JPH08176696A - Production of diamond dispersed ceramic composite sintered compact - Google Patents

Production of diamond dispersed ceramic composite sintered compact

Info

Publication number
JPH08176696A
JPH08176696A JP6339304A JP33930494A JPH08176696A JP H08176696 A JPH08176696 A JP H08176696A JP 6339304 A JP6339304 A JP 6339304A JP 33930494 A JP33930494 A JP 33930494A JP H08176696 A JPH08176696 A JP H08176696A
Authority
JP
Japan
Prior art keywords
diamond
metal
sintered body
powder
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6339304A
Other languages
Japanese (ja)
Inventor
Masami Uzawa
正美 鵜沢
Makoto Kyoda
誠 鏡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chichibu Onoda Cement Corp
Original Assignee
Chichibu Onoda Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Onoda Cement Corp filed Critical Chichibu Onoda Cement Corp
Priority to JP6339304A priority Critical patent/JPH08176696A/en
Publication of JPH08176696A publication Critical patent/JPH08176696A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a sintered compact excellent in strength, hardness, wear and shock resistances by directly forming the metal carbide of a diamond-metal carbide sintered compact from metal powder and diamond particles during sintering. CONSTITUTION: When a sintered compact consisting of 10-60vol.% dispersed phase of diamond particles and the balance matrix phase of carbide of a group IVa, Va or VIa metal of the Periodic Table is produced, a mixture of powder of the group IVa, Va or VIa metal with diamond particles is press-fired. The diamond powder and the metal powder cause a solid phase reaction under heating and pressing, carbide of the metal is formed as a reactional product in the resultant sintered compact and the objective dense composite contg. diamond particles uniformly dispersed in a metal carbide is obtd. even under such a low pressure as to give an unstable region of diamond.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は優れた耐摩耗性と強靱性
を有するセラミックス基複合焼結体の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a ceramic-based composite sintered body having excellent wear resistance and toughness.

【0002】[0002]

【従来技術】ダイヤモンドは最高硬度の物質であり、実
用材料としても高耐摩耗性及び高熱伝導性を備えた優れ
た材料ある。工業的にはダイヤモンド粉末をCo等の結
合金属と共にダイヤモンドの安定な存在領域である超高
圧高温下で製造されたダイヤモンド焼結体が使用されて
いる。しかしながらダイヤモンド焼結体はダイヤモンド
固有のすぐれた性質を備えているものの充分な靱性がな
いために、例えば衝撃の加わる用途等での活用は制約さ
れているのが現状である。このような実用材料としての
靱性の改善を行う上で、基材相としてセラミックスを用
い、分散相としてダイヤモンド粒子からなる複合焼結体
が考案された。セラミックスにはダイヤモンドの高硬
度、高熱伝導性を損なわない為にも、製造時に於ける焼
成雰囲気の適性からも炭化物や窒化物が主に選択されて
いる。この様なダイヤモンド分散セラミックス焼結体を
製造する場合、炭化物や窒化物といったセラミックスを
焼結する為には概ね1500℃以上の温度を要するが、
この温度では、常圧近傍の圧力に於けるダイヤモンドが
瞬時に相転移を起こし黒鉛化するので特開昭53−13
9607号等にあるように、ダイヤモンドが高温で安定
に存在できる超高圧、例えば55000kg/cm2
1500℃の条件で焼結体が製造されている。
2. Description of the Related Art Diamond is a substance having the highest hardness and is an excellent material having high wear resistance and high thermal conductivity as a practical material. Industrially, a diamond sintered body is used in which diamond powder is produced together with a binding metal such as Co under ultrahigh pressure and high temperature, which is a stable existence region of diamond. However, although the diamond sintered body has excellent properties peculiar to diamond, but does not have sufficient toughness, it is the current situation that its use in applications such as impact is restricted. In order to improve the toughness as such a practical material, a composite sintered body has been devised which uses ceramics as a base material phase and diamond particles as a dispersed phase. Carbides and nitrides are mainly selected as the ceramics because they do not impair the high hardness and high thermal conductivity of diamond, and because of the suitability of the firing atmosphere during manufacturing. When manufacturing such a diamond-dispersed ceramics sintered body, a temperature of approximately 1500 ° C. or higher is required to sinter the ceramics such as carbides and nitrides.
At this temperature, diamond at a pressure in the vicinity of normal pressure instantly undergoes a phase transition and graphitizes.
9607 etc., ultrahigh pressure at which diamond can stably exist at high temperature, for example, 55000 kg / cm 2 ,
The sintered body is manufactured under the condition of 1500 ° C.

【0003】[0003]

【発明が解決しようとする課題】超高圧でのダイヤモン
ド分散セラミックス焼結体の製造は、ダイヤモンド焼結
体製造と同様、装置上及び生産性の点から実用材料とし
ては高価なものになる。又、このような方法で製造され
た複合焼結体は耐摩耗材料や工具材料として用いた場
合、基材から分散ダイヤモンド粒子の脱落が生じやす
く、材料としてダイヤモンド本来の特性効果を十分発現
するには至っていないのが現状である。この発明は、従
来のダイヤモンド安定領域よりも低い加圧下にて比較的
容易に製造でき、かつその特性効果を最大限に発揮でき
るダイヤモンド分散セラミックス複合焼結体の製造方法
について応えるものである。
The production of a diamond-dispersed ceramics sintered body under ultrahigh pressure is expensive as a practical material in terms of equipment and productivity, similar to the production of a diamond sintered body. Further, when the composite sintered body produced by such a method is used as a wear-resistant material or a tool material, the dispersed diamond particles are apt to fall off from the base material, so that the original characteristic effect of diamond as a material is sufficiently exhibited. The current situation is that it has not arrived. The present invention provides a method for producing a diamond-dispersed ceramics composite sintered body, which can be produced relatively easily under a pressure lower than that of the conventional diamond stable region, and can maximize its characteristic effect.

【0004】[0004]

【課題を解決するための手段】前記課題解決の為、本発
明者は鋭意検討を行った結果、ダイヤモンド−金属炭化
物からなる複合焼結体の金属炭化物を、金属粉末とダイ
ヤモンド粒子を原料とし、焼結に至る加圧焼成過程中で
固相反応によって直接形成させることにより、ダイヤモ
ンドの非安定領域と言われているような著しく低い圧力
でもダイヤモンド粒子が金属炭化物中に均一に分散され
た緻密な複合体を製造できることがわかった。
[Means for Solving the Problems] In order to solve the above problems, the present inventor has conducted extensive studies, and as a result, diamond-metal carbide of a composite sintered body consisting of metal carbide, using metal powder and diamond particles as raw materials, By directly forming by solid-state reaction during the pressure firing process leading to sintering, the diamond particles are uniformly dispersed in the metal carbide even at an extremely low pressure, which is said to be the unstable region of diamond. It has been found that a composite can be produced.

【0005】即ち、この発明は、10〜60体積%のダ
イヤモンド粒子の分散相と残部が周期律表4a,5a,
6a族の金属の炭化物の基材相からなる焼結体に於い
て、該炭化物が、周期律表4a,5a,6a族の金属の
粉末とダイヤモンド粒子のみからなる混合物を加圧焼成
することによって焼結体中に形成されることを特徴とす
るダイヤモンド分散セラミックス複合焼結体の製造方法
である。
That is, according to the present invention, the dispersed phase of 10 to 60% by volume of diamond particles and the rest are periodic tables 4a, 5a,
In a sintered body consisting of a base phase of a carbide of a 6a group metal, the carbide is pressure-calcined by mixing a mixture consisting of powders of a metal of the 4a, 5a and 6a groups of the periodic table and diamond particles. A method for producing a diamond-dispersed ceramics composite sintered body, which is characterized in that it is formed in a sintered body.

【0006】原料としては、最終的な焼結体に於いて、
金属として留まらずその全てが金属炭化物を形成するも
のとして、金属炭化物を40〜90体積%の成分割合で
過不足無く形成可能な量の周期律表4a,5a,6a族
の金属粉末を用いる。この原料金属には容易に炭化を生
じるものが好ましい。その為には、炭化物の標準生成自
由エネルギー(△Gf゜[Kcal/g・mol炭
素])が、常温あるいは焼結時の温度の基で、0以下と
なるものが良く、これらの条件を満たす金属としては周
期律表4a,5a,6a族の遷移金属、即ちTi、Z
r、Hf、Ta、V、W、Cr、Moが該当する。又、
金属炭化物形成の為の炭素源となるダイヤモンド粒子を
金属粉末と炭化物形成に寄与する分の量、これに最終的
な焼結体に於いて炭化物形成に寄与せずにダイヤモンド
粒子として分散相に留まる分が10〜60体積%となる
ような合計量のダイヤモンド粒子を用いる。尚、使用す
る金属粉末の粒径及びダイヤモンド粒子の粒径は、何れ
も概ね0.1〜数十μm程度のもので対応できる。
As a raw material, in the final sintered body,
The metal powder of the Periodic Tables 4a, 5a, and 6a is used in an amount sufficient to form the metal carbide in an amount of 40 to 90% by volume as a metal powder that does not remain as a metal and forms all of the metal carbide. It is preferable that the raw material metal is one that easily carbonizes. For that purpose, it is preferable that the standard free energy of formation of carbides (ΔGf ° [Kcal / g · mol carbon]) be 0 or less at room temperature or the temperature at the time of sintering, which satisfies these conditions. As a metal, a transition metal of Group 4a, 5a, 6a of the periodic table, that is, Ti, Z
r, Hf, Ta, V, W, Cr, and Mo correspond. or,
The amount of diamond particles, which is the carbon source for forming metal carbide, that contributes to the formation of metal powder and carbide, and remains in the dispersed phase as diamond particles without contributing to carbide formation in the final sintered body. A total amount of diamond particles is used such that the content is 10 to 60% by volume. The particle size of the metal powder and the particle size of the diamond particles to be used can be in the range of about 0.1 to several tens of μm.

【0007】具体的な各原料の配合重量としては、金属
粉末量は、(100・Mm・ρc−A・Mm・ρc)・
100/(A・Mc・ρd−A・Mm・ρc−A・ρc
・α・Md+100・ρc・Mm+100・ρc・α・
Md)重量%となり、100からこの金属粉末の値を引
いた値が原料として用いるダイヤモンドの重量%とな
る。ここでMmは用いた金属のモル質量(g/mo
l)、Mdはダイヤモンド粒子のモル質量、Mcは最終
的に形成される金属炭化物のモル質量、ρcは同じ金属
炭化物の理論密度、ρdはダイヤモンドの密度、Aは焼
結体中のダイヤモンド分散相の存在量(体積%)で10
≦A≦60である。又、αは焼結体中に形成された金属
炭化物の分子式MCα(M:金属、C:炭素)で表され
るαであり、0<α≦1である。α値の例として、金属
がTiならその炭化物はTiCとなりこの場合α=1で
ある。又、金属がMoではその金属炭化物の組成式はM
2CとなるがこれはMoC0.5と記載でき、α=0.5
となる。
As a concrete blending weight of each raw material, the metal powder amount is (100 · Mm · ρc-A · Mm · ρc) ·
100 / (A ・ Mc ・ ρd-A ・ Mm ・ ρc-A ・ ρc
・ Α ・ Md + 100 ・ ρc ・ Mm + 100 ・ ρc ・ α ・
Md)% by weight, and the value obtained by subtracting the value of this metal powder from 100 is the% by weight of diamond used as a raw material. Here, Mm is the molar mass of the metal used (g / mo
l), Md is the molar mass of diamond particles, Mc is the molar mass of metal carbide finally formed, ρc is the theoretical density of the same metal carbide, ρd is the density of diamond, and A is the diamond dispersed phase in the sintered body. Abundance (volume%) of 10
≦ A ≦ 60. Further, α is α represented by the molecular formula MCα (M: metal, C: carbon) of the metal carbide formed in the sintered body, and 0 <α ≦ 1. As an example of the α value, when the metal is Ti, the carbide thereof is TiC, and in this case α = 1. When the metal is Mo, the composition formula of the metal carbide is M
It becomes o 2 C, but this can be described as MoC 0.5, and α = 0.5
Becomes

【0008】前記原料を混合したものを、粉体混合物、
或いは金型成形等によって成形物にし、加圧焼成により
焼結を行う。通常は加圧焼成の前に、真空中若しくは水
素雰囲気中で、およそ600℃以下で仮焼成を行う。仮
焼成の目的は、原料や成形物に含まれる水分や不純物等
を焼結前に分解除去することにあり、仮焼成後の成形物
中には金属とダイヤモンドが原料調整段階と同じ成分割
合で依然未反応の状態で留まっている。
[0008] A mixture of the above raw materials is a powder mixture,
Alternatively, a molded product is formed by die molding or the like and sintered by pressure firing. Usually, before pressure firing, calcination is performed at about 600 ° C. or lower in a vacuum or a hydrogen atmosphere. The purpose of calcination is to decompose and remove water, impurities, etc. contained in the raw material and the molded product before sintering, and in the molded product after the calcination, the metal and diamond are contained in the same composition ratio as in the raw material adjusting step. It still remains unreacted.

【0009】次いでこの成形物を加圧焼成する。加圧焼
成中に被焼成物は金属炭化物を生成し緻密化が進行す
る。加圧焼成の条件としては、用いた金属と同じ種類の
金属の炭化物のみを焼結する際の温度とほぼ同じかそれ
以下の温度、例えば、1300℃〜1450℃程度で、
概ね1000kg/cm2以上の圧力を加えて、Ar等
の不活性ガス中または真空中、あるいは、被焼成物が外
気と接触できないようなシールドされた状態で行うこと
で対応できる。この加圧焼成は、公知の技術である熱間
等方加圧や超高圧加熱等の手法を用いて行うことができ
る。このような加圧焼成により金属炭化物とダイヤモン
ドを構成成分とする複合焼結体を得ることができる。
Next, this molded product is pressure-fired. During the pressure firing, the material to be fired forms a metal carbide, and the densification proceeds. The conditions for pressure firing include a temperature that is substantially the same as or lower than a temperature at which only carbides of the same type of metal as the metal used are sintered, for example, at a temperature of about 1300 ° C to 1450 ° C.
It can be dealt with by applying a pressure of approximately 1000 kg / cm 2 or more, in an inert gas such as Ar or in a vacuum, or in a shielded state in which the object to be fired cannot come into contact with the outside air. This pressure calcination can be performed by using a known technique such as hot isostatic pressing or ultrahigh pressure heating. By such pressure calcination, a composite sintered body containing metal carbide and diamond as constituent components can be obtained.

【0010】また、この発明に於いては、基材相を構成
する金属炭化物は二種類以上の金属炭化物より成る場合
も適応できる。その焼結体中での存在状態は、複数種の
金属炭化物の混合物からなる場合、一端形成された複数
の金属炭化物が固溶体となったものの場合、或いはその
両者が共存している場合の何れであっても良い。このよ
うな状態の基材相は、焼結体中における含有量が40〜
90体積%であって、前記手法に於いて金属原料として
周期律表4a,5a,6a族から選ばれた2種以上の金
属の粉末を用いることによりダイヤモンド分散セラミッ
クス複合焼結体を製造することができる。
Further, in the present invention, the case where the metal carbide constituting the base material phase is composed of two or more kinds of metal carbide is applicable. The state of existence in the sintered body is either a mixture of plural kinds of metal carbides, a case where a plurality of metal carbides formed at one end is a solid solution, or a case where both of them coexist. It may be. The content of the base material phase in such a state in the sintered body is 40 to
Producing a diamond-dispersed ceramics composite sintered body by using powders of two or more kinds of metals selected from Groups 4a, 5a and 6a of the Periodic Table as a metal raw material in the above method at 90% by volume. You can

【0011】[0011]

【作用】この発明に於けるダイヤモンド粒子原料は、そ
れ自体焼結体中にダイヤモンド粒子として留まるもの
と、金属炭化物形成の為の炭素源となるものの二通りの
作用を示す。前者即ち、焼結体中に分散相として存在す
るダイヤモンド粒子は、固有の特性である最強の硬度に
よって優れた耐摩耗性を発揮し、又、基材となる金属炭
化物結合相中に分散されることによって粒子分散強化に
よる材料としての靱性を飛躍的に向上させる。それ故、
本発明では焼結体中のダイヤモンド粒子の含有量を10
〜60体積%とするのは、10体積%以下の場合にはダ
イヤモンドの絶対量不足から良好な耐摩耗性を得ること
ができないため好ましくない。60体積%以上の場合に
はダイヤモンド相中に金属炭化物相が独立して存在する
傾向が強くなり、金属炭化物が連続して結合した相を形
成しなくなり基材相の結合状態の低下を引き起こすこと
によって、焼結材料としての強度が著しく低下したり、
緻密化の進展が阻害されることも生じる為、好ましくな
い。
The diamond particle raw material according to the present invention has two functions: one that remains as diamond particles in the sintered body itself and one that serves as a carbon source for forming metal carbide. The former, that is, the diamond particles that exist as a dispersed phase in the sintered body exhibit excellent wear resistance due to the strongest hardness, which is an inherent property, and are dispersed in the metal carbide binder phase that is the base material. As a result, the toughness as a material is dramatically improved by strengthening the particle dispersion. Therefore,
In the present invention, the content of diamond particles in the sintered body is set to 10
-60% by volume is not preferable when the content is 10% by volume or less because good abrasion resistance cannot be obtained due to insufficient absolute amount of diamond. When the content is 60% by volume or more, the metal carbide phase tends to exist independently in the diamond phase, the metal carbide does not form a continuously bonded phase, and the bonded state of the base material phase is deteriorated. The strength of the sintered material is significantly reduced,
The progress of densification may be hindered, which is not preferable.

【0012】一方後者、即ち、金属の炭化反応に寄与す
るダイヤモンド粉末原料は、このダイヤモンド粉末と金
属粉末が加熱加圧下に於いて、固相反応し、反応生成物
として金属炭化物を形成する。金属炭化物の形成機構は
明確には把握しがたい点があるが、次のように推測され
る。まず、金属炭化物が焼結を開始するよりも低い温度
でダイヤモンドと金属との接触面に金属炭化物核が生
じ、ここを通じてダイヤモンドから金属への拡散が支配
的となって炭化物相領域が金属粒子中心部に向かって拡
大していくものと考えられる。この現象は昇温と共に顕
著になるが、この間も金属は本質的には結晶状態であり
液相になることはない。ダイヤモンドについては金属へ
の拡散が優先的に生じる。従って、ダイヤモンドとして
の安定存在領域から外れる低い圧力下に於いても、この
発明でのダイヤモンドは黒鉛への転移に向かう前に、直
接、金属への拡散種として寄与する。仮に黒鉛への転移
化が生じる場合でも、ダイヤモンドの構造から外れた直
後から安定な変態となる前の過程に於いてその全てが金
属への拡散種となるものと考えられる。
On the other hand, in the latter case, that is, in the diamond powder raw material that contributes to the carbonization reaction of the metal, the diamond powder and the metal powder undergo a solid phase reaction under heat and pressure to form a metal carbide as a reaction product. The formation mechanism of metal carbides is difficult to understand clearly, but it is presumed as follows. First, at a temperature lower than the temperature at which the metal carbide starts to sinter, a metal carbide nucleus is generated at the contact surface between the diamond and the metal, through which diffusion from diamond to metal becomes dominant and the carbide phase region becomes the metal particle center. It is thought that it will expand toward the club. This phenomenon becomes remarkable as the temperature rises, but during this period, the metal is essentially in a crystalline state and does not become a liquid phase. For diamond, diffusion into metal occurs preferentially. Therefore, even under a low pressure that deviates from the stable existence region of diamond, the diamond of the present invention directly contributes as a diffusing species to the metal before going to the transition to graphite. Even if the transformation to graphite occurs, it is considered that all of them become diffusion species to the metal in the process immediately after the diamond is deviated from the structure and before the stable transformation.

【0013】金属内部で形成されたばかりの金属炭化物
は、表面近傍の炭化物に比較し、より低い炭化状態の金
属炭化物が生じている可能性があるが、加熱の進展と共
にこれら炭化物は最も安定な組成物、例えば分子式Ti
C、ZrC、HfC、VC、NbC、TaC、WC、M
2C等で表されるものに移行する。この炭化反応は全
ての金属が炭化されるまで続くが、本発明では、焼成時
の加圧による作用として反応物質相互間の接触面積の増
大が常に保たれている為、炭化反応は、温度及び/また
は時間的な遅延を殆ど生じることなく速やかに進行し、
概ね焼結開始段階前に終了する。その後の焼成段階に入
ると、形成された金属炭化物が焼結を起こす。この炭化
物焼結に際しても加圧による効果が見られ、第一に、加
圧により外部エネルギーが焼成物に蓄積されることに基
づく焼結の初期駆動力の高揚、第二に、より強固な高緻
密体を形成する上での焼結機構、即ち物質移動として粘
性流動機構が支配的になることによって難焼結性物質を
も緻密化しうる高い緻密化作用をもたらす。このような
緻密化が行われた焼結体は、破壊源となり得る内部空隙
を殆ど含まず、かつ粒成長を抑制することができるので
極めて高い強度の焼結体を得ることができる。
The metal carbide that has just formed inside the metal may have a lower carbonization state than the carbide near the surface, but with the progress of heating, these carbides have the most stable composition. Thing, eg molecular formula Ti
C, ZrC, HfC, VC, NbC, TaC, WC, M
o Change to those represented by 2 C, etc. This carbonization reaction continues until all the metals are carbonized, but in the present invention, the increase in the contact area between the reactants is always maintained as a function of the pressure applied during firing. / Or proceed quickly with little time delay,
It is finished almost before the start of sintering. Upon entering the subsequent firing step, the formed metal carbide undergoes sintering. The effect of pressurization is also observed in this carbide sintering. First, the initial driving force for sintering is increased due to external energy being accumulated in the fired product by pressurization. The sintering mechanism in forming the dense body, that is, the viscous flow mechanism is dominant as the mass transfer, and thus brings about a high densification action capable of densifying the hardly-sinterable substance. The densified sinter has almost no internal voids that can be a fracture source, and grain growth can be suppressed, so that a sinter with extremely high strength can be obtained.

【0014】更に、得られた焼結体は、ダイヤモンドを
炭素源とする金属炭化物相と未反応部分のダイヤモンド
からなるものと考えられる為、従来技術の範疇に入る金
属炭化物粉末とダイヤモンド粉末を原料として焼結体を
製造した場合に見られるようなダイヤモンド粒子が本質
的には反応せずに独立した相として、焼結した金属炭化
物結晶間に、単に周囲から物理的な力で押し挟まれた状
態で存在しているだけではない。即ち、本発明に於ける
全ての基材相はダイヤモンドと金属との反応生成物とし
て存在できるものであり、換言すれば金属と接触してい
たダイヤモンドが部分的に金属炭化物になっているとの
見方もでき、この場合、両者間には明確な粒界が存在す
ることはなく、界面相当部分にはダイヤモンド粒子がそ
の周囲の金属炭化物相と強固な結合力を有した連続的な
構造を持つ可能性が推定される。このため、全体として
ダイヤモンド粒子はより強固に焼結体中に保持されるこ
とになる。
Further, since the obtained sintered body is considered to be composed of the metal carbide phase having diamond as a carbon source and the unreacted part of the diamond, the metal carbide powder and the diamond powder which are within the scope of the prior art are used as raw materials. As seen in the case of producing a sintered body, diamond particles were essentially unreacted and were sandwiched between the sintered metal carbide crystals by a physical force from the surroundings as an independent phase. It doesn't just exist in a state. That is, all the substrate phases in the present invention can exist as a reaction product of diamond and metal, in other words, the diamond in contact with the metal is partially metal carbide. It can be seen that in this case, there is no clear grain boundary between the two, and the diamond particles have a continuous structure with a strong bonding force with the surrounding metal carbide phase at the interface equivalent part. Probability is estimated. Therefore, the diamond particles as a whole are more firmly held in the sintered body.

【0015】又、この発明に於いて、2種以上の金属粉
末とダイヤモンド粒子を原料とし、焼結体を製造する場
合でも、焼成体は本質的には金属炭化物とダイヤモンド
からなり、異種金属同志が合金化合物を形成することは
ない。これは、個々の金属がダイヤモンドと炭化反応を
行って金属炭化物を生成する生成エネルギーの方が合金
化合物を生成するエネルギーよりも低い為に、金属炭化
物生成が優先して起こる為である。これらの各炭化物は
加熱の進行と共に固溶体を形成することもあるが、この
場合緻密化過程中に於ける金属炭化物の粒成長をより一
層抑制し、その結果、焼結体強度がさらに向上する。
Further, in the present invention, when a sintered body is produced by using two or more kinds of metal powders and diamond particles as a raw material, the fired body is essentially composed of metal carbide and diamond. Does not form an alloy compound. This is because the formation energy of the individual metal that undergoes a carbonization reaction with diamond to form a metal carbide is lower than the energy of forming an alloy compound, so that the formation of a metal carbide takes precedence. Each of these carbides may form a solid solution with the progress of heating, but in this case, the grain growth of the metal carbide during the densification process is further suppressed, and as a result, the strength of the sintered body is further improved.

【0016】[0016]

【実施例】この発明を実施例によって、より詳しく説明
する。
EXAMPLES The present invention will be described in more detail by way of examples.

【0017】(実施例1) 本発明による試料1とし
て、平均粒径19μmの金属チタン粉末及び平均粒径1
5μmのダイヤモンド粒子を、Tiの全てが炭化され反
応後の焼結体組成がTiCとダイヤモンドがそれぞれ5
0体積%となるように配合した原料、即ち重量比換算で
金属チタン粉末46.61重量%、ダイヤモンド粒子5
3.39重量%を原料として、有機溶媒を用いて湿式混
合する。湿式混合後真空乾燥させた混合粉末を、平板形
状に金型成形し、得られた成形物を600℃の真空中で
仮焼成した後、加圧焼成することにより焼結体を作製し
た。この加圧焼成は、ピストンシリンダー型高温高圧発
生装置を用い、最高温度1300℃、最高圧力1000
0kg/cm2で15分間保持して行った。粉末X線回
折により、この焼結体の結晶相を確認したところ、結晶
相はTiCとダイヤモンドからなり、金属チタンやグラ
ファイトは検出されなかった。また、この焼結体の機械
的性状として3点曲げ強度及びビッカース硬度の測定を
行った。その結果、ビッカース硬度は7000、3点曲
げ強度は120kg/mm2であった。更に、この焼結
体の表面をダイヤモンド砥石を用い、ホイール径200
mm、切り込み5μm、回転数2700回転の条件で加
工した。加工後の表面のダイヤモンド粒子の脱落状況を
観察することにより焼結体組織中でのダイヤモンドの保
持力を調べた。その結果、焼結体の表面に於けるダイヤ
モンド粒子の脱落はほとんど起こっておらず、ダイヤモ
ンド粒子に対する高い保持力を確認した。これらの結果
は表1に示す。また、本発明による試料2〜3として、
前記と同様の金属チタン粉末及びダイヤモンド粒子を用
い、その原料配合割合を変えて表1に示す成分組成の焼
結体を前記と同様の方法で作製した。これらの焼結体に
ついても粉末X線回折により結晶相の確認を行ったが、
結晶相は何れもTiCとダイヤモンドからなり、金属チ
タンやグラファイトは検出されなかった。また、機械的
性状及び焼結体組織のダイヤモンドの保持力も前記と同
様の方法にて調べた。その結果も表1に合わせて記す。
Example 1 As a sample 1 according to the present invention, metallic titanium powder having an average particle size of 19 μm and an average particle size of 1 were used.
5 μm diamond particles are carbonized in the whole Ti, and the composition of the sintered body after the reaction is 5 for TiC and 5 for diamond, respectively.
Raw materials blended so as to be 0% by volume, that is, 46.61% by weight metal titanium powder and 5 diamond particles in terms of weight ratio.
3.39 wt% is used as a raw material and wet mixed using an organic solvent. The wet-mixed and vacuum-dried mixed powder was die-molded into a flat plate shape, and the obtained molded product was pre-baked in vacuum at 600 ° C. and then pressure-baked to produce a sintered body. This pressure firing uses a piston-cylinder type high temperature and high pressure generator and has a maximum temperature of 1300 ° C and a maximum pressure of 1000.
The test was carried out by holding at 0 kg / cm 2 for 15 minutes. When the crystal phase of this sintered body was confirmed by powder X-ray diffraction, the crystal phase consisted of TiC and diamond, and metallic titanium and graphite were not detected. In addition, three-point bending strength and Vickers hardness were measured as mechanical properties of this sintered body. As a result, the Vickers hardness was 7,000 and the three-point bending strength was 120 kg / mm 2 . Further, the surface of this sintered body is coated with a diamond grindstone to obtain a wheel diameter of 200
mm, a cut 5 μm, and a rotation speed of 2700 rotations. The retaining force of diamond in the structure of the sintered body was examined by observing the state of falling of diamond particles on the surface after processing. As a result, it was confirmed that the diamond particles on the surface of the sintered body did not almost fall off and that the diamond particles had a high holding power. The results are shown in Table 1. In addition, as Samples 2 to 3 according to the present invention,
Using the same metallic titanium powder and diamond particles as described above, the composition ratios of the raw materials were changed to prepare sintered bodies having the component compositions shown in Table 1 by the same method as described above. The crystal phase of these sintered bodies was also confirmed by powder X-ray diffraction.
Each crystal phase consisted of TiC and diamond, and metallic titanium and graphite were not detected. Further, the mechanical properties and the coercive force of diamond in the sintered structure were also examined by the same method as described above. The results are also shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】(実施例2) 本発明による試料4〜6と
して平均粒径10μmの金属ジルコニウム粉末及び平均
粒径15μmのダイヤモンド粒子を用い、炭化反応後の
焼結体成分割合が表1に示したものとなるように配合を
行った原料を、[実施例1]と同様の方法で焼結体を製
造した。これらの焼結体についても粉末X線回折により
結晶相の確認を行ったが、結晶相は何れもZrCとダイ
ヤモンドからなり金属ジルコニウムやグラファイトは検
出されなかった。また、焼結体組織のダイヤモンドの保
持力も含め、焼結体の機械的性状を(実施例1)と同様
の方法にて調べた。その結果も表1に合わせて記す。
Example 2 As samples 4 to 6 according to the present invention, metal zirconium powder having an average particle size of 10 μm and diamond particles having an average particle size of 15 μm were used, and the component ratio of the sintered body after the carbonization reaction is shown in Table 1. The raw materials that were blended so as to obtain a sintered body were manufactured in the same manner as in [Example 1]. The crystal phase of these sintered bodies was also confirmed by powder X-ray diffraction, but the crystal phase was composed of ZrC and diamond, and no metallic zirconium or graphite was detected. In addition, the mechanical properties of the sintered body including the diamond holding force of the sintered body structure were examined by the same method as in (Example 1). The results are also shown in Table 1.

【0020】(実施例3) 本発明による試料7〜9と
して、平均粒径15μmの金属タンタル粉末及び平均粒
径15μmのダイヤモンド粒子を用い、炭化反応後の焼
結体成分割合が表1に示したものとなるように配合を行
った原料を、加圧焼成の最高温度のみ1350℃とし、
他は(実施例1)と同様の方法で焼結体を製造した。こ
れらの焼結体についても粉末X線回折により結晶相の確
認を行ったが、結晶相は何れもTaCとダイヤモンドか
らなり、金属タンタル及びグラファイトは検出されなか
った。また、焼結体組織のダイヤモンド粒子の保持力も
含め、焼結体の機械的性状を(実施例1)と同様の方法
にて調べた。その結果も表1に合わせて記す。
Example 3 As samples 7 to 9 according to the present invention, metal tantalum powder having an average particle size of 15 μm and diamond particles having an average particle size of 15 μm were used, and the component ratio of the sintered body after the carbonization reaction is shown in Table 1. The raw material blended so that it will be
Otherwise, a sintered body was manufactured by the same method as in (Example 1). The crystal phase of these sintered bodies was also confirmed by powder X-ray diffraction, but the crystal phases consisted of TaC and diamond, and metallic tantalum and graphite were not detected. In addition, the mechanical properties of the sintered body, including the diamond particle retention force of the sintered body structure, were examined by the same method as in (Example 1). The results are also shown in Table 1.

【0021】(実施例4) 本発明による試料10〜1
2として、平均粒径0.7μmの金属タングステン粉末
と平均粒径15μmのダイヤモンド粉末を用い、炭化反
応後の焼結体成分割合が表1に示したものとなるように
配合を行った原料を、加圧焼成の最高温度のみ1500
℃とし、他は(実施例1)と同様の方法で焼結体を製造
した。これらの焼結体についても粉末X線回折により結
晶相の確認を行ったが、結晶相は何れもWCとダイヤモ
ンドからなり、金属タングステンやグラファイトは検出
されなかった。また、焼結体組織のダイヤモンド粒子の
保持力も含め、焼結体の機械的性状を(実施例1)と同
様の方法にて調べた。その結果も表1に合わせて記す。
Example 4 Samples 10 to 1 according to the present invention
As 2, the raw material was prepared by using a metal tungsten powder having an average particle size of 0.7 μm and a diamond powder having an average particle size of 15 μm and compounding them so that the component ratio of the sintered body after the carbonization reaction was as shown in Table 1. , Only the maximum temperature of pressure firing is 1500
C., and a sintered body was manufactured in the same manner as in (Example 1) except for the above. The crystal phase of these sintered bodies was also confirmed by powder X-ray diffraction, but the crystal phases consisted of WC and diamond, and metallic tungsten and graphite were not detected. In addition, the mechanical properties of the sintered body, including the diamond particle retention force of the sintered body structure, were examined by the same method as in (Example 1). The results are also shown in Table 1.

【0022】(実施例5) 本発明による試料13〜1
5として、平均粒径25μmの金属バナジウム粉末と平
均粒径15μmのダイヤモンド粒子を用い、炭化反応後
の焼結体成分割合が表1に示したものとなるように配合
を行った原料を、加圧焼成の最高温度のみ1400℃と
し、他は(実施例1)と同様の方法で焼結体を製造し
た。これらの焼結体についても粉末X線回折により結晶
相の確認を行ったが結晶相は何れもVCとダイヤモンド
からなり、金属バナジウムやグラファイトは検出されな
かった。また、焼結体組織のダイヤモンド粒子の保持力
も含め、焼結体の機械的性状を(実施例1)と同様の方
法にて調べた。その結果も表1に合わせて記す。
Example 5 Samples 13 to 1 according to the present invention
As No. 5, a metal vanadium powder having an average particle size of 25 μm and diamond particles having an average particle size of 15 μm were used, and the raw materials were added so that the component ratio of the sintered body after the carbonization reaction was as shown in Table 1. A sintered body was manufactured in the same manner as in (Example 1) except that only the highest temperature of pressure firing was 1400 ° C. The crystal phases of these sintered bodies were also confirmed by powder X-ray diffraction, but the crystal phases were composed of VC and diamond, and metallic vanadium and graphite were not detected. In addition, the mechanical properties of the sintered body, including the diamond particle retention force of the sintered body structure, were examined by the same method as in (Example 1). The results are also shown in Table 1.

【0023】(実施例6) 本発明による試料16〜1
8として、平均粒径10μmの金属ニオブ粉末と平均粒
径15μmのダイヤモンド粒子を用い、炭化反応後の焼
結体成分割合が表1に示したものとなるように配合を行
った原料を、加圧焼成の最高温度のみ1400℃とし、
他は(実施例1)と同様の方法で焼結体を製造した。こ
れらの焼結体についても粉末X線回折により結晶相の確
認を行ったが、結晶相は何れもVCとダイヤモンドから
なり、金属ニオブやグラファイトは検出されなかった。
また、焼結体組織のダイヤモンド粒子の保持力も含め、
焼結体の機械的性状を(実施例1)と同様の方法にて調
べた。その結果も表1に合わせて記す。
Example 6 Samples 16 to 1 according to the present invention
As No. 8, metal niobium powder having an average particle size of 10 μm and diamond particles having an average particle size of 15 μm were used, and the raw materials blended so that the component ratio of the sintered body after the carbonization reaction was as shown in Table 1 were added. Only the maximum temperature of pressure firing is 1400 ° C,
Otherwise, a sintered body was manufactured by the same method as in (Example 1). The crystal phase of these sintered bodies was also confirmed by powder X-ray diffraction, but the crystal phases were composed of VC and diamond, and metallic niobium and graphite were not detected.
Also, including the retention of diamond particles in the sintered structure,
The mechanical properties of the sintered body were examined by the same method as in (Example 1). The results are also shown in Table 1.

【0024】(実施例7) 本発明による試料19〜2
1として、平均粒径0.7μmの金属モリブデン粉末と
平均粒径15μmのダイヤモンド粒子を用い、炭化反応
後の焼結体成分割合が表1に示したものとなるように配
合を行った原料を、加圧焼成の最高温度のみ1400℃
とし、他は(実施例1)と同様の方法で焼結体を製造し
た。これらの焼結体についても粉末X線回折により結晶
相の確認を行ったが、結晶相は何れもMo2Cとダイヤ
モンドからなり、金属モリブデンやグラファイトは検出
されなかった。また、焼結体組織のダイヤモンド粒子の
保持力も含め、焼結体の機械的性状を(実施例1)と同
様の方法にて調べた。その結果も表1に合わせて記す。
Example 7 Samples 19 to 2 according to the present invention
As No. 1, a raw material prepared by using metal molybdenum powder having an average particle size of 0.7 μm and diamond particles having an average particle size of 15 μm and compounding them so that the component ratio of the sintered body after the carbonization reaction is as shown in Table 1. The maximum temperature of pressure firing is 1400 ℃
A sintered body was manufactured in the same manner as in (Example 1) except for the above. The crystal phase of these sintered bodies was also confirmed by powder X-ray diffraction, but the crystal phases consisted of Mo 2 C and diamond, and metallic molybdenum and graphite were not detected. In addition, the mechanical properties of the sintered body, including the diamond particle retention force of the sintered body structure, were examined by the same method as in (Example 1). The results are also shown in Table 1.

【0025】(実施例8) 本発明による試料22〜2
4として、平均粒径5.7μmの金属ハフニウム粉末と
平均粒径15μmのダイヤモンド粒子を用い、炭化反応
後の焼結体成分割合が表1に示したものとなるように配
合を行った原料を、加圧焼成の最高温度のみ1350℃
とし、他は(実施例1)と同様の方法で焼結体を製造し
た。これらの焼結体についても粉末X線回折により結晶
相の確認を行ったが、結晶相は何れもHfCとダイヤモ
ンドからなり、金属ハフニウムやグラファイトは検出さ
れなかった。また、焼結体組織のダイヤモンド粒子の保
持力も含め、焼結体の機械的性状を(実施例1)と同様
の方法にて調べた。その結果も表1に合わせて記す。
Example 8 Samples 22 to 2 according to the present invention
As No. 4, a raw material prepared by using metal hafnium powder having an average particle size of 5.7 μm and diamond particles having an average particle size of 15 μm, and blending so that the component ratio of the sintered body after the carbonization reaction is as shown in Table 1. , Only the highest temperature of pressure firing is 1350 ℃
A sintered body was manufactured in the same manner as in (Example 1) except for the above. The crystal phase of these sintered bodies was also confirmed by powder X-ray diffraction, but the crystal phases were composed of HfC and diamond, and metal hafnium and graphite were not detected. In addition, the mechanical properties of the sintered body, including the diamond particle retention force of the sintered body structure, were examined by the same method as in (Example 1). The results are also shown in Table 1.

【0026】(実施例9) 本発明による試料25〜2
7として、平均粒径1.8μmの金属クロム粉末と平均
粒径15μmのダイヤモンド粒子を用い、炭化反応後の
焼結体成分割合が表1に示したものとなるよう配合を行
った原料を、加圧焼成の最高温度のみ1350℃とし、
他は(実施例1)と同様の方法で焼結体を製造した。こ
れらの焼結体についても粉末X線回折により結晶相の確
認を行ったが、結晶相は何れもCr32とダイヤモンド
からなり、金属クロムやグラファイトは検出されなかっ
た。また、焼結体組織のダイヤモンド粒子の保持力も含
め、焼結体の機械的性状を(実施例1)と同様の方法に
て調べた。その結果も表1に合わせて記す。
Example 9 Samples 25 to 2 according to the present invention
As No. 7, a raw material prepared by using metal chrome powder having an average particle diameter of 1.8 μm and diamond particles having an average particle diameter of 15 μm and compounding them so that the component ratio of the sintered body after the carbonization reaction is as shown in Table 1, Only the maximum temperature of pressure firing is 1350 ° C,
Otherwise, a sintered body was manufactured by the same method as in (Example 1). The crystal phase of these sintered bodies was also confirmed by powder X-ray diffraction, but the crystal phases were composed of Cr 3 C 2 and diamond, and metallic chromium and graphite were not detected. In addition, the mechanical properties of the sintered body, including the diamond particle retention force of the sintered body structure, were examined by the same method as in (Example 1). The results are also shown in Table 1.

【0027】(実施例10) 本発明による試料28〜
30として、平均粒径19μmの金属チタン粉末及び平
均粒径15μmのダイヤモンド粒子を用い、Tiの全て
が炭化された反応後の焼結体成分割合がTiCとダイヤ
モンドがそれぞれ50体積%になるように配合を行っ
て、加圧焼成の最高圧力を50000kg/cm2、5
000kg/cm2、及び1000kg/cm2とし、5
0000kg/cm2と5000kg/cm2の場合は
(実施例1)と同様の方法でそれぞれ焼結体を製造し
た。又、1000kg/cm2の場合は、所定の配合を
行った原料混合物から(実施例1)と同様に仮焼成した
成形物を作製し、この仮焼成後の成形物をパイレックス
(商品名)ガラス容器中に入れ、容器内部を真空脱気を
行って密封する。密封した容器を熱間等方加圧(HI
P)装置内に設置し、アルゴンガスを圧力媒体とし、約
900℃迄は数気圧程度以下に保ち、それ以上の温度か
ら実質的な加圧を行って最高圧力1000kg/c
2、最高温度1300℃で60分保持することにより
焼結体を製造した。これらの焼結体についても粉末X線
回折により結晶相の確認を行ったが、結晶相は何れもT
iCとダイヤモンドからなり、金属チタンやグラファイ
トは検出されなかった。また、焼結体組織のダイヤモン
ド粒子の保持力も含め、焼結体の機械的性状を(実施例
1)と同様の方法にて調べた。その結果も表1に合わせ
て記す。
(Example 10) Sample 28 according to the present invention
As 30, metal titanium powder having an average particle diameter of 19 μm and diamond particles having an average particle diameter of 15 μm are used, and the proportion of the sintered body components after reaction in which all of Ti is carbonized is 50% by volume of TiC and diamond, respectively. Blending is carried out and the maximum pressure of pressure firing is 50000 kg / cm 2 , 5
000kg / cm 2, and a 1000kg / cm 2, 5
In the case of 0000 kg / cm 2 and 5000 kg / cm 2 , sintered bodies were manufactured by the same method as in (Example 1). Further, in the case of 1000 kg / cm 2 , a pre-baked molded product was prepared from the raw material mixture having the predetermined composition in the same manner as in (Example 1), and the molded product after the pre-baking was made into Pyrex (trade name) glass. Place in a container and vacuum degas the inside of the container to seal it. The sealed container is hot isostatically pressed (HI
P) Installed in the equipment, using argon gas as a pressure medium, keeping the pressure below a few atmospheres up to about 900 ° C, and applying substantial pressure from that temperature up to a maximum pressure of 1000 kg / c.
A sintered body was manufactured by holding the m 2 at a maximum temperature of 1300 ° C. for 60 minutes. The crystal phase of these sintered bodies was also confirmed by powder X-ray diffraction.
Consisting of iC and diamond, metallic titanium and graphite were not detected. In addition, the mechanical properties of the sintered body, including the diamond particle retention force of the sintered body structure, were examined by the same method as in (Example 1). The results are also shown in Table 1.

【0028】また、この発明の範囲から外れる場合とし
て次に比較例1を示す。 (比較例1) この発明の範囲から外れる例の参考試料
1として、平均粒径19μmの金属チタン及び平均粒径
15μmのダイヤモンド粒子を用い、反応後の焼結体組
成が炭化チタン10体積%とダイヤモンド90体積%を
含有したものとなるように配合を行って、有機溶媒中で
湿式混合する。湿式混合後真空乾燥させた混合粉末を平
板形状に金型成形し、得られた成形物を600℃の真空
中で仮焼成する。次いで、仮焼成後の成形物を加圧焼成
する。この加圧焼成はピストンシリンダー型高温高圧発
生装置を用い、最高温度1300℃、最高圧力1000
0kg/cm2で15分間保持して行った。得られた焼
成体は殆ど緻密化せず、又この焼成体の結晶相を粉末X
線回折により調べたが、結晶相としてはTiCとダイヤ
モンドに加えてグラファイト相も見られた。また、この
発明の範囲から外れる例の参考試料2として、平均粒径
15μmのダイヤモンド粒子50体積%と平均粒径1.
5μmの炭化チタン粉末(TiC)50体積%用い、こ
の原料配合物を有機溶媒中で湿式混合する。湿式混合後
真空乾燥させた混合粉末を平板形状に金型成形し、得ら
れた成形物を600℃の真空中で仮焼成する。次いで、
仮焼成後の成形物を加圧焼成する。この加圧焼成はピス
トンシリンダー型高温高圧発生装置を用い、最高温度1
300℃、最高圧力10000kg/cm2で15分間
保持して行った。得られた焼結体の結晶相を粉末X線回
折により調べたが、結晶相としてはTiCとダイヤモン
ドに加えてグラファイト相が存在した。また、焼結体組
織のダイヤモンド粒子の保持力も(実施例1)と同様に
調べたが、かなりのダイヤモンド粒子の脱落が生じた。
更に、この発明の範囲から外れる例の参考試料3とし
て、粒径19μmの金属チタン及び粒径15μmのダイ
ヤモンド粒子を用い、焼成条件以外の方法は(実施例
1)の試料1と同様の原料配合及び作製手順で行った。
焼成条件は、加圧焼成を行わず、真空中で最高温度13
00℃で60分常圧焼成した。得られた焼成物は緻密化
しなかった。この焼成物を粉末X線回折により調べた
が、結晶相としてはTiC、大量のグラファイト及び少
量ダイヤモンドが存在した。
Comparative Example 1 will be shown next as a case outside the scope of the present invention. Comparative Example 1 As reference sample 1 of an example outside the scope of the present invention, titanium metal having an average particle size of 19 μm and diamond particles having an average particle size of 15 μm were used, and the composition of the sintered body after the reaction was 10% by volume of titanium carbide. It is blended so that it contains 90% by volume of diamond, and wet mixed in an organic solvent. The wet-mixed and vacuum-dried mixed powder is die-molded into a flat plate shape, and the obtained molded product is pre-baked in a vacuum at 600 ° C. Next, the molded product after the calcination is pressure-calcined. This pressure firing uses a piston cylinder type high temperature and high pressure generator, and the maximum temperature is 1300 ° C and the maximum pressure is 1000.
The test was carried out by holding at 0 kg / cm 2 for 15 minutes. The obtained fired body was hardly densified, and the crystal phase of this fired body was powder X.
As a crystal phase, a graphite phase was found in addition to TiC and diamond, as examined by line diffraction. Further, as a reference sample 2 of an example outside the scope of the present invention, 50% by volume of diamond particles having an average particle size of 15 μm and an average particle size of 1.
50% by volume of 5 μm titanium carbide powder (TiC) is used and this raw material formulation is wet mixed in an organic solvent. The wet-mixed and vacuum-dried mixed powder is die-molded into a flat plate shape, and the obtained molded product is pre-baked in a vacuum at 600 ° C. Then
The molded product after calcination is pressure-calcined. This pressure firing uses a piston cylinder type high temperature and high pressure generator, and the maximum temperature is 1
It was held at 300 ° C. and a maximum pressure of 10,000 kg / cm 2 for 15 minutes. The crystal phase of the obtained sintered body was examined by powder X-ray diffraction. As the crystal phase, a graphite phase was present in addition to TiC and diamond. Moreover, the holding power of the diamond particles in the sintered body structure was also examined in the same manner as in (Example 1), but a considerable amount of the diamond particles fell out.
Furthermore, as reference sample 3 of an example outside the scope of the present invention, metal titanium having a particle size of 19 μm and diamond particles having a particle size of 15 μm were used, and the same raw material composition as in sample 1 of (Example 1) except for the firing conditions. And the manufacturing procedure.
As for the firing conditions, the highest temperature in vacuum is 13 without pressure firing.
It was baked at 00 ° C. for 60 minutes under normal pressure. The obtained fired product was not densified. When this fired product was examined by powder X-ray diffraction, TiC, a large amount of graphite and a small amount of diamond were present as crystal phases.

【0029】(実施例11) 次に、本発明による試料
30〜31として、平均粒径19μmの金属チタン粉
末、平均粒径15μmの金属タンタル粉末及び平均粒径
15μmのダイヤモンド粒子を用い、焼結体成分割合が
表2に示したものとなるよう配合し、この配合した原料
を有機溶媒中でそれぞれ湿式混合する。湿式混合後真空
乾燥させた混合粉末を平板形状に金型成形し、得られた
各成形物を600℃の真空中で仮焼成した後、加圧焼成
することにより焼結体を製造した。この加圧焼成は何れ
もピストンシリンダー型高温高圧発生装置を用い、最高
温度1300℃、最高圧力10000kg/cm2で1
5分間保持して行った。これらの焼結体について粉末X
線回折により結晶相の確認を行ったが、何れの例でも結
晶相はTiC、TaC及びダイヤモンドからなり、金属
チタン、金属タンタル、チタンとタンタルとの合金、チ
タンとタンタルと炭素からなる化合物、及びグラファイ
トは検出されなかった。また、焼結体組織のダイヤモン
ド粒子の保持力も含め、焼結体の機械的性状を(実施例
1)と同様の方法で調べた。その結果を表2に合わせて
記す。
Example 11 Next, as samples 30 to 31 according to the present invention, metal titanium powder having an average particle size of 19 μm, metal tantalum powder having an average particle size of 15 μm and diamond particles having an average particle size of 15 μm were used and sintered. The ingredients are blended so that the body component ratios are as shown in Table 2, and the blended raw materials are wet mixed in an organic solvent. The wet-mixed and vacuum-dried mixed powder was die-molded into a flat plate shape, and each obtained molded product was pre-baked in a vacuum at 600 ° C. and then pressure-baked to produce a sintered body. This pressure firing uses a piston-cylinder type high temperature and high pressure generator, and the maximum temperature is 1300 ° C and the maximum pressure is 10000 kg / cm 2 .
Hold for 5 minutes. Powder X for these sintered bodies
The crystal phase was confirmed by line diffraction. In any of the examples, the crystal phase is composed of TiC, TaC and diamond, metal titanium, metal tantalum, an alloy of titanium and tantalum, a compound of titanium, tantalum and carbon, and No graphite was detected. In addition, the mechanical properties of the sintered body including the diamond particle holding force of the sintered body structure were examined by the same method as in (Example 1). The results are also shown in Table 2.

【0030】[0030]

【表2】 [Table 2]

【0031】(実施例12) 本発明による試料32〜
39として、平均粒径19μmの金属チタン粉末、平均
粒径10μmの金属ジルコニウム粉末、平均粒径0.7
μmの金属タングステン粉末、平均粒径15μmの金属
タンタル粉末、平均粒径25μmの金属バナジウム粉
末、平均粒径10μmの金属ニオブ粉末、平均粒径0.
7μmの金属モリブデン粉末、平均粒径5.7μmの金
属ハフニウム粉末及び平均粒径1.8μmの金属クロム
粉末の何れか2種と平均粒径15μmのダイヤモンド粒
子を用い、焼結体成分割合が表2に示したものとなるよ
う配合を行った原料を加圧焼成の最高温度を表2に示す
値とし、他は(実施例1)と同様の方法でそれぞれ焼結
体を製造した。これらの焼結体についても粉末X線回折
により結晶相の確認を行った。結晶相は何れも金属炭化
物及び/又は金属炭化物固溶体と、ダイヤモンドからな
り、金属単体や合金、グラファイトは検出されなかっ
た。また、ここで製造した焼結体の機械的性状及び組織
中でのダイヤモンドの保持力も(実施例1)と同様の方
法にて調べた。その結果も表2に合わせて記す。尚、参
考のため、この発明の範囲から外れる場合として次に比
較例2を示す。
Example 12 Samples 32 to 30 according to the present invention
As 39, titanium metal powder having an average particle diameter of 19 μm, metal zirconium powder having an average particle diameter of 10 μm, and an average particle diameter of 0.7
μm metal tungsten powder, average particle size 15 μm metal tantalum powder, average particle size 25 μm metal vanadium powder, average particle size 10 μm metal niobium powder, average particle size 0.
Using two kinds of metal molybdenum powder having an average particle size of 5.7 μm, hafnium powder having an average particle size of 5.7 μm and chromium metal powder having an average particle size of 1.8 μm, and diamond particles having an average particle size of 15 μm, the sintered body component ratio is The raw materials compounded so as to have the values shown in 2 had the maximum temperature of pressure firing shown in Table 2, and other conditions were the same as in (Example 1) to manufacture sintered bodies. The crystal phase of these sintered bodies was also confirmed by powder X-ray diffraction. Each crystal phase consisted of metal carbide and / or solid solution of metal carbide and diamond, and no metal simple substance, alloy, or graphite was detected. The mechanical properties of the sintered body produced here and the holding power of diamond in the structure were also examined by the same method as in (Example 1). The results are also shown in Table 2. For reference, Comparative Example 2 will be shown below as a case outside the scope of the present invention.

【0032】(比較例2) 本発明の範囲から外れる例
の参考試料4〜5として、平均粒径19μmの金属チタ
ン粉末、平均粒径10μmの金属ジルコニウムと平均粒
径15μmのダイヤモンド粒子を用い、表2に示す本発
明の範囲から外れた焼結体成分割合を持つように配合を
行って、(実施例1)と同様の方法でそれぞれ焼結体を
製造した。これらの焼結体についても粉末X線回折によ
り結晶相の確認を行った。その結果、参考試料4ではダ
イヤモンドと金属炭化物相の他に、少量のグラファイト
相が見られた。又、これらの参考試料についても焼結体
の機械的性状及び組織中でのダイヤモンドの保持力を
(実施例1)と同様の方法で調べた。その結果は表2に
示す。
Comparative Example 2 As reference samples 4 to 5 of examples outside the scope of the present invention, metal titanium powder having an average particle size of 19 μm, metal zirconium having an average particle size of 10 μm and diamond particles having an average particle size of 15 μm were used. Sintered bodies were manufactured by the same method as in (Example 1) by blending so as to have a sintered body component ratio outside the range of the present invention shown in Table 2. The crystal phase of these sintered bodies was also confirmed by powder X-ray diffraction. As a result, in Reference Sample 4, a small amount of graphite phase was found in addition to the diamond and metal carbide phases. Also, with respect to these reference samples, the mechanical properties of the sintered body and the holding power of diamond in the structure were examined by the same method as in (Example 1). The results are shown in Table 2.

【0033】[0033]

【発明の効果】この発明による方法によれば、ダイヤモ
ンドの安定領域といった超高圧よりもはるかに低い圧力
でもダイヤモンド分散セラミックス複合焼結体を製造す
ることが可能となる為、製造装置上の制約が緩和できる
と共により安価な実用部材を製造できる可能性が高い。
更に、この方法で製造された焼結体は構成成分に基因し
た優れた耐摩耗性や耐酸化を中心とする化学的安定性、
及びその組織構造に基因した高靱性、高強度に加えて、
生成過程に基因する強固な分散粒子保持力を有するの
で、特に耐衝撃性も要求される耐摩耗部材、或いは金属
被削材を主な対象とする切削工具部材等に活用できる。
また、この方法は、一般に同様な超高圧加熱が必要とさ
れる他の分散種を用いたセラミックス基複合焼結体の製
造にも適用できる可能性がある。
According to the method of the present invention, it becomes possible to manufacture a diamond-dispersed ceramics composite sintered body even at a pressure much lower than an ultrahigh pressure such as a stable region of diamond, so that there are restrictions on the manufacturing apparatus. There is a high possibility that a less expensive practical member that can be relaxed can be manufactured.
Furthermore, the sintered body produced by this method has excellent chemical resistance centered on excellent wear resistance and oxidation resistance due to the constituents,
In addition to high toughness and high strength due to its tissue structure,
Since it has a strong holding force for dispersed particles due to the generation process, it can be utilized as a wear-resistant member that is particularly required to have impact resistance, or a cutting tool member mainly for a metal work material.
In addition, this method may be applicable to the production of a ceramic-based composite sintered body using another dispersed species that generally requires the same high-pressure heating.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 26/00 A 29/06 Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C22C 26/00 A 29/06 Z

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 10〜60体積%のダイヤモンド粒子の
分散相と残部が周期律表4a,5a,6a族の金属の炭
化物の基材相からなる焼結体であって、該炭化物が、周
期律表4a,5a,6a族の金属の粉末とダイヤモンド
粒子のみからなる混合物を加圧焼成することによって焼
結体中に形成されることを特徴とするダイヤモンド分散
セラミックス複合焼結体の製造方法。
1. A sintered body comprising 10 to 60% by volume of a dispersed phase of diamond particles and the balance consisting of a base phase of a carbide of a metal of Groups 4a, 5a and 6a of the periodic table, wherein the carbide is a periodic phase. A method for producing a diamond-dispersed ceramics composite sintered body, which is formed in a sintered body by pressure-calcining a mixture consisting of powders of metals of Groups 4a, 5a and 6a of the Periodic Table and diamond particles.
【請求項2】 前記金属の粉末が周期律表4a,5a,
6a族から選択された2種以上の金属からなることを特
徴とする請求項1記載のダイヤモンド分散セラミックス
複合焼結体の製造方法。
2. The metal powder is a periodic table 4a, 5a,
The method for producing a diamond-dispersed ceramics composite sintered body according to claim 1, which is composed of two or more kinds of metals selected from Group 6a.
JP6339304A 1994-12-28 1994-12-28 Production of diamond dispersed ceramic composite sintered compact Pending JPH08176696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6339304A JPH08176696A (en) 1994-12-28 1994-12-28 Production of diamond dispersed ceramic composite sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6339304A JPH08176696A (en) 1994-12-28 1994-12-28 Production of diamond dispersed ceramic composite sintered compact

Publications (1)

Publication Number Publication Date
JPH08176696A true JPH08176696A (en) 1996-07-09

Family

ID=18326197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6339304A Pending JPH08176696A (en) 1994-12-28 1994-12-28 Production of diamond dispersed ceramic composite sintered compact

Country Status (1)

Country Link
JP (1) JPH08176696A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001032947A1 (en) 1999-10-29 2001-05-10 Sumitomo Electric Industries, Ltd. Composite material containing ultra-hard particle
GB2453023A (en) * 2007-09-18 2009-03-25 Smith International Ultra-hard diamond composite material and its use in drill bits
US7980334B2 (en) 2007-10-04 2011-07-19 Smith International, Inc. Diamond-bonded constructions with improved thermal and mechanical properties
US8627904B2 (en) 2007-10-04 2014-01-14 Smith International, Inc. Thermally stable polycrystalline diamond material with gradient structure
US8852304B2 (en) 2004-05-06 2014-10-07 Smith International, Inc. Thermally stable diamond bonded materials and compacts

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001032947A1 (en) 1999-10-29 2001-05-10 Sumitomo Electric Industries, Ltd. Composite material containing ultra-hard particle
US8852304B2 (en) 2004-05-06 2014-10-07 Smith International, Inc. Thermally stable diamond bonded materials and compacts
GB2453023A (en) * 2007-09-18 2009-03-25 Smith International Ultra-hard diamond composite material and its use in drill bits
GB2453023B (en) * 2007-09-18 2012-09-05 Smith International Ultra-hard composite constructions comprising high-density diamond surface
US7980334B2 (en) 2007-10-04 2011-07-19 Smith International, Inc. Diamond-bonded constructions with improved thermal and mechanical properties
US8627904B2 (en) 2007-10-04 2014-01-14 Smith International, Inc. Thermally stable polycrystalline diamond material with gradient structure

Similar Documents

Publication Publication Date Title
US7459105B2 (en) Nanostructured titanium monoboride monolithic material and associated methods
JPH08944B2 (en) Mixed sintered metal materials based on boride, nitride and iron binder metals
EP0349740B1 (en) Complex boride cermets
EP0035777A1 (en) Abrasion resistant silicon nitride based articles
JP2005281084A (en) Sintered compact and manufacturing method therefor
US4433979A (en) Abrasion resistant silicon nitride based articles
JPH05209248A (en) High hardness and wear-resistant material
JPH08176696A (en) Production of diamond dispersed ceramic composite sintered compact
EP0185224A2 (en) Abrasion resistant silicon nitride based articles
JP3145470B2 (en) Tungsten carbide-alumina sintered body and method for producing the same
JPH0797256A (en) Sintered body of aluminum oxide base and its production
JP3152783B2 (en) Titanium compound whisker, its production method and composite material
JP3051603B2 (en) Titanium compound sintered body
JP2849055B2 (en) Sialon-based sintered body and coated sintered body
EP0095129B1 (en) Composite ceramic cutting tool and process for making same
JP2796011B2 (en) Whisker reinforced cemented carbide
JPH08176697A (en) Production of diamond dispersed cermet composite sintered compact
JP3628601B2 (en) WC-WB, WC-W2B or WC-WB-W2B composite having high hardness and high Young&#39;s modulus characteristics and method for producing the same
JPH0681071A (en) Titanium carbonitride base cermet excellent in toughness
JP2000143351A (en) High-toughness silicon nitride-based sintered compact
JP2742620B2 (en) Boride-aluminum oxide sintered body and method for producing the same
JP2564857B2 (en) Nickel-Morbuden compound boride sintered body
JP2794122B2 (en) Fiber reinforced ceramics
JP2840688B2 (en) Manufacturing method of aluminum oxide sintered body
JP2004114163A (en) Alumina group ceramic tool and production method for the same