JP3015696B2 - Method for producing ceramic fuel particles - Google Patents

Method for producing ceramic fuel particles

Info

Publication number
JP3015696B2
JP3015696B2 JP7000356A JP35695A JP3015696B2 JP 3015696 B2 JP3015696 B2 JP 3015696B2 JP 7000356 A JP7000356 A JP 7000356A JP 35695 A JP35695 A JP 35695A JP 3015696 B2 JP3015696 B2 JP 3015696B2
Authority
JP
Japan
Prior art keywords
gelling
solution
internal
gelled
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7000356A
Other languages
Japanese (ja)
Other versions
JPH08189982A (en
Inventor
滋 山岸
Original Assignee
日本原子力研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本原子力研究所 filed Critical 日本原子力研究所
Priority to JP7000356A priority Critical patent/JP3015696B2/en
Publication of JPH08189982A publication Critical patent/JPH08189982A/en
Application granted granted Critical
Publication of JP3015696B2 publication Critical patent/JP3015696B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ウラン、トリウム、超
ウラン元素から選択されたセラミックス構成金属からな
る原子炉用セラミックス燃料粒子等の微小球状セラミッ
クス粒子を調製する方法の一つである内部ゲル化法にお
いて使用される内部ゲル化原液の調製・供給方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal gel which is one of the methods for preparing fine spherical ceramic particles such as ceramic fuel particles for a nuclear reactor, which are made of a ceramic constituent metal selected from uranium, thorium and transuranium elements. The present invention relates to a method for preparing and supplying an internal gelling stock solution used in a gelation method.

【0002】[0002]

【従来の技術】従来、原子炉用セラミックス燃料粒子の
分野において利用されている燃料ゲル粒子の製造方法の
一つである内部ゲル化法においては、ウラン等の燃料金
属を含む被ゲル化液とゲル化液とを予め冷却・混合した
内部ゲル化原液の液滴を何等かの方法で造り、それを加
熱して液滴内部のヘキサメチレンテトラミン(HMT
A)の熱分解で発生するアンモニアを被ゲル化物に作用
させてゲル粒子を得ている。
2. Description of the Related Art In an internal gelation method, which is one of the methods for producing fuel gel particles conventionally used in the field of ceramic fuel particles for a nuclear reactor, a gelling liquid containing a fuel metal such as uranium is used. Droplets of an internal gelling stock solution in which the gelling solution has been cooled and mixed in advance are formed by any method, and heated to form hexamethylenetetramine (HMT) inside the droplets.
Ammonia generated by the thermal decomposition of A) is caused to act on the gelled material to obtain gel particles.

【0003】[0003]

【発明が解決しようとする課題】従来技術では、被ゲル
化液とゲル化液とを予め冷却・混合した内部ゲル化原液
をノズル部に供給して液滴を形成をするので、原液タン
ク、供給ポンプ、ノズル部等の原液供給ライン全体を冷
却することが不可欠であった。しかし、この冷却は、ゲ
ル化装置全体の構造を複雑にするのみならず、大気中の
湿気がノズル部で凝縮し、そこでできた水滴がノズル先
端で内部ゲル化原液と合流して液滴が不均質になるとい
う不利に加えて、滴下方向が鉛直方向からずれる場合が
あるという問題点があった。このずれは、ゲル化のため
の加熱方法に高速誘電加熱法[特願平6−75789
号]を適用する場合においては特にトラブルの原因とな
る。
In the prior art, an internal gelling solution in which a liquid to be gelled and a gelling solution are cooled and mixed in advance is supplied to a nozzle portion to form droplets. It was essential to cool the entire stock solution supply line such as the supply pump and the nozzle. However, this cooling not only complicates the structure of the entire gelling apparatus, but also causes moisture in the atmosphere to condense at the nozzle, and water droplets formed there merge with the internal gelling solution at the nozzle tip to form droplets. In addition to the disadvantage of inhomogeneity, there is a problem that the drop direction may be shifted from the vertical direction. This shift is caused by a high-speed dielectric heating method [Japanese Patent Application No. 6-75789].
In particular, this can cause trouble when using

【0004】そこで、本発明の目的は、被ゲル化液とゲ
ル化液のいずれをも冷却することなく、ゲル化原液の液
滴形成・滴下が可能になる方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for forming and dropping a gelling stock solution without cooling both the gelling solution and the gelling solution.

【0005】[0005]

【課題を解決するための手段】本願発明者が鋭意研究の
結果、目的とする課題の解決のために採用した手段は次
のとおりである。
As a result of earnest research, the present inventors have adopted the following means for solving the objective problem.

【0006】第1は、被ゲル化液とゲル化液の混合部か
らノズル先端までの内部ゲル化原液供給ラインの容積を
可能な限り小さくすることによって、混合後液滴滴下ま
での所要時間を可能な限り短縮し、その滴下前に内部ゲ
ル化が始まらないようにしたことである。
First, by reducing the volume of the internal gelling liquid supply line from the mixing section of the liquid to be gelled and the gelling liquid to the tip of the nozzle as much as possible, the time required from mixing to dropping of the droplets is reduced. It was as short as possible so that internal gelation did not start before the addition.

【0007】第2は、上記の小容積の部分を被ゲル化液
とゲル化液を混合した粘性の高い内部ゲル化原液が通過
する極く短時間の間に、実用上問題のない程度にまで両
液を均一に混合するために、上記の小容積の一部として
極く細長い管を配置したことである。
The second problem is that, during the very short time when the high-viscosity internal gelling solution obtained by mixing the liquid to be gelled and the gelling liquid passes through the small-volume portion, it is practically acceptable. In order to uniformly mix the two liquids until now, an extremely elongated tube was arranged as a part of the small volume.

【0008】[0008]

【実施例】実施例について本発明を具体的に説明する。
ただし、本発明は実施例によって限定されるものではな
い。
EXAMPLES The present invention will be described specifically with reference to examples.
However, the present invention is not limited by the examples.

【0009】[0009]

【実施例1】被ゲル化液とゲル化液の混合部は、内径
0.5mmのテフロン製T型ジョイントの相対する方向
から両液を正面衝突させ双方に垂直のもう一つの方向に
設けたノズル部に供給する構造とした。ノズル部は、そ
の先端は外径0.7mm内径0.4mmのステンレス管と
し、途中に内径0.1mm長さ50mmのテフロン管を
配置し、混合部からノズル先端までの全容積を0.00
41mlとした。
Example 1 A mixed portion of a liquid to be gelled and a liquid to be gelled was provided in another direction perpendicular to both sides by directly colliding both liquids from the opposite direction of a Teflon T-joint having an inner diameter of 0.5 mm. It was structured to supply to the nozzle part. The tip of the nozzle portion is a stainless steel tube having an outer diameter of 0.7 mm and an inner diameter of 0.4 mm, and a Teflon tube having an inner diameter of 0.1 mm and a length of 50 mm is arranged in the middle, so that the total volume from the mixing section to the nozzle tip is 0.00.
The volume was 41 ml.

【0010】被ゲル化液として酸不足型硝酸ウラニル溶
液(U濃度=2.5mol/l、NO3 -/Uモル比=1.
55)を1.2ml/分、ゲル化液としてHMTA−尿
素混合溶液(濃度各3mol/l)を1.8ml/分の
速度で前記の混合部で合流させ、ノズル部に供給した結
果、ノズル先端までにゲル化が開始せずトラブルなく滴
下できた。これを前記の高速誘電加熱法で加熱・ゲル化
し、希アンモニア水(0.5mol/l)中に問題なく
健全なゲル微小球として回収できた。
As a gelling liquid, an acid-deficient uranyl nitrate solution (U concentration = 2.5 mol / l, NO 3 / U molar ratio = 1.
55) were mixed at a rate of 1.8 ml / min with a mixed solution of HMTA-urea (concentration: 3 mol / l) as a gelling liquid at a rate of 1.8 ml / min and supplied to the nozzle. Gelation did not start up to the tip, and it could be dropped without any trouble. This was heated and gelled by the high-speed dielectric heating method described above, and could be recovered as healthy gel microspheres in dilute ammonia water (0.5 mol / l) without any problem.

【0011】[0011]

【実施例2】実施例1と同一の混合部ノズル部を用い
て、被ゲル化液として酸不足型硝酸ウラニル溶液(U濃
度=1.36mol/l、NO3 -/Uモル比=1.55)
を1.5ml/分、ゲル化液としてHMTA−尿素混合
溶液(濃度各3mol/l)を1.5ml/分の速度で
前記の混合部で合流させ、ノズル部に供給した結果、ゲ
ル化する前にノズル先端よりトラブルなく滴下できた。
これを実施例1と同様にして加熱・ゲル化し、問題なく
健全なゲル微小球として回収できた。
Example 2 Using the same nozzle in the mixing section as in Example 1, an acid-deficient uranyl nitrate solution (U concentration = 1.36 mol / l, NO 3 / U molar ratio = 1. 55)
At a mixing rate of 1.5 ml / min. And a mixed solution of HMTA-urea (concentration: 3 mol / l) as a gelling liquid at a rate of 1.5 ml / min. Before, it could be dropped from the nozzle tip without any trouble.
This was heated and gelled in the same manner as in Example 1, and could be recovered as sound gel microspheres without any problem.

【0012】[0012]

【発明の効果】第1に、従来の内部ゲル化法の技術で
は、ゲル化原液を室温より低い零度近くに冷却する冷却
装置とゲル化のための加熱装置という相反する機能を有
する二つの主要装置が必要であった。しかし、本発明の
結果、冷却装置が不要となり、全体の装置のスリム化を
可能とした。
First, in the conventional internal gelation technique, two main contradictory functions of a cooling device for cooling the gelling solution to near zero below the room temperature and a heating device for gelation are used. Equipment needed. However, as a result of the present invention, a cooling device is not required, and the entire device can be made slimmer.

【0013】第2に、冷却の結果生ずるノズル部での湿
気の凝縮に基づくトラブルからの解放を可能とした。
Secondly, it is possible to eliminate troubles caused by condensation of moisture in the nozzle portion resulting from cooling.

【0014】第3に、ゲル化に必要な温度までの温度上
昇程度の軽減を可能とした。加熱に前記の高速誘電加熱
法を採用する場合には、マイクロ波電力を約3/4に軽
減でき、それに伴う加熱用共振器内の電界強度の低減を
可能とし、放電発生限界に対する余裕度の増大を可能と
した。また、加熱に通常の高温の油カラムを用いる場合
には、カラムの長さを短縮でき、その面での装置のスリ
ム化をも可能とした。
Third, it is possible to reduce the temperature rise to the temperature required for gelation. When the above-described high-speed dielectric heating method is used for heating, the microwave power can be reduced to about /, the electric field intensity in the heating resonator can be reduced, and the margin for the discharge generation limit can be reduced. Increase was made possible. In addition, when a normal high-temperature oil column is used for heating, the length of the column can be shortened, and the apparatus can be made slim in that respect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】被ゲル化液とゲル化液の混合部及びノズル部を
備えたセラミックス燃料粒子の製造装置を示した図であ
る。
FIG. 1 is a view showing an apparatus for producing ceramic fuel particles provided with a mixing section of a liquid to be gelled and a gelling liquid and a nozzle section.

【符号の説明】[Explanation of symbols]

1:被ゲル化液とゲル化液の混合部、2:ノズル部、
3:内部ゲル化原液供給ライン
1: mixing part of liquid to be gelled and gelling liquid, 2: nozzle part,
3: Internal gel feed solution supply line

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 セラミックス粒子をゲル粒子経由で製造
するための内部ゲル化法において、被ゲル化物であるセ
ラミックス構成金属含有溶液(以下、被ゲル化液とす
る)とゲル化剤であるヘキサメチレンテトラミンを含む
溶液(以下、ゲル化液と略記する)とを冷却することな
く別々の容器に蓄え、そこから別々のポンプで室温の混
合部に供給・混合した後、冷却していないノズル部で極
短時間に液滴を形成することを特徴とする内部ゲル化原
液の調製・供給方法。
In an internal gelation method for producing ceramic particles via gel particles, a ceramic constituent metal-containing solution to be gelled (hereinafter referred to as a gelling solution) and hexamethylene as a gelling agent. A solution containing tetramine (hereinafter abbreviated as a gelling solution) is stored in a separate container without cooling, and then supplied to and mixed with a separate pump at room temperature by a separate pump. A method for preparing / supplying an internal gelling stock solution characterized by forming droplets in an extremely short time.
【請求項2】 該セラミックス構成金属がウラン、トリ
ウム、超ウラン元素の群から成る選ばれた1種またはそ
れ以上の核燃料物質である請求項1記載の内部ゲル化原
液の調製・供給方法。
2. The method according to claim 1, wherein the ceramic constituent metal is one or more nuclear fuel materials selected from the group consisting of uranium, thorium, and transuranium elements.
JP7000356A 1995-01-05 1995-01-05 Method for producing ceramic fuel particles Expired - Fee Related JP3015696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7000356A JP3015696B2 (en) 1995-01-05 1995-01-05 Method for producing ceramic fuel particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7000356A JP3015696B2 (en) 1995-01-05 1995-01-05 Method for producing ceramic fuel particles

Publications (2)

Publication Number Publication Date
JPH08189982A JPH08189982A (en) 1996-07-23
JP3015696B2 true JP3015696B2 (en) 2000-03-06

Family

ID=11471546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7000356A Expired - Fee Related JP3015696B2 (en) 1995-01-05 1995-01-05 Method for producing ceramic fuel particles

Country Status (1)

Country Link
JP (1) JP3015696B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6488152B2 (en) * 2015-02-27 2019-03-20 富士フイルム株式会社 Method for producing cupric oxide fine particles and cupric oxide fine particles

Also Published As

Publication number Publication date
JPH08189982A (en) 1996-07-23

Similar Documents

Publication Publication Date Title
US4431164A (en) Process and apparatus for producing microspheres
US4088966A (en) Non-equilibrium plasma glow jet
ES8500555A1 (en) Process for preparing and heat treating foodstuffs, and apparatus for carrying out the process.
JP3015696B2 (en) Method for producing ceramic fuel particles
US3313602A (en) Method for making metal oxide microspheres
CN111243770A (en) Method for preparing monodisperse uranium dioxide microspheres
US5047127A (en) Ozone generating method
JP3270118B2 (en) Method and apparatus for producing spheroidized particles by high-frequency plasma
US3900762A (en) Method and apparatus for projecting materials into an arc discharge
EP3020493A1 (en) Nanoparticle production method, production device and automatic production device
US4490972A (en) Hydrazine thruster
US4402885A (en) Process for producing atomized powdered metal or alloy
Yamagishi A new internal gelation process for fuel microsphere preparation without cooling initial solutions
EP0259747A2 (en) Continuous dissolution method and apparatus for spent nuclear fuel
DE2711827B2 (en) Method for operating a glow discharge burning between an anode and a cathode in a flowing gas
DE2559111A1 (en) DYNAMIC GAS LASER
JPS56137639A (en) Decompression vapor growth device
US5464195A (en) Nozzle for electric dispersion reactor
US5738821A (en) Nozzle for electric dispersion reactor
JP3803807B2 (en) Small liquid supply method
Kawamura et al. A capacitively coupled RF-excited CW-HCN laser
JPH07502246A (en) Continuous production method of vanadium pentoxide gel and apparatus for carrying out the method
EP0665980A1 (en) Energy source system and process
Notz Gel-sphere-pac fuel for thermal reactors: assessment of fabrication technology and irradiation performance
JPH01235899A (en) Treatment for solidifying nitrate-containing radioactive waste liquid

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees