JPH08191110A - Driving and manufacturing method of memory cell capable of electrically writing and erasing - Google Patents

Driving and manufacturing method of memory cell capable of electrically writing and erasing

Info

Publication number
JPH08191110A
JPH08191110A JP7002253A JP225395A JPH08191110A JP H08191110 A JPH08191110 A JP H08191110A JP 7002253 A JP7002253 A JP 7002253A JP 225395 A JP225395 A JP 225395A JP H08191110 A JPH08191110 A JP H08191110A
Authority
JP
Japan
Prior art keywords
insulating film
electrode
substrate
region
floating gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7002253A
Other languages
Japanese (ja)
Inventor
Tsutomu Kawaguchi
勉 川口
Keisuke Suzui
啓介 鈴井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP7002253A priority Critical patent/JPH08191110A/en
Publication of JPH08191110A publication Critical patent/JPH08191110A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE: To provide a driving and manufacturing method of a memory cell capable of electrically writing and erasing as well as suppressing the deterioration of a gate insulating film during the erasing step. CONSTITUTION: The side insulating films 3a, 3b between electrode conductors 1a, 1b and a floating gate electrode 5 connected to a source region 8a or a drain region 8b are impressed with a specific voltage so that the charge of the floating gate electrode 5 may be tunneled into the electrode conductors 1a, 1b through the side insulating films 3a, 3b for erasing step, thereby enabling the re-writing times of the gate insulating film 3 to be increased. Besides, a side insulating film 5 as an erasing tunnel insulating film can be manufactured in the same step of at least the gate insulating film 3 of a readingout MOS transistor. Through these procedures, the notable simplification of the manufacturing steps can be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気的に書き込み消去
可能なメモリセル(以下、EEPROMともいう)の駆
動方法及び製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a driving method and a manufacturing method of an electrically writable and erasable memory cell (hereinafter also referred to as an EEPROM).

【0002】[0002]

【従来の技術】従来のEEPROMでは、書き込みは、
ドレイン電界で加速した電子を薄いゲート絶縁膜を通し
て浮遊ゲート電極へ注入して行い、消去は、電界印加に
より浮遊ゲート電極からゲート絶縁膜を通じてソース領
域へ電子をトンネルさせて行っている。
2. Description of the Related Art In a conventional EEPROM, writing is
The electrons accelerated by the drain electric field are injected into the floating gate electrode through the thin gate insulating film, and the erasing is performed by tunneling the electrons from the floating gate electrode to the source region through the gate insulating film by applying an electric field.

【0003】[0003]

【発明が解決しようとする課題】上記した加速電子の書
き込み能率は高く、高速化が可能であるが、上記したト
ンネル電流による消去を高速化するにはソース領域に隣
接するゲート絶縁膜に印加する電界を強化せざるを得
ず、ゲート絶縁膜の絶縁劣化などの問題が生じた。本発
明は上記問題点に鑑みなされたものであり、消去時にお
けるゲート絶縁膜の劣化を抑止可能な電気的に書き込み
消去可能なメモリセルの駆動方法及び製造方法を提供す
ることを、その目的としている。
The above-mentioned accelerated electron has a high writing efficiency and can be speeded up. However, in order to speed up the erase by the tunnel current, it is applied to the gate insulating film adjacent to the source region. There was no choice but to strengthen the electric field, and problems such as insulation deterioration of the gate insulating film occurred. The present invention has been made in view of the above problems, and an object thereof is to provide a driving method and a manufacturing method of an electrically writable / erasable memory cell capable of suppressing deterioration of a gate insulating film at the time of erasing. There is.

【0004】[0004]

【課題を解決するための手段】本発明の第1の構成は、
一導電型の基板の表面部にゲート絶縁膜を介して配設さ
れた浮遊ゲート電極と、前記ゲート絶縁膜を挟んで前記
基板の表面部に形成された反対導電型のソース領域及び
ドレイン領域と、フィールド絶縁膜を挟んで前記基板上
に配設されて前記ソース領域又はドレイン領域に接続さ
れるとともに側面が側面絶縁膜を通じて前記浮遊ゲート
電極の側面に接する電極導体と、表面絶縁膜を挟んで前
記浮遊ゲート電極上に形成された制御電極とを備える電
気的に書き込み消去可能なメモリセルの駆動方法におい
て、前記電極導体と前記制御電極との間に所定の消去電
圧を印加することにより前記浮遊ゲート電極の前記電荷
を前記側面絶縁膜を通じて前記電極導体にトンネルさせ
て消去を行うことを特徴とする電気的に書き込み消去可
能なメモリセルの駆動方法である。
The first structure of the present invention is as follows.
A floating gate electrode provided on the surface of a substrate of one conductivity type via a gate insulating film, and a source region and a drain region of opposite conductivity type formed on the surface of the substrate with the gate insulating film interposed therebetween. An electrode conductor that is disposed on the substrate with a field insulating film interposed therebetween and is connected to the source region or the drain region and has a side surface in contact with a side surface of the floating gate electrode through a side surface insulating film; In a method of driving an electrically writable and erasable memory cell including a control electrode formed on the floating gate electrode, the floating is performed by applying a predetermined erase voltage between the electrode conductor and the control electrode. In an electrically writable and erasable memory cell, the electric charge of the gate electrode is tunneled to the electrode conductor through the side surface insulating film to perform erasing. It is a dynamic way.

【0005】本発明の第2の構成は、所定の表面領域に
フィールド酸化膜を形成するとともに残余の表面領域を
露出した一導電型の基板を準備し、前記基板と反対導電
型の高濃度不純物をドープしたポリシリコン層からなる
電極導体にて形成されたソース電極及びドレイン電極を
前記基板の露出表面上に互いに離れて配設し、前記両電
極の間にて露出する前記基板の前記露出表面及び前記両
電極の表面を酸化して前記両電極の側面に消去用トンネ
ル絶縁膜をなす側面絶縁膜を形成しかつ前記基板の前記
露出表面にゲート絶縁膜を形成し、更に堆積されたポリ
シリコン層をエッチバックして前記ゲート絶縁膜及び前
記側面絶縁膜に接して浮遊ゲート電極を形成し、前記ソ
ース電極、ドレイン電極及び浮遊ゲート電極の露出表面
に表面絶縁膜を形成し、前記表面絶縁膜を介して前記浮
遊ゲート電極上に制御電極を形成し、更に、前記各工程
の途中又はその後に加熱して前記ソース電極及びドレイ
ン電極から直下の前記基板の表面部へ前記不純物をドー
プしてソース領域及びドレイン領域を形成することを特
徴とする電気的に書き込み消去可能なメモリセルの駆動
方法である。
A second structure of the present invention is to prepare a substrate of one conductivity type in which a field oxide film is formed in a predetermined surface region and the remaining surface region is exposed, and a high concentration impurity of the conductivity type opposite to the substrate is prepared. The exposed surface of the substrate, in which the source electrode and the drain electrode formed of an electrode conductor made of a doped polysilicon layer are spaced apart from each other on the exposed surface of the substrate, and exposed between the electrodes. And oxidizing the surfaces of both electrodes to form a side insulating film that forms an erasing tunnel insulating film on the side surfaces of both electrodes, forming a gate insulating film on the exposed surface of the substrate, and further depositing polysilicon. The layer is etched back to form a floating gate electrode in contact with the gate insulating film and the side insulating film, and a surface insulating film is formed on the exposed surface of the source electrode, the drain electrode and the floating gate electrode. Then, a control electrode is formed on the floating gate electrode via the surface insulating film, and further heated during or after each of the steps to the surface portion of the substrate immediately below from the source electrode and the drain electrode to the surface portion. A method for driving an electrically writable / erasable memory cell is characterized in that a source region and a drain region are formed by doping impurities.

【0006】本発明の第3の構成は、上記第2の構成に
おいて更に、前記ソース電極及びドレイン電極が、等方
性エッチングで形成されることを特徴としている。本発
明の第4の構成は、上記第2の構成において更に、前記
ソース電極及びドレイン電極の少なくとも一方が、前記
側面絶縁膜に近接して不純物濃度が低濃度である低濃度
ドープ領域を有することを特徴としている。
A third structure of the present invention is characterized in that, in the second structure, the source electrode and the drain electrode are formed by isotropic etching. In a fourth structure of the present invention, in addition to the second structure, at least one of the source electrode and the drain electrode has a low-concentration doped region having a low impurity concentration adjacent to the side surface insulating film. Is characterized by.

【0007】[0007]

【作用及び発明の効果】本発明の第1の構成では、ソー
ス領域又はドレイン領域に接続される電極導体と制御電
極7との間に所定の消去電圧を印加することにより、側
面絶縁膜を通じて浮遊ゲート電極の電荷を電極導体へト
ンネルさせて消去を行う。このようにすれば、浮遊ゲー
ト電極からゲート絶縁膜を通じてトンネルされる電流密
度を削減でき、消去時におけるゲート絶縁膜に印加され
る電界強度を低減できるので、ゲート絶縁膜の劣化、損
傷を抑止することができ、また消去時における電極導体
と制御電極との間の印加電圧(消去電圧)を低減でき、
消去時間を短縮することができる。
In the first structure of the present invention, by applying a predetermined erasing voltage between the electrode conductor connected to the source region or the drain region and the control electrode 7, floating through the side surface insulating film is achieved. The charge of the gate electrode is tunneled to the electrode conductor for erasing. By doing so, the current density tunneled from the floating gate electrode through the gate insulating film can be reduced, and the electric field strength applied to the gate insulating film at the time of erasing can be reduced, so that deterioration and damage of the gate insulating film can be suppressed. It is possible to reduce the applied voltage (erase voltage) between the electrode conductor and the control electrode at the time of erasing,
The erasing time can be shortened.

【0008】なお、書き込みは、基板とドレイン領域と
の間に逆バイアス電圧を印加するとともに制御電極に所
定電圧を印加してことにより、基板(チャンネル)にて
加速された電荷をゲート絶縁膜を突き抜けて浮遊ゲート
電極へ注入して行うことができる他、ソース領域(又は
ドレイン領域)又は電極導体からゲート絶縁膜又は側面
絶縁膜をトンネルして浮遊ゲート電極へ電荷を注入して
もよい。
For writing, a reverse bias voltage is applied between the substrate and the drain region and a predetermined voltage is applied to the control electrode so that the charges accelerated in the substrate (channel) are applied to the gate insulating film. Alternatively, the charge may be injected into the floating gate electrode by tunneling through the gate insulating film or the side surface insulating film from the source region (or drain region) or the electrode conductor.

【0009】本発明の第2の構成では、上述した第1の
構成の電気的に書き込み消去可能なメモリセルを製造す
る際に、上記した製造工程を採用する。このようにすれ
ば、少なくとも消去用のトンネル絶縁膜である側面絶縁
膜を、少なくとも読み出し用のMOSトランジスタのゲ
ート絶縁膜と同一工程で製造するので、製造工程の大幅
な簡単化が実現する。また、ソース領域及びドレイン領
域は、基板と反対導電型の高濃度不純物をドープしたポ
リシリコン層からなるソース電極及びドレイン電極から
基板の表面部への加熱再ドープで形成されるので、ソー
ス領域及びドレイン領域形成工程が簡単となり、それら
の接合容量を低減することができ、動作の高速化を実現
できる。
In the second structure of the present invention, the above-mentioned manufacturing process is adopted when manufacturing the electrically writable / erasable memory cell of the above-mentioned first structure. By doing so, at least the side surface insulating film that is the tunnel insulating film for erasing is manufactured in the same process as at least the gate insulating film of the MOS transistor for reading, so that the manufacturing process is greatly simplified. Further, since the source region and the drain region are formed by heat re-doping from the source electrode and the drain electrode made of a polysilicon layer doped with a high-concentration impurity of the opposite conductivity type to the substrate to the surface portion of the substrate, The drain region forming process is simplified, the junction capacitance thereof can be reduced, and the operation speed can be increased.

【0010】本発明の第3の構成では上記第2の構成に
おいて更に、ソース電極及びドレイン電極が等方性エッ
チングで形成されるので、ソース電極及びドレイン電極
の側面が斜めとなり、そのためにソース電極及びドレイ
ン電極の間に形成される浮遊ゲート電極の縦断面が逆台
形形状となり、その結果、読み出し用のMOSTのチャ
ンネル長を短縮して動作の高速化を実現できる。
In the third structure of the present invention, further, in the second structure, the source electrode and the drain electrode are formed by isotropic etching, so that the side surfaces of the source electrode and the drain electrode are slanted, so that the source electrode is formed. The vertical cross section of the floating gate electrode formed between the drain electrode and the drain electrode has an inverted trapezoidal shape, and as a result, the channel length of the MOST for reading can be shortened and high-speed operation can be realized.

【0011】本発明の第4の構成では、上記第2の構成
において更に、前記ソース電極及びドレイン電極の少な
くとも一方が、前記側面絶縁膜に近接して不純物濃度が
低濃度である低濃度ドープ領域を有するので、後述する
ようにゲート絶縁膜の劣化を抑止することができる。
In a fourth structure of the present invention, in addition to the above-mentioned second structure, at least one of the source electrode and the drain electrode is in the vicinity of the side surface insulating film and has a low impurity concentration with a low impurity concentration. Therefore, the deterioration of the gate insulating film can be suppressed as will be described later.

【0012】[0012]

【実施例】以下、本発明の一実施例を図1に基づき説明
する。P- 型のシリコン基板10の表面にLOCOS法
によりシリコン酸化膜からなるフィールド絶縁膜11を
形成し、その上に、例えばCVD法でポリシリコン層1
2を形成し、リンなどのイオン注入によりこのポリシリ
コン層12をN+ 型とする(図1(a)参照)。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. A field insulating film 11 made of a silicon oxide film is formed on the surface of a P type silicon substrate 10 by a LOCOS method, and a polysilicon layer 1 is formed on the field insulating film 11 by a CVD method, for example.
2 is formed, and the polysilicon layer 12 is made N + type by ion implantation of phosphorus or the like (see FIG. 1A).

【0013】次に、ポリシリコン層12をホトリソ法で
パターニングして本発明でいう電極導体を構成するソー
ス電極1a及びドレイン電極1bを形成する(図1
(b)参照)。なお、ポリシリコン層12のエッチング
は等方性ドライエッチング法(又は等方性ウエットエッ
チング法)で行う。これにより、ソース電極1a及びド
レイン電極1bの側面が所定傾斜角の斜面となる。
Next, the polysilicon layer 12 is patterned by the photolithography method to form the source electrode 1a and the drain electrode 1b which constitute the electrode conductor of the present invention (FIG. 1).
(B)). The polysilicon layer 12 is etched by an isotropic dry etching method (or an isotropic wet etching method). As a result, the side surfaces of the source electrode 1a and the drain electrode 1b become slopes with a predetermined inclination angle.

【0014】次に、例えば熱酸化法で露出する基板10
の表面及びソース電極1a及びドレイン電極1bの上面
及び側面を酸化して、基板10の表面にゲート絶縁膜3
を形成し、ソース電極1a及びドレイン電極1bの側面
に側面絶縁膜3a、3bを形成する(図1(c)参
照)。なお、ここで、ゲート絶縁膜3の厚さは電子注入
可能な厚さ例えば100〜300オングストロームとさ
れる。
Next, the substrate 10 is exposed by, for example, a thermal oxidation method.
Of the gate insulating film 3 on the surface of the substrate 10 by oxidizing the upper surface and the side surfaces of the source electrode 1a and the drain electrode 1b.
And side surface insulating films 3a and 3b are formed on the side surfaces of the source electrode 1a and the drain electrode 1b (see FIG. 1C). Here, the thickness of the gate insulating film 3 is set to a thickness at which electrons can be injected, for example, 100 to 300 angstrom.

【0015】次に、例えばCVD法により所定の不純物
濃度にドープされたポリシリコン層を厚く堆積し、その
後、エッチバックしてソース電極1aとドレイン電極1
bとの間においてゲート絶縁膜3上に浮遊ゲート電極5
を形成する(図1(d)参照)。次に、例えば水蒸気酸
化法によりこれらソース電極1a及びドレイン電極1b
並びに浮遊ゲート電極5の露出表面を酸化して表面絶縁
膜6を形成し、更にその後、例えばCVD法により形成
された低抵抗のポリシリコン層をホトリソ法でパターニ
ングして浮遊ゲート電極5の上に表面絶縁膜6を挟んで
制御電極7を形成し、加熱によりソース電極1a及びド
レイン電極1bから基板10の表面にリンをオートドー
プしてN+ 型のソース領域8a及びドレイン領域8bを
形成する(図1(e)参照)。
Next, a polysilicon layer doped to a predetermined impurity concentration is deposited thickly by, for example, the CVD method, and then etched back to perform source electrode 1a and drain electrode 1
floating gate electrode 5 on the gate insulating film 3 between
Are formed (see FIG. 1D). Next, these source electrode 1a and drain electrode 1b are formed by, for example, a steam oxidation method.
Further, the exposed surface of the floating gate electrode 5 is oxidized to form a surface insulating film 6, and thereafter, a low resistance polysilicon layer formed by, for example, a CVD method is patterned by a photolithography method to form a surface on the floating gate electrode 5. The control electrode 7 is formed with the surface insulating film 6 sandwiched therebetween, and phosphorus is auto-doped from the source electrode 1a and the drain electrode 1b to the surface of the substrate 10 by heating to form the N + type source region 8a and the drain region 8b ( See FIG. 1E).

【0016】次に、CVD法などで層間絶縁膜(図示せ
ず)を堆積後、フィールド絶縁膜11の上方においてソ
ース電極1a及びドレイン電極1b上の絶縁膜6などを
開口してその上にアルミ線からなる電極線9a、9bを
形成し、電極線9a、9bとソース電極1a及びドレイ
ン電極1bとを個別に接続する(図2参照)。なお、本
実施例では、制御電極7は側面絶縁膜3a、3bを覆う
ように形成される。このようにすれば、側面絶縁膜3
a、3bへの不純物などの侵入を防止し、絶縁耐圧低下
を防止し、信頼性を向上することができる。
Next, after depositing an interlayer insulating film (not shown) by a CVD method or the like, an insulating film 6 on the source electrode 1a and the drain electrode 1b is opened above the field insulating film 11 and an aluminum film is formed thereon. The electrode lines 9a and 9b made of lines are formed, and the electrode lines 9a and 9b are individually connected to the source electrode 1a and the drain electrode 1b (see FIG. 2). In this embodiment, the control electrode 7 is formed so as to cover the side surface insulating films 3a and 3b. In this way, the side surface insulating film 3
It is possible to prevent impurities and the like from penetrating into a and 3b, prevent a decrease in withstand voltage, and improve reliability.

【0017】以下、このEEPROMセルの動作を説明
する。1書き込みは、ドレイン領域8b及び制御電極7
を正の高電位として、逆バイアスされたドレイン領域と
基板との間の表面ブレークダウン電圧を低下させて基板
表面部でのアバランシェ降伏でできた高エネルギ電子を
ゲート絶縁膜3を通じて浮遊ゲート電極5に注入する。
又は、ソース領域8aからドレイン電極8bに流すチャ
ンネル電流をピンチオフしてホットエレクトロンを形成
してそれを浮遊ゲート電極5に注入する。又は、ドレイ
ン電極1bを低電位、制御電極7を正の高電位として基
板10又はドレイン電極1bから浮遊ゲート電極5に電
子を直接トンネル注入する。
The operation of this EEPROM cell will be described below. For one writing, the drain region 8b and the control electrode 7
Is set to a positive high potential, the surface breakdown voltage between the reverse-biased drain region and the substrate is lowered, and high-energy electrons generated by avalanche breakdown at the substrate surface portion are transferred through the gate insulating film 3 to the floating gate electrode 5 Inject.
Alternatively, the channel current flowing from the source region 8a to the drain electrode 8b is pinched off to form hot electrons and the hot electrons are injected into the floating gate electrode 5. Alternatively, electrons are directly tunnel-injected from the substrate 10 or the drain electrode 1b into the floating gate electrode 5 by setting the drain electrode 1b at a low potential and the control electrode 7 at a positive high potential.

【0018】0書き込みは、制御電極7を低電位とし
て、上記注入を禁止する。読み出しは、選択された制御
電極7に中間電位を与え、ソース領域8a、ドレイン領
域8b間に所定の電位差を与えて、チャンネル電流の大
小で1、0を判別する。消去は、ソース電極1aに正の
高電位を与え、制御電極7に低電位を与えることによ
り、浮遊ゲート電極5から電子をソース電極1a及びソ
ース領域8aへトンネル効果により抜き出して行う。
In writing 0, the control electrode 7 is set to a low potential to inhibit the injection. For reading, an intermediate potential is applied to the selected control electrode 7, a predetermined potential difference is applied between the source region 8a and the drain region 8b, and 1 or 0 is discriminated depending on the magnitude of the channel current. Erasing is performed by applying a positive high potential to the source electrode 1a and a low potential to the control electrode 7 to extract electrons from the floating gate electrode 5 to the source electrode 1a and the source region 8a by the tunnel effect.

【0019】(実施例2)他の実施例を図1を参照して
説明する。この実施例では、図1(c)に示す側面絶縁
膜3a、3b及びゲート絶縁膜3を形成するプロセスに
おいて、側面絶縁膜3a、3bよりゲート絶縁膜3の耐
圧力を相対的に向上させる方法を示す。
(Embodiment 2) Another embodiment will be described with reference to FIG. In this embodiment, in the process of forming the side surface insulating films 3a and 3b and the gate insulating film 3 shown in FIG. 1C, a method of relatively improving the pressure resistance of the gate insulating film 3 relative to the side surface insulating films 3a and 3b. Indicates.

【0020】すなわち、この実施例では、図1(c)と
同様に、例えば熱酸化法で露出する基板10の表面及び
ソース電極1a及びドレイン電極1bの上面及び側面を
酸化して、基板10の表面にゲート絶縁膜3を形成し、
ソース電極1a及びドレイン電極1bの側面に側面絶縁
膜3a、3bを形成する。次に、CVD法(プラズマC
VD法)にて窒化シリコン膜又は酸化シリコン膜を薄く
(例えば100オングストローム以下)堆積する。この
時、この窒化シリコン膜又は酸化シリコン膜からなるC
VD膜の厚さはゲート絶縁膜3上では厚く形成されるも
のの、側面絶縁膜3a、3b上にはほとんど形成されな
い。
That is, in this embodiment, as in the case of FIG. 1C, the surface of the substrate 10 exposed by, for example, a thermal oxidation method and the upper surface and the side surface of the source electrode 1a and the drain electrode 1b are oxidized and the substrate 10 is exposed. Form the gate insulating film 3 on the surface,
Side surface insulating films 3a and 3b are formed on the side surfaces of the source electrode 1a and the drain electrode 1b. Next, the CVD method (plasma C
A silicon nitride film or a silicon oxide film is thinly deposited (for example, 100 angstroms or less) by VD method). At this time, C made of the silicon nitride film or the silicon oxide film is used.
Although the VD film is formed thick on the gate insulating film 3, it is hardly formed on the side surface insulating films 3a and 3b.

【0021】したがって、このようにすれば選択的にゲ
ート絶縁膜3の電子注入又は抜き取りの能率を低下さ
せ、電子注入(書き込み)又は抜き取り(消去)を側面
絶縁膜3a、3bを通じて主として行うようにすること
ができる。特に、ゲート絶縁膜3と側面絶縁膜3a、3
bとを同一工程で形成する場合、ポリシリコンからなる
ソース電極1a及びドレイン電極1bの表面の酸化速度
が速く、どうしてもゲート絶縁膜3より側面絶縁膜3
a、3bの方が厚くなってしまうので、上記CVD膜の
堆積は好都合である。
Therefore, in this way, the efficiency of electron injection or extraction of the gate insulating film 3 is selectively reduced, and electron injection (writing) or extraction (erasing) is mainly performed through the side surface insulating films 3a and 3b. can do. In particular, the gate insulating film 3 and the side surface insulating films 3a, 3
In the case where b and b are formed in the same process, the surface of the source electrode 1a and the drain electrode 1b made of polysilicon has a high oxidation rate, and the side surface insulating film 3 is inevitably inferior to the gate insulating film 3 in that case.
The deposition of the above CVD film is convenient because the thicknesses of a and 3b become thicker.

【0022】したがって、この実施例では、側面絶縁膜
3a又は3bを通じての電子のトンネル効果により消去
のみならず書き込みを行うことが好適である。 (実施例3)他の実施例を図3及び図4を参照して説明
する。P- 型のシリコン基板10の表面にLOCOS法
によりシリコン酸化膜からなるフィールド絶縁膜11を
形成し、その上に、例えばCVD法で所定の不純物濃度
を有するN型のポリシリコン層12を形成し、更に、そ
の上にパターニングされたレジストマスク100を形成
し、その後、リンなどのイオン注入によりポリシリコン
層12の露出領域をN+ 型とする(図3(a)参照)。
Therefore, in this embodiment, it is preferable to perform not only erasing but also writing by the tunnel effect of electrons through the side surface insulating film 3a or 3b. (Embodiment 3) Another embodiment will be described with reference to FIGS. A field insulating film 11 made of a silicon oxide film is formed on the surface of a P type silicon substrate 10 by a LOCOS method, and an N type polysilicon layer 12 having a predetermined impurity concentration is formed thereon by a CVD method, for example. Further, a patterned resist mask 100 is further formed thereon, and then the exposed region of the polysilicon layer 12 is made into N + type by ion implantation of phosphorus or the like (see FIG. 3A).

【0023】次に、レジストマスク100を除去後、ポ
リシリコン層12をホトリソ法でパターニングして本発
明でいう電極導体を構成するソース電極1a及びドレイ
ン電極1bを形成する(図3(b)参照)。ここで重要
なことは、ソース電極1a及びドレイン電極1bの先端
部は上記マスキングによりN+ 型とはなっていないN型
領域部2a、2bをそれぞれ有することである。
Next, after removing the resist mask 100, the polysilicon layer 12 is patterned by the photolithography method to form the source electrode 1a and the drain electrode 1b constituting the electrode conductor in the present invention (see FIG. 3B). ). What is important here is that the tip portions of the source electrode 1a and the drain electrode 1b have N-type region portions 2a and 2b which are not N + -type due to the masking.

【0024】次に、例えば熱酸化法で露出する基板10
の表面及びソース電極1a及びドレイン電極1bの上面
及び側面を酸化して、基板10の表面にゲート絶縁膜3
を形成し、ソース電極1a及びドレイン電極1bの側面
に側面絶縁膜3a、3bを形成する(図3(c)参
照)。なお、ここで、ゲート絶縁膜3の厚さは電子注入
可能な厚さ例えば100〜300オングストロームとさ
れる。
Next, the substrate 10 exposed by, for example, a thermal oxidation method
Of the gate insulating film 3 on the surface of the substrate 10 by oxidizing the upper surface and the side surfaces of the source electrode 1a and the drain electrode 1b.
And side surface insulating films 3a and 3b are formed on the side surfaces of the source electrode 1a and the drain electrode 1b (see FIG. 3C). Here, the thickness of the gate insulating film 3 is set to a thickness at which electrons can be injected, for example, 100 to 300 angstrom.

【0025】次に、例えばCVD法により所定の不純物
濃度にドープされたポリシリコン層を厚く堆積し、その
後、エッチバックしてソース電極1aとドレイン電極1
bとの間においてゲート絶縁膜3上に浮遊ゲート電極5
を形成する(図3(d)参照)。次に、例えば水蒸気酸
化法によりこれらソース電極1a及びドレイン電極1b
並びに浮遊ゲート電極5の露出表面を酸化して表面絶縁
膜6を形成し、更にその後、例えばCVD法により形成
された低抵抗のポリシリコン層をホトリソ法でパターニ
ングして浮遊ゲート電極5の上に表面絶縁膜6を挟んで
制御電極7を形成し、加熱によりソース電極1a及びド
レイン電極1bから基板10の表面にリンをオートドー
プしてN+ 型のソース領域8a及びドレイン領域8bを
形成する(図3(e)参照)。
Next, a polysilicon layer doped to a predetermined impurity concentration is deposited thickly by, for example, the CVD method, and then etched back to perform the source electrode 1a and the drain electrode 1.
floating gate electrode 5 on the gate insulating film 3 between
Are formed (see FIG. 3D). Next, these source electrode 1a and drain electrode 1b are formed by, for example, a steam oxidation method.
Further, the exposed surface of the floating gate electrode 5 is oxidized to form a surface insulating film 6, and thereafter, a low resistance polysilicon layer formed by, for example, a CVD method is patterned by a photolithography method to form a surface on the floating gate electrode 5. The control electrode 7 is formed with the surface insulating film 6 sandwiched therebetween, and phosphorus is auto-doped from the source electrode 1a and the drain electrode 1b to the surface of the substrate 10 by heating to form the N + type source region 8a and the drain region 8b ( See FIG. 3 (e).

【0026】次に、CVD法などで層間絶縁膜(図示せ
ず)を堆積後、フィールド絶縁膜11の上方においてソ
ース電極1a及びドレイン電極1b上の表面絶縁膜6な
どを開口してその上にアルミ線からなる電極線9a、9
bを形成し、電極線9a、9bとソース電極1a及びド
レイン電極1bとを個別に接続する(図4参照)。この
実施例で重要なことは、上記した図3(e)におけるオ
ートドープにおいて、N型領域部2a、2bは他のソー
ス電極1a及びドレイン電極1bより低濃度であるの
で、N型領域部2a、2bの直下の基板表面に形成され
るソース領域8a及びドレイン領域8bの不純物濃度は
薄く、かつ、ドープ深さ及び横方向寸法は小さくなり、
浮遊ゲート電極5とのオーバーラップも小さくなること
である。したがって、本実施例によれば浮遊ゲート電極
5の寄生容量を低減でき、またソース領域8a又はドレ
イン領域8bと浮遊ゲート電極5との間のゲート絶縁膜
3にトンネル電流が集中するのを防止することができ
る。更に、本実施例によれば、上記したようにN型領域
部2a、2b直下のソース領域8a及びドレイン領域8
bの不純物濃度が薄いので、消去時にソース領域8a又
はドレイン領域8bに高い正電圧を印加し、基板電位を
低電位とし、制御電極7を低電位とすれば、ソース領域
8a又はドレイン領域8bと基板との間の接合空乏層に
よりN型領域部2a、2bが空乏化して電圧を負担し、
これにより、ゲート絶縁膜3が薄くても、ゲート絶縁膜
3にてトンネルが生じたり、ゲート絶縁膜近傍にて降伏
が生じる前に側面絶縁膜3a又は3bを通じて浮遊ゲー
ト電極5からソース電極1a又はドレイン電極1bに電
子をトンネルさせて消去を安定に行うことができる点に
ある。したがって、本実施例では側面絶縁膜3a、3b
がゲート絶縁膜3より多少厚くても、側面絶縁膜3a、
3bを用いてのトンネル電流による消去動作を確実とす
る。
Next, after depositing an interlayer insulating film (not shown) by a CVD method or the like, a surface insulating film 6 on the source electrode 1a and the drain electrode 1b is opened above the field insulating film 11 and is formed thereon. Electrode wires 9a, 9 made of aluminum wire
b is formed, and the electrode lines 9a and 9b are individually connected to the source electrode 1a and the drain electrode 1b (see FIG. 4). What is important in this embodiment is that the N-type region portions 2a and 2b have a lower concentration than the other source electrode 1a and drain electrode 1b in the autodoping in FIG. 2b, the impurity concentration of the source region 8a and the drain region 8b formed on the surface of the substrate immediately below 2b is low, and the doping depth and lateral dimension are small.
The overlap with the floating gate electrode 5 is also small. Therefore, according to this embodiment, the parasitic capacitance of the floating gate electrode 5 can be reduced, and the tunnel current can be prevented from concentrating on the gate insulating film 3 between the source region 8a or the drain region 8b and the floating gate electrode 5. be able to. Further, according to the present embodiment, as described above, the source region 8a and the drain region 8 immediately below the N-type region portions 2a and 2b.
Since the impurity concentration of b is low, if a high positive voltage is applied to the source region 8a or the drain region 8b during erasing, the substrate potential is set to a low potential, and the control electrode 7 is set to a low potential, the source region 8a or the drain region 8b is formed. The N-type regions 2a and 2b are depleted by the junction depletion layer with the substrate and bear the voltage,
Thereby, even if the gate insulating film 3 is thin, before the tunnel occurs in the gate insulating film 3 or the breakdown occurs in the vicinity of the gate insulating film, the floating gate electrode 5 to the source electrode 1a or The point is that electrons can be tunneled to the drain electrode 1b to perform stable erasing. Therefore, in this embodiment, the side surface insulating films 3a and 3b are formed.
Is slightly thicker than the gate insulating film 3, the side surface insulating film 3a,
Ensure erase operation by tunneling current using 3b.

【0027】なお、本実施例において書き込み動作自体
は、実施例1と同様とすることができる。
The write operation itself in this embodiment can be the same as that in the first embodiment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のEEPROMセルの製造工程の一例を
示す図である。
FIG. 1 is a diagram showing an example of a manufacturing process of an EEPROM cell of the present invention.

【図2】図1のEEPROMセルの断面図である。2 is a cross-sectional view of the EEPROM cell of FIG.

【図3】本発明のEEPROMセルの製造工程の他例を
示す図である。
FIG. 3 is a diagram showing another example of the manufacturing process of the EEPROM cell of the present invention.

【図4】図3のEEPROMセルの断面図である。4 is a cross-sectional view of the EEPROM cell of FIG.

【符号の説明】[Explanation of symbols]

10は基板、11はフィールド絶縁膜、1aはソース電
極(電極導体)、1bはドレイン電極(電極導体)、3
はゲート絶縁膜、3a、3bは側面絶縁膜、5は浮遊ゲ
ート電極、6は表面絶縁膜、7は制御電極。
10 is a substrate, 11 is a field insulating film, 1a is a source electrode (electrode conductor), 1b is a drain electrode (electrode conductor), 3
Is a gate insulating film, 3a and 3b are side surface insulating films, 5 is a floating gate electrode, 6 is a surface insulating film, and 7 is a control electrode.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 27/115 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01L 27/115

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】一導電型の基板の表面部にゲート絶縁膜を
介して配設された浮遊ゲート電極と、前記ゲート絶縁膜
を挟んで前記基板の表面部に形成された反対導電型のソ
ース領域及びドレイン領域と、フィールド絶縁膜を挟ん
で前記基板上に配設されて前記ソース領域又はドレイン
領域に接続されるとともに側面が側面絶縁膜を通じて前
記浮遊ゲート電極の側面に接する電極導体と、表面絶縁
膜を挟んで前記浮遊ゲート電極上に形成された制御電極
とを備える電気的に書き込み消去可能なメモリセルの駆
動方法において、 前記電極導体と前記制御電極との間に所定の消去電圧を
印加することにより前記浮遊ゲート電極の前記電荷を前
記側面絶縁膜を通じて前記電極導体にトンネルさせて消
去を行うことを特徴とする電気的に書き込み消去可能な
メモリセルの駆動方法。
1. A floating gate electrode disposed on the surface of a substrate of one conductivity type with a gate insulating film interposed therebetween, and a source of opposite conductivity type formed on the surface of the substrate with the gate insulating film interposed therebetween. A region and a drain region, an electrode conductor disposed on the substrate with a field insulating film interposed therebetween, connected to the source region or the drain region, and having a side surface in contact with a side surface of the floating gate electrode through a side surface insulating film; A method of driving an electrically writable and erasable memory cell comprising a control electrode formed on the floating gate electrode with an insulating film interposed therebetween, wherein a predetermined erase voltage is applied between the electrode conductor and the control electrode. By doing so, the electric charge of the floating gate electrode is tunneled to the electrode conductor through the side surface insulating film to perform erasing, and electrically writing and erasing is possible. Driving method of memory cell.
【請求項2】所定の表面領域にフィールド酸化膜を形成
するとともに残余の表面領域を露出した一導電型の基板
を準備し、 前記基板と反対導電型の高濃度不純物をドープしたポリ
シリコン層からなる電極導体にて形成されたソース電極
及びドレイン電極を前記基板の露出表面上に互いに離れ
て配設し、 前記両電極の間にて露出する前記基板の前記露出表面及
び前記両電極の表面を酸化して前記両電極の側面に消去
用トンネル絶縁膜をなす側面絶縁膜を形成しかつ前記基
板の前記露出表面にゲート絶縁膜を形成し、 更に堆積されたポリシリコン層をエッチバックして前記
ゲート絶縁膜及び前記側面絶縁膜に接して浮遊ゲート電
極を形成し、 前記ソース電極、ドレイン電極及び浮遊ゲート電極の露
出表面に表面絶縁膜を形成し、 前記表面絶縁膜を介して前記浮遊ゲート電極上に制御電
極を形成し、 更に、前記各工程の途中又はその後に加熱して前記ソー
ス電極及びドレイン電極から直下の前記基板の表面部へ
前記不純物をドープしてソース領域及びドレイン領域を
形成することを特徴とする電気的に書き込み消去可能な
メモリセルの製造方法。
2. A one-conductivity-type substrate in which a field oxide film is formed on a predetermined surface region and the remaining surface region is exposed is prepared, and a polysilicon layer doped with a high-concentration impurity of a conductivity type opposite to the substrate is prepared. A source electrode and a drain electrode formed of an electrode conductor that are separated from each other on the exposed surface of the substrate, and the exposed surface of the substrate and the surface of the two electrodes exposed between the electrodes. Oxidation forms a side insulating film that forms an erasing tunnel insulating film on the side surfaces of both electrodes, forms a gate insulating film on the exposed surface of the substrate, and etches back the deposited polysilicon layer to form the gate insulating film. A floating gate electrode is formed in contact with the gate insulating film and the side surface insulating film, and a surface insulating film is formed on exposed surfaces of the source electrode, the drain electrode, and the floating gate electrode, and the surface insulating film is formed. A control electrode is formed on the floating gate electrode via the above, and further, during or after each of the steps, heating is performed to dope the impurity to the surface portion of the substrate immediately below the source electrode and the drain electrode to source the impurity. A method of manufacturing an electrically writable and erasable memory cell, which comprises forming a region and a drain region.
【請求項3】前記ソース電極及びドレイン電極は、等方
性エッチングで形成される請求項2記載の電気的に書き
込み消去可能なメモリセルの製造方法。
3. The method for manufacturing an electrically writable / erasable memory cell according to claim 2, wherein the source electrode and the drain electrode are formed by isotropic etching.
【請求項4】前記ソース電極及びドレイン電極の少なく
とも一方は前記側面絶縁膜に近接して不純物濃度が低濃
度である低濃度ドープ領域を有する請求項2記載の電気
的に書き込み消去可能なメモリセルの製造方法。
4. The electrically writable and erasable memory cell according to claim 2, wherein at least one of the source electrode and the drain electrode has a lightly doped region having a low impurity concentration adjacent to the side surface insulating film. Manufacturing method.
JP7002253A 1995-01-10 1995-01-10 Driving and manufacturing method of memory cell capable of electrically writing and erasing Pending JPH08191110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7002253A JPH08191110A (en) 1995-01-10 1995-01-10 Driving and manufacturing method of memory cell capable of electrically writing and erasing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7002253A JPH08191110A (en) 1995-01-10 1995-01-10 Driving and manufacturing method of memory cell capable of electrically writing and erasing

Publications (1)

Publication Number Publication Date
JPH08191110A true JPH08191110A (en) 1996-07-23

Family

ID=11524205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7002253A Pending JPH08191110A (en) 1995-01-10 1995-01-10 Driving and manufacturing method of memory cell capable of electrically writing and erasing

Country Status (1)

Country Link
JP (1) JPH08191110A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044868A1 (en) * 2001-11-21 2003-05-30 Sharp Kabushiki Kaisha Semiconductor storage device, its manufacturing method and operating method, and portable electronic apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044868A1 (en) * 2001-11-21 2003-05-30 Sharp Kabushiki Kaisha Semiconductor storage device, its manufacturing method and operating method, and portable electronic apparatus
US7164167B2 (en) 2001-11-21 2007-01-16 Sharp Kabushiki Kaisha Semiconductor storage device, its manufacturing method and operating method, and portable electronic apparatus
US7582926B2 (en) 2001-11-21 2009-09-01 Sharp Kabushiki Kaisha Semiconductor storage device, its manufacturing method and operating method, and portable electronic apparatus

Similar Documents

Publication Publication Date Title
JP3743189B2 (en) Nonvolatile semiconductor memory device and manufacturing method thereof
US5231299A (en) Structure and fabrication method for EEPROM memory cell with selective channel implants
US5337274A (en) Nonvolatile semiconductor memory device having adjacent memory cells and peripheral transistors separated by field oxide
JPH04179274A (en) Floating gate type semiconductor storage device and manufacture thereof
US6355525B1 (en) Method of producing non-volatile semiconductor memory device having a floating gate with protruding conductive side-wall portions
EP0737366A1 (en) Field effect device
JP2819975B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
KR0183484B1 (en) Method of making nonvolatile semiconductor device having sidewall split gate for compensating for over-erasing operation
KR20000017157A (en) Semiconductor device and memory device with reduced erase voltage, and method for forming the same
JPH07226449A (en) Semiconductor memory device capable of electrically writing and erasing and its manufacture and memory recognition
JPH10125904A (en) Silicon carbide semiconductor device
JP3057792B2 (en) Method for manufacturing thin film transistor
JPH06104451A (en) Nonvolatile semiconductor storage device
JPH08191110A (en) Driving and manufacturing method of memory cell capable of electrically writing and erasing
JP2710194B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
KR20000011189A (en) Nonvolatile semiconductor memory device and method of manufacturing the same
JP2950557B2 (en) Semiconductor device and manufacturing method thereof
JP4427431B2 (en) Semiconductor memory device, semiconductor memory device manufacturing method, and semiconductor memory device operating method
JP2646547B2 (en) Method for manufacturing semiconductor device
JP3137091B2 (en) Manufacturing method of nonvolatile semiconductor memory device
JPH06334192A (en) Non-volatile semiconductor memory
KR100253582B1 (en) Manufacture of semiconductor device
JP3185746B2 (en) Nonvolatile semiconductor memory device
JPH05326970A (en) Nonvolatile semiconductor memory
JP2797466B2 (en) Nonvolatile semiconductor memory device