉ケーシング1内で凝縮し
て液冷媒となり、密閉ケーシング1内下部に滞留する。
特に非相溶性の潤滑油を使用した際には、潤滑油の比重
は液冷媒の比重よりも小さい。
The operation of the rotary compressor having the above structure will be described below. Depending on the operating state of the compressor and the types of refrigerant and lubricating oil, the refrigerant gas condenses in the closed casing 1 into a liquid refrigerant and stays in the lower part of the closed casing 1 during the stop or operation of the compressor.
In particular, when an incompatible lubricating oil is used, the specific gravity of the lubricating oil is smaller than that of the liquid refrigerant.

【0047】まず圧縮機起動前は、プレート20bはバ
ネ20cによりホルダー20a上部の給油路22の開口
部22aに不勢されているため、プレート20bと給油
管21とは接触シールせず、隙間が保たれている。ま
た、バルブ機構20、タンク23、吸入パイプ19内は
同じ圧力となっている。圧力差がいずれにおいてもない
ため、バルブ機構20内に冷媒ガス、潤滑油18が有る
時は、フロート機構26の方が比重が大きいためフロー
ト機構26は自重落下し、排液管24の開口端24aを
接触シールする。
Before the compressor is activated, the plate 20b is biased by the spring 20c to the opening 22a of the oil supply passage 22 above the holder 20a. Therefore, the plate 20b and the oil supply pipe 21 are not contact-sealed with each other, and a gap is left between them. It is kept. Further, the valve mechanism 20, the tank 23, and the suction pipe 19 have the same pressure. Since there is no difference in pressure, when the refrigerant gas and the lubricating oil 18 are present in the valve mechanism 20, the float mechanism 26 has a larger specific gravity, so the float mechanism 26 falls by its own weight and the open end of the drainage pipe 24. 24a is contact-sealed.

【0048】また、バルブ機構20内が液冷媒が溜まる
と、フロート機構26の方が液冷媒より比重が小さいた
めフロート機構26は浮上し、バルブ機構20内とタン
ク23は排液管24を介して連通し、液冷媒は排液管2
4を介してタンク23内に流出する。そして、液冷媒が
全て流出するとの開口端24aを接触シールする。その
ため、圧縮機が起動する際は、フロート機構26は閉鎖
されている。
When the liquid refrigerant accumulates in the valve mechanism 20, the float mechanism 26 floats because the specific gravity of the float mechanism 26 is smaller than that of the liquid refrigerant, and the inside of the valve mechanism 20 and the tank 23 pass through the drain pipe 24. And the liquid refrigerant is drained 2
4 and flows into the tank 23. Then, the opening end 24a at which all the liquid refrigerant flows out is contact-sealed. Therefore, the float mechanism 26 is closed when the compressor is started.

【0049】タンク23は吸入パイプ19より重力方向
下方にあるため、フロート機構26を介してタンク23
内に流入した液冷媒が、吸入パイプ19内流入すること
はない。
Since the tank 23 is below the suction pipe 19 in the direction of gravity, the tank 23 is connected via the float mechanism 26.
The liquid refrigerant flowing in does not flow into the suction pipe 19.

【0050】圧縮機が起動した際には、吸入パイプ19
内、給油管21内、タンク23内、排液管24内、ガス
路25内の圧力は低下し、密閉ケーシング1内の圧力よ
り低くなる。
When the compressor is started, the suction pipe 19
Inside, the inside of the oil supply pipe 21, the inside of the tank 23, the inside of the drainage pipe 24, and the inside of the gas passage 25 decrease and become lower than the pressure inside the closed casing 1.

【0051】給油路22内は密閉ケーシング1内と同じ
圧力であるため、給油路22内の圧力がバルブ機構20
内の圧力よりも高くなり圧力差が生じ、プレート20b
は給油路22の開口部22aから離れるが、圧力差がバ
ネ20cの不勢力に対して十分大きくないため、プレー
ト20bは給油管21に押しつけられない。
Since the pressure in the oil supply passage 22 is the same as that in the closed casing 1, the pressure in the oil supply passage 22 is equal to the pressure in the valve mechanism 20.
The pressure inside the plate 20b becomes higher than that in the plate 20b.
Is separated from the opening 22a of the oil supply passage 22, but the plate 20b cannot be pressed against the oil supply pipe 21 because the pressure difference is not sufficiently large with respect to the biasing force of the spring 20c.

【0052】したがって、密閉ケーシング1内の潤滑油
18と給油パイプ19内は、給油路22、バルブ機構2
0、給油管21を介して連通し、潤滑油18は高圧、吸
入パイプ19内は低圧、バルブ機構20内はその中間の
圧力となる。この時、排液管24内は低圧であるため、
フロート機構26を閉鎖するように圧力差が作用するた
めフロート機構26は閉鎖されたままである。そのた
め、密閉ケーシング1内の高圧とバルブ機構20内の圧
力差により潤滑油18がバルブ機構20を介して吸入パ
イプ19内に導かれ、圧縮室11に供給される。
Therefore, the lubricating oil 18 and the oil supply pipe 19 in the closed casing 1 are provided with the oil supply passage 22 and the valve mechanism 2.
0, the oil is communicated through the oil supply pipe 21, the lubricating oil 18 has a high pressure, the suction pipe 19 has a low pressure, and the valve mechanism 20 has an intermediate pressure. At this time, since the pressure inside the drainage pipe 24 is low,
The float mechanism 26 remains closed due to the pressure differential acting to close the float mechanism 26. Therefore, the lubricating oil 18 is guided into the suction pipe 19 via the valve mechanism 20 due to the high pressure in the closed casing 1 and the pressure difference in the valve mechanism 20, and is supplied to the compression chamber 11.

【0053】また、冷媒ガスが密閉ケーシング1内で凝
縮し、密閉ケーシング1内下部に液冷媒が滞留する際
は、密閉ケーシング1内下部に溜まった潤滑油18とと
もに、液冷媒が給油路22を介してバルブ機構20内に
流入する。しかしながら、フロート機構26は液冷媒よ
りも比重が小さいため、フロート機構26は排液管24
の開口端24aから浮上し、液冷媒は排液管24を介し
てタンク23内に流出するため、液冷媒が給油管21、
吸入パイプ19を介して圧縮室11内に流入することは
ない。
When the refrigerant gas is condensed in the closed casing 1 and the liquid refrigerant stays in the lower portion of the closed casing 1, the liquid refrigerant flows through the oil supply passage 22 together with the lubricating oil 18 accumulated in the lower portion of the closed casing 1. Through the valve mechanism 20. However, since the float mechanism 26 has a smaller specific gravity than the liquid refrigerant, the float mechanism 26 has a specific gravity.
Since the liquid refrigerant floats up from the open end 24a and flows out into the tank 23 through the drainage pipe 24, the liquid refrigerant flows into the oil supply pipe 21,
It does not flow into the compression chamber 11 via the suction pipe 19.

【0054】また、タンク23内に流入した液冷媒は、
その自重によりタンク23下部に滞留するため、タンク
23の上部から吸入パイプ19に連通しているガス路2
5に吸入されることはなく、タンク23内でガス化した
冷媒のみが吸入される。そのため、液冷媒がタンク2
3、ガス路25、吸入パイプ19を介して圧縮室11内
に流入することはない。
The liquid refrigerant flowing into the tank 23 is
Since it stays in the lower portion of the tank 23 due to its own weight, the gas passage 2 communicating with the suction pipe 19 from the upper portion of the tank 23.
5 is not sucked, but only the gasified refrigerant in the tank 23 is sucked. Therefore, the liquid refrigerant is
3, it does not flow into the compression chamber 11 through the gas passage 25 and the suction pipe 19.

【0055】さらに圧縮機の運転が継続すると、密閉ケ
ーシング1内の圧力が更に上昇し、プレート20bと給
油管21とが接触シールし、バルブ機構20内と給油管
21とは連通しなくなり、バルブ機構20、吸入パイプ
19を介して行われていた圧縮室11への直接給油は行
われなくなる。しかし、バルブ機構20内にはそれまで
給油路22を介して流入していた潤滑油18と液冷媒の
内、潤滑油18のみが溜まったままとなる。
When the operation of the compressor is further continued, the pressure in the closed casing 1 further rises, the plate 20b and the oil supply pipe 21 make a contact seal, and the valve mechanism 20 and the oil supply pipe 21 do not communicate with each other, and the valve is closed. The direct oil supply to the compression chamber 11, which has been performed via the mechanism 20 and the suction pipe 19, is no longer performed. However, only the lubricating oil 18 remains in the valve mechanism 20 among the lubricating oil 18 and the liquid refrigerant that have flown through the oil supply passage 22 until then.

【0056】そして、バルブ機構20、吸入パイプ19
を介して行われていた圧縮室11への直接給油は行われ
なくなった後は、従来のローラ5と主軸受7,副軸受8
間の隙間及びベーン6とシリンダ4の溝間の隙間を介し
て圧縮室11内への給油となる。
Then, the valve mechanism 20 and the suction pipe 19
After the direct oil supply to the compression chamber 11 which has been performed via the oil is no longer performed, the conventional roller 5, the main bearing 7, and the auxiliary bearing 8 are used.
Oil is supplied into the compression chamber 11 through the gap between them and the gap between the vane 6 and the groove of the cylinder 4.

【0057】従って、圧縮機の起動直後に冷凍サイクル
から吸入パイプ19を介して液冷媒が戻ってきても、起
動と同時にバルブ機構20を介して圧縮室11に直接潤
滑油18を供給し、且つバルブ機構20を介して液冷媒
が圧縮室に流入することを防止できる。そのため、圧縮
室11を構成するシリンダ4,ローラ5,ベーン6,主
軸受7,副軸受8等の各摺動部において、液冷媒により
付着している潤滑油18が取り除かれて摺動することを
防止できる。
Therefore, even if the liquid refrigerant returns from the refrigeration cycle through the suction pipe 19 immediately after the compressor starts up, the lubricating oil 18 is directly supplied to the compression chamber 11 through the valve mechanism 20 at the same time as the start-up, and It is possible to prevent the liquid refrigerant from flowing into the compression chamber via the valve mechanism 20. Therefore, the lubricating oil 18 adhering to the liquid refrigerant is removed from the sliding parts such as the cylinder 4, the roller 5, the vane 6, the main bearing 7, the auxiliary bearing 8 and the like which constitute the compression chamber 11 to slide. Can be prevented.

【0058】更に時間が経過して圧縮機が停止すると、
圧縮機内部も時間経過と共に均圧すし、プレート20b
が給油管21から離れ、バルブ機構20内と吸入パイプ
19とが給油管21を介して連通する。
When the compressor stops after a further time elapses,
The inside of the compressor is pressure-equalized over time, and the plate 20b
Is separated from the oil supply pipe 21, and the inside of the valve mechanism 20 communicates with the suction pipe 19 via the oil supply pipe 21.

【0059】そして、圧縮機の運転中にバルブ機構20
内に溜まっていた液冷媒のない潤滑油18のみがその自
重により給油管21、吸入パイプ19内を介して圧縮室
11内に流入し、圧縮室11を構成するシリンダ4,ロ
ーラ5,ベーン6,主軸受7,副軸受8等の各摺動部に
供給される。
Then, the valve mechanism 20 is operated during the operation of the compressor.
Only the lubricating oil 18 containing no liquid refrigerant that has accumulated inside flows into the compression chamber 11 via the oil supply pipe 21 and the suction pipe 19 due to its own weight, and the cylinder 4, the roller 5, the vane 6 forming the compression chamber 11 , The main bearing 7, the sub bearing 8, etc.

【0060】従って、圧縮機の停止中に、冷凍サイクル
から吸入パイプ19を介して圧縮機の圧縮室11に液冷
媒が戻ってきたり、密閉ケーシング1下部に液冷媒が滞
留しても、バルブ機構20内を介して液冷媒を圧縮室1
1供給することなくバルブ機構20内に溜まっていた潤
滑油18を直接圧縮室11に供給することができ、圧縮
室11を構成するシリンダ4,ローラ5,ベーン6,主
軸受7,副軸受8等の各摺動部において、潤滑油が液冷
媒によって取り除かれることを防止できる。そのため、
圧縮機の起動前から圧縮室11内には十分な潤滑油が供
給されており、圧縮室11を構成する各摺動部が潤滑油
不足状態で起動することを防止できる。
Therefore, even if the liquid refrigerant returns from the refrigeration cycle to the compression chamber 11 of the compressor via the suction pipe 19 while the compressor is stopped, or the liquid refrigerant stays in the lower portion of the closed casing 1, the valve mechanism. The liquid refrigerant is compressed through the inside of the compression chamber 1
The lubricating oil 18 accumulated in the valve mechanism 20 can be directly supplied to the compression chamber 11 without being supplied, and the cylinder 4, the roller 5, the vane 6, the main bearing 7, and the auxiliary bearing 8 constituting the compression chamber 11 can be directly supplied. It is possible to prevent the lubricating oil from being removed by the liquid refrigerant in each sliding portion such as. for that reason,
Sufficient lubricating oil has been supplied into the compression chamber 11 before the compressor is activated, and it is possible to prevent the sliding portions constituting the compression chamber 11 from being activated in the insufficient lubricating oil state.

【0061】以上のように本実施例の回転式圧縮機は、
吸入パイプの重力方向下方に配設されたタンクと、一端
がバルブ機構の下部に連通し他端がタンクに連通した排
液管と、一端がタンクの上部に連通し他端が吸入パイプ
に連通したガス路と、バルブ機構に連通した排液管の開
口端に配設され潤滑油より比重が大きく且つ液冷媒より
比重が小さい材料にて形成されたフロート機構を備えた
ものであるから、圧縮機の起動直後や圧縮機の停止中に
冷凍サイクルから吸入パイプを介して液冷媒が戻ってき
ても、圧縮機の起動直後から一定時間及び圧縮機の停止
中に、バルブ機構を介して圧縮室内に液冷媒を供給する
ことなく直接潤滑油のみをを供給できる。
As described above, the rotary compressor of this embodiment is
A tank disposed below the suction pipe in the direction of gravity, a drain pipe having one end communicating with the lower part of the valve mechanism and the other end communicating with the tank, one end communicating with the upper part of the tank, and the other end communicating with the suction pipe. And a float mechanism formed of a material having a specific gravity larger than that of the lubricating oil and smaller than that of the liquid refrigerant, which is disposed at the opening end of the drain pipe communicating with the valve mechanism. Even if the liquid refrigerant returns from the refrigeration cycle through the suction pipe immediately after the compressor is started or while the compressor is stopped, the compression mechanism is operated via the valve mechanism for a certain period of time immediately after the compressor is started and during the stop of the compressor. It is possible to directly supply only the lubricating oil without supplying the liquid refrigerant to the.

【0062】そのため、圧縮室を構成する各摺動部にお
いて、常に潤滑油を確保することができるため、各摺動
部が潤滑油不足で運転されることを防止でき、圧縮室を
構成する各摺動部の摩耗等を防止できるため、信頼性が
向上する。
Therefore, since the lubricating oil can be always secured in each sliding portion which constitutes the compression chamber, it is possible to prevent each sliding portion from being operated due to lack of lubricating oil, and each sliding portion which constitutes the compression chamber. Since the sliding parts can be prevented from being worn, the reliability is improved.

【0063】尚、本実施例では、ガス路が吸入パイプに
連通しているが、ガス路がシリンダ内の低圧室や吸入通
路等の、圧縮機の起動により圧力が低下する箇所に連通
していれば同様の効果が得られることは言うまでもな
い。
In the present embodiment, the gas passage communicates with the suction pipe, but the gas passage communicates with a low pressure chamber in the cylinder, a suction passage, or the like, where the pressure decreases due to activation of the compressor. Needless to say, the same effect can be obtained.

【0064】[0064]

【発明の効果】以上説明したように本発明は、一端が密
閉ケーシング外に連通し、他端がシリンダに設けられた
吸入通路に連通した吸入パイプと、密閉ケーシング内に
収納され吸入パイプ、低圧室、吸入通路のいずれかより
重力方向上方に配設されたバルブ機構と、一端がバルブ
機構より重力方向下方に配設された吸入パイプ、低圧
室、吸入通路のいずれかに連通し、他端がバルブ機構の
下部に連通した給油管と、一端がバルブ機構の上部に連
通し、他端が密閉ケーシング内に溜められた潤滑油中に
開口した給油路を備えたものであるから、圧縮機の起動
直後や圧縮機の停止中に冷凍サイクルから液冷媒が戻っ
てきても、圧縮機の起動直後から一定時間及び圧縮機の
停止中に、圧縮室内に直接潤滑油を供給できる。
As described above, according to the present invention, one end communicates with the outside of the closed casing and the other end communicates with the suction passage provided in the cylinder, the suction pipe housed in the closed casing, and the low pressure pipe. The valve mechanism disposed above the chamber or the suction passage in the direction of gravity, and one end communicating with the suction pipe disposed below the valve mechanism in the direction of gravity, the low pressure chamber, or the suction passage, and the other end. Is equipped with an oil supply pipe that communicates with the lower part of the valve mechanism, and an oil supply path that has one end communicating with the upper part of the valve mechanism and the other end that opens into the lubricating oil stored in the closed casing. Even if the liquid refrigerant returns from the refrigeration cycle immediately after the start of the compressor or during the stop of the compressor, the lubricating oil can be directly supplied into the compression chamber for a certain period of time immediately after the start of the compressor and during the stop of the compressor.

【0065】そのため、圧縮室を構成する各摺動部にお
いて、圧縮機の起動と同時に常に潤滑油を確保すること
ができ、且つ圧縮機の起動前から圧縮室に十分な潤滑油
を供給することができる。
Therefore, in each of the sliding parts constituting the compression chamber, the lubricating oil can be always secured at the same time when the compressor is started, and sufficient lubricating oil can be supplied to the compression chamber before the compressor is started. You can

【0066】従って、圧縮室を構成する各摺動部が潤滑
油不足の状態で起動することを防止でき、圧縮室を構成
する各摺動部の摩耗等を防止できるため、信頼性が向上
する。
Therefore, it is possible to prevent the sliding parts forming the compression chamber from starting in the state where the lubricating oil is insufficient, and to prevent the sliding parts forming the compression chamber from being worn or the like, so that the reliability is improved. .

【0067】また、圧縮室を構成する各摺動部の摩耗を
防止することにより、摺動部の加工精度及び潤滑油にて
シールされている各シール部のシール性の低下を防止で
き、圧縮機の効率の低下を防止することができる。
Further, by preventing the sliding parts constituting the compression chamber from being worn, it is possible to prevent the processing accuracy of the sliding parts and the deterioration of the sealing property of each sealing part sealed by the lubricating oil from being deteriorated. It is possible to prevent the efficiency of the machine from decreasing.

【0068】また、圧縮機の運転が続くと、圧縮室内へ
の給油は、従来のローラと主軸受,副軸受間の隙間及び
ベーンとシリンダの溝間の隙間を介しての供給となる。
そのため、圧縮室内に過多の潤滑油が供給されオイル圧
縮を引き起こすこともなく、また圧縮機から冷凍サイク
ルへ流出する潤滑油量が増大することもない。
When the compressor continues to be operated, oil is supplied into the compression chamber through the gap between the conventional roller and the main bearing and the sub bearing, and the gap between the vane and the groove of the cylinder.
Therefore, the excessive amount of lubricating oil is not supplied to the compression chamber to cause oil compression, and the amount of lubricating oil flowing from the compressor to the refrigeration cycle does not increase.

【0069】また、吸入パイプの重力方向下方に配設さ
れたタンクと、一端がバルブ機構の下部に連通し他端が
タンクに連通した排液管と、一端がタンクの上部に連通
し他端が吸入パイプに連通したガス路と、バルブ機構に
連通した排液管の開口端に配設され潤滑油より比重が大
きく且つ液冷媒より比重が小さい材料にて形成されたフ
ロート機構を備えたものであるから、圧縮機の起動直後
に冷凍サイクルから吸入パイプを介して液冷媒が戻って
きても、圧縮室を構成するシリンダ,ローラ,ベーン,
主軸受,副軸受等の各摺動部に付着している潤滑油を取
り除いても、圧縮機の起動直後から一定時間、バルブ機
構を介して圧縮室内に液冷媒を供給することなく直接潤
滑油のみをを供給できる。
Further, a tank disposed below the suction pipe in the direction of gravity, a drain pipe having one end communicating with the lower portion of the valve mechanism and the other end communicating with the tank, and one end communicating with the upper portion of the tank. With a gas passage communicating with the suction pipe and a float mechanism formed at the open end of the drainage pipe communicating with the valve mechanism and made of a material having a specific gravity higher than that of the lubricating oil and lower than that of the liquid refrigerant. Therefore, even if the liquid refrigerant returns from the refrigeration cycle through the suction pipe immediately after the compressor is started, the cylinders, rollers, vanes,
Even if the lubricating oil adhering to the sliding parts such as the main bearing and the auxiliary bearing is removed, the lubricating oil is directly supplied to the compression chamber through the valve mechanism for a certain period of time immediately after the compressor starts up. Can only supply.

【0070】またさらに、圧縮機の停止中に、冷凍サイ
クルから吸入パイプを介して圧縮室に液冷媒が戻ってき
ても、圧縮機の停止中にバルブ機構を介して圧縮室内に
液冷媒を供給することなく直接潤滑油のみをを供給でき
る。そのため、圧縮室を構成する各摺動部において、常
に潤滑油を確保することができるため、各摺動部が潤滑
油不足で運転されることを防止でき、圧縮室を構成する
各摺動部の摩耗等を防止できるため、信頼性が向上す
る。
Furthermore, even if the liquid refrigerant returns from the refrigeration cycle to the compression chamber through the suction pipe while the compressor is stopped, the liquid refrigerant is supplied into the compression chamber through the valve mechanism while the compressor is stopped. It is possible to directly supply only the lubricating oil without doing so. Therefore, since the lubricating oil can be always secured in each sliding portion that constitutes the compression chamber, it is possible to prevent each sliding portion from being operated due to insufficient lubricating oil, and each sliding portion that constitutes the compression chamber. Since it is possible to prevent abrasion and the like, reliability is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による第1の実施例を示す回転式圧縮機
の要部断面図
FIG. 1 is a sectional view of a main part of a rotary compressor showing a first embodiment according to the present invention.

【図2】同実施例の回転式圧縮機の縦断面図FIG. 2 is a vertical cross-sectional view of the rotary compressor of the same embodiment.

【図3】本発明による第2の実施例を示す回転式圧縮機
の要部断面図
FIG. 3 is a sectional view of an essential part of a rotary compressor showing a second embodiment according to the present invention.

【図4】従来の回転式圧縮機の縦断面図FIG. 4 is a vertical sectional view of a conventional rotary compressor.

【図5】図4のA−A線断面図5 is a sectional view taken along line AA of FIG.

【符号の説明】[Explanation of symbols]

1 密閉ケーシング 3 シャフト 4 シリンダ 5 ローラ 6 ベーン 7 主軸受 8 副軸受 11a 高圧室 11b 低圧室 14 吸入通路 18 潤滑油 19 吸入パイプ 20 バルブ機構 21 給油管 22 給油路 23 タンク 24 排液管 24a 排液管の開口端 25 ガス路 26 フロート機構 1 Closed Casing 3 Shaft 4 Cylinder 5 Roller 6 Vane 7 Main Bearing 8 Secondary Bearing 11a High Pressure Chamber 11b Low Pressure Chamber 14 Suction Passage 18 Lubricating Oil 19 Suction Pipe 20 Valve Mechanism 21 Oil Supply Pipe 22 Oil Supply Line 23 Tank 24 Drainage Pipe 24a Drainage Open end of pipe 25 Gas path 26 Float mechanism

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 密閉ケーシングと、前記密閉ケーシング
内に収納されたシリンダと、前記シリンダの両端に固定
された主軸受および副軸受と、前記主軸受と副軸受内を
回転摺動するシャフトと、前記シリンダ内を偏心回転す
るローラと、前記シリンダの溝内を往復運動し前記ロー
ラと当接することにより前記シリンダ内を低圧室と高圧
室に分割するベーンと、一端が前記密閉ケーシング外に
連通し、他端が前記シリンダに設けられた吸入通路に連
通した吸入パイプと、前記密閉ケーシング内に収納され
前記吸入パイプ、前記低圧室、前記吸入通路のいずれか
より重力方向上方に配設されたバルブ機構と、一端が前
記バルブ機構より重力方向下方に配設された前記吸入パ
イプ、前記低圧室、前記吸入通路のいずれかに連通し、
他端が前記バルブ機構の下部に連通した給油管と、一端
が前記バルブ機構の上部に連通し、他端が前記密閉ケー
シング内に溜められた潤滑油中に開口した給油路とから
なる回転式圧縮機。
1. A hermetically sealed casing, a cylinder housed in the hermetically sealed casing, a main bearing and a sub bearing fixed to both ends of the cylinder, and a shaft which rotationally slides in the main bearing and the sub bearing. A roller that eccentrically rotates in the cylinder, a vane that reciprocates in a groove of the cylinder and contacts the roller to divide the cylinder into a low pressure chamber and a high pressure chamber, and one end communicates with the outside of the closed casing. A suction pipe having the other end communicating with a suction passage provided in the cylinder, and a valve housed in the closed casing and disposed above the suction pipe, the low pressure chamber, or the suction passage in the direction of gravity. A mechanism, one end of which communicates with any one of the suction pipe, the low pressure chamber, and the suction passage, which are arranged below the valve mechanism in the direction of gravity.
A rotary type including an oil supply pipe having the other end communicating with the lower portion of the valve mechanism, and an oil supply passage having one end communicating with the upper portion of the valve mechanism and the other end opening into the lubricating oil accumulated in the closed casing. Compressor.
【請求項2】 吸入パイプ、低圧室、吸入通路のいずれ
かの重力方向下方に配設されたタンクと、一端がバルブ
機構の下部に連通し他端が前記タンクに連通した排液管
と、一端が前記タンクの上部に連通し他端が前記吸入パ
イプ、前記低圧室、前記吸入通路のいずれかに連通した
ガス路と、前記バルブ機構に連通した前記排液管の開口
端に配設され潤滑油より比重が大きく且つ液冷媒より比
重が小さい材料にて形成されたフロート機構とからなる
請求項1記載の回転式圧縮機。
2. A tank disposed below a suction pipe, a low pressure chamber, or a suction passage in the direction of gravity, and a drain pipe having one end communicating with a lower portion of a valve mechanism and the other end communicating with the tank. One end is connected to the upper part of the tank and the other end is arranged at a gas passage communicating with any one of the suction pipe, the low pressure chamber, and the suction passage, and an opening end of the drain pipe communicating with the valve mechanism. The rotary compressor according to claim 1, further comprising a float mechanism formed of a material having a specific gravity higher than that of the lubricating oil and a specific gravity lower than that of the liquid refrigerant.
JP8827194A 1994-04-26 1994-04-26 Rotary compressor Pending JPH07293470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8827194A JPH07293470A (en) 1994-04-26 1994-04-26 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8827194A JPH07293470A (en) 1994-04-26 1994-04-26 Rotary compressor

Publications (1)

Publication Number Publication Date
JPH07293470A true JPH07293470A (en) 1995-11-07

Family

ID=13938240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8827194A Pending JPH07293470A (en) 1994-04-26 1994-04-26 Rotary compressor

Country Status (1)

Country Link
JP (1) JPH07293470A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1707818A1 (en) * 2005-03-17 2006-10-04 Sanyo Electric Techno Clean Co., Ltd. Hermetically sealed rotary piston compressor with oil injection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1707818A1 (en) * 2005-03-17 2006-10-04 Sanyo Electric Techno Clean Co., Ltd. Hermetically sealed rotary piston compressor with oil injection
US7581936B2 (en) 2005-03-17 2009-09-01 Sanyo Electric Co., Ltd. Hermetically sealed compressor having oil supply mechanism based on refrigerant pressure

Similar Documents

Publication Publication Date Title
US5564917A (en) Rotary compressor with oil injection
JPH11241682A (en) Compressor for co2
JP4422209B2 (en) Expander integrated compressor
JPH07293470A (en) Rotary compressor
JPH08159071A (en) Rotary compressor
JPH06346878A (en) Rotary compressor
JPH06167287A (en) Rotary compressor
JPH07247980A (en) Rotary compressor
JPH01219383A (en) Compressor
JP2769177B2 (en) Rotary compressor
JPH08193587A (en) Rotary type compressor
JPH06346880A (en) Rotary compressor
JPH05141376A (en) Rotary compressor
JPH07293474A (en) Rotary compressor
JP3236366B2 (en) Rotary compressor
JP4174766B2 (en) Refrigerant compressor
JPH07293476A (en) Rotary compressor
JP2604835B2 (en) Rotary compressor
JPH04219486A (en) Rotary compressor
JP2604818B2 (en) Rotary compressor
JP3374081B2 (en) Hermetic rotary compressor
JPH07259766A (en) Hermetic type compressor
JP4165280B2 (en) Compressor
JPH07145792A (en) Rotary type compressor
JPH07310689A (en) Rotary compressor