JPH08176697A - Production of diamond dispersed cermet composite sintered compact - Google Patents

Production of diamond dispersed cermet composite sintered compact

Info

Publication number
JPH08176697A
JPH08176697A JP33930594A JP33930594A JPH08176697A JP H08176697 A JPH08176697 A JP H08176697A JP 33930594 A JP33930594 A JP 33930594A JP 33930594 A JP33930594 A JP 33930594A JP H08176697 A JPH08176697 A JP H08176697A
Authority
JP
Japan
Prior art keywords
diamond
metal
powder
sintered body
diamond particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33930594A
Other languages
Japanese (ja)
Inventor
Masami Uzawa
正美 鵜沢
Makoto Kyoda
誠 鏡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chichibu Onoda Cement Corp
Original Assignee
Chichibu Onoda Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Onoda Cement Corp filed Critical Chichibu Onoda Cement Corp
Priority to JP33930594A priority Critical patent/JPH08176697A/en
Publication of JPH08176697A publication Critical patent/JPH08176697A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a sintered compact excellent in strength, hardness, wear and shock resistances by directly forming a metal carbide forming the cermet of a diamond dispersed cermet composite sintered compact from metal powder and diamond particles during sintering. CONSTITUTION: When a sintered compact consisting of 10-60vol.% diamond particles and 30-88vol.% matrix phase contg. carbides of one or more of the groups IVa, Va and VIa metals of the Periodic Table is produced, a mixture of diamond particles with metal powders of one or more of the groups IVa, Va and VIa metals and metal powders of one or more among Fe, Co and Ni is press-fired. The diamond powder and the metal powders of one or more of the groups IVa, Va and VIa metals cause a solid phase reaction under heating and pressing, carbides of the metals are formed as reactional products in the resultant sintered compact and the objective dense composite contg. diamond particles uniformly dispersed in a cermet structure is obtd. even under such a low pressure as to give an unstable region of diamond.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は優れた耐摩耗性と強靱性
を有するサーメット基複合焼結体の製造方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for producing a cermet-based composite sintered body having excellent wear resistance and toughness.

【0002】[0002]

【従来技術】ダイヤモンドは最高硬度の物質であり、実
用材料としても高耐摩耗性及び高熱伝導性を備えた優れ
た材料ある。工業的にはダイヤモンド粉末をCo等の結
合金属と共にダイヤモンドの安定な存在領域である超高
圧高温下で製造されたダイヤモンド焼結体が使用されて
いる。しかしながらダイヤモンド焼結体はダイヤモンド
固有のすぐれた性質を備えているものの充分な靱性や強
度がないために、例えば衝撃の加わる用途等での活用は
制約されているのが現状である。このような実用材料と
しての靱性の大幅な向上を行う上で、基材相としてセラ
ミックスと結合金属を成分とするサーメットを用い、分
散相としてダイヤモンド粒子からなる複合焼結体が考案
された。サーメットはダイヤモンドの高硬度、高熱伝導
性を損なわない為にも、また、サーメット自体が機械的
特性が優れている物がより有利であることからも炭化
物、窒化物、炭窒化物或いは硼化物等を硬質相とし、結
合金属相としてコバルトやニッケルを用いたものが選択
されている。この様なダイヤモンド分散サーメット焼結
体を製造する場合、炭化物や窒化物等のサーメットを焼
結する為には概ね1200〜1450℃程度の温度を要
するが、この温度では、常圧近傍の圧力に於けるダイヤ
モンドが瞬時に相転移を起こし黒鉛化するので一般に
は、ダイヤモンドが高温で安定に存在できる超高圧、例
えば50000kg/cm2、1400℃の条件で焼結
体が製造されている。
2. Description of the Related Art Diamond is a substance having the highest hardness and is an excellent material having high wear resistance and high thermal conductivity as a practical material. Industrially, a diamond sintered body is used in which diamond powder is produced together with a binding metal such as Co under ultrahigh pressure and high temperature, which is a stable existence region of diamond. However, although the diamond sintered body has excellent properties peculiar to diamond but lacks sufficient toughness and strength, it is the current situation that its use in applications such as impact is restricted. In order to greatly improve the toughness as such a practical material, a composite sintered body has been devised which uses a cermet containing ceramics and a binding metal as a base phase and diamond particles as a dispersed phase. Cermet does not impair the high hardness and high thermal conductivity of diamond, and because it is more advantageous that cermet itself has excellent mechanical properties, carbide, nitride, carbonitride, boride, etc. Is used as the hard phase and cobalt or nickel is used as the binding metal phase. When producing such a diamond-dispersed cermet sintered body, a temperature of about 1200 to 1450 ° C. is generally required to sinter a cermet such as a carbide or a nitride, but at this temperature, a pressure close to normal pressure is obtained. Since the diamond in the diamond instantly undergoes a phase transition and becomes graphitized, a sintered body is generally manufactured under the conditions of ultrahigh pressure such that the diamond can stably exist at a high temperature, for example, 50000 kg / cm 2 and 1400 ° C.

【0003】[0003]

【発明が解決しようとする課題】炭化物、窒化物、硼化
物と鉄族金属及びダイヤモンド各粉末を原料とし、超高
圧焼成によるダイヤモンド分散サーメット焼結体の製造
は、ダイヤモンド焼結体製造と同様、装置上及び生産性
の点から制約されたものとなり、従って実用材料として
は高価なものになる。又、このような方法で製造された
複合焼結体は耐摩耗材料や工具材料として用いた場合、
基材から分散ダイヤモンド粒子の脱落が生じやすく、と
りわけサーメット基材の場合、基材結合相を形成する鉄
族金属を増加させると靱性向上にかなりの効果がある
が、この金属相増加に伴い、周囲が金属で覆われた分散
ダイヤモンド粒の存在割合が増え、その部分を中心とす
るダイヤモンド粒子の脱落や粒子と接している金属組織
が局所変形等を生じやすくなり、ダイヤモンド導入によ
って期待される高硬度化による耐摩耗特性の向上を十分
発現するには至っていないのが現状である。この発明
は、従来のダイヤモンド安定領域よりも低い加圧下にて
比較的容易に製造でき、かつその特性効果を最大限に発
揮できるダイヤモンド分散サーメット複合焼結体の製造
方法について応えるものである。
The production of a diamond-dispersed cermet sintered body using carbide, nitride, boride and iron group metal and diamond powder as raw materials is carried out in the same manner as in the production of a diamond sintered body by ultra-high pressure firing. It is limited in terms of equipment and productivity, and is therefore expensive as a practical material. Further, when the composite sintered body produced by such a method is used as a wear resistant material or a tool material,
Dispersion of dispersed diamond particles from the base material easily occurs, especially in the case of a cermet base material, increasing the iron group metal forming the base material binder phase has a considerable effect on improving toughness, but with the increase of this metal phase, The presence ratio of dispersed diamond grains whose periphery is covered with metal increases, and the diamond grains centering on that region are likely to fall off or the metal structure in contact with the grains is likely to undergo local deformation. At present, the improvement in wear resistance due to the increase in hardness has not been fully realized. The present invention provides a method for producing a diamond-dispersed cermet composite sintered body, which can be produced relatively easily under a pressure lower than that of the conventional diamond stable region, and can maximize its characteristic effect.

【0004】[0004]

【課題を解決するための手段】前記課題解決の為、本発
明者は鋭意検討を行った結果、ダイヤモンド分散サーメ
ット複合焼結体のサーメットを構成する金属炭化物を、
原料として用いる周期律表4a,5a,6a族の金属粉
末とダイヤモンド粒子から、焼結に至る加圧焼成過程中
での固相反応によって直接形成させ、同時に、原料とし
て加えたFe,Co,Niで表される鉄族金属が前記金
属炭化物を強固に結合する金属相として存在させること
によって、ダイヤモンドの非安定領域と言われているよ
うな著しく低い圧力でもダイヤモンド粒子がサーメット
組織中に均一に分散された緻密な複合体を製造できるこ
とがわかった。
[Means for Solving the Problems] In order to solve the above problems, the present inventor has conducted diligent studies, and as a result, the metal carbide constituting the cermet of the diamond-dispersed cermet composite sintered body was
Fe, Co, and Ni added as raw materials at the same time were formed directly from the metal powders of group 4a, 5a, and 6a of the periodic table used as raw materials and diamond particles by solid-phase reaction in the pressure firing process leading to sintering. By allowing the iron group metal represented by the formula (3) to exist as a metal phase that strongly bonds the metal carbide, the diamond particles are uniformly dispersed in the cermet structure even at a remarkably low pressure which is said to be an unstable region of diamond. It has been found that it is possible to produce the specified dense composite.

【0005】即ち、この発明は、10〜60体積%のダ
イヤモンド粒子と、30〜88体積%の周期律表4a,
5a,6a族から選択した1種以上の金属の炭化物と、
2〜30体積%のFe,Co,Niの何れか1種以上か
らなる焼結体であって、該炭化物が、ダイヤモンド粒子
と、周期律表4a,5a,6a族から選択される1種以
上の金属の粉末と、Fe,Co,Niの何れか1種以上
の金属の粉末からなる混合物を加圧焼成することによっ
て焼結体中に形成されることを特徴とするダイヤモンド
分散サーメット複合焼結体の製造方法である。
That is, according to the present invention, 10 to 60% by volume of diamond particles and 30 to 88% by volume of the periodic table 4a,
Carbides of one or more metals selected from groups 5a and 6a,
A sintered body composed of 2 to 30% by volume of any one or more of Fe, Co and Ni, wherein the carbide is one or more selected from diamond particles and groups 4a, 5a and 6a of the periodic table. Diamond-dispersed cermet composite sintering, characterized by being formed in a sintered body by pressure-calcining a mixture of the above metal powder and one or more of Fe, Co, and Ni metal powders. It is a body manufacturing method.

【0006】原料としては、最終的な焼結体に於いて、
金属として留まることなく、その全てが周期律表4a,
5a,6a族から選択される金属の炭化物を形成するも
のとして、この金属炭化物が焼結体の30〜88体積%
の成分割合で過不足無く形成可能な量の周期律表4a,
5a,6a族から選択される金属の粉末を用いる。これ
らの炭化物を形成する金属は、何れもその炭化物の標準
生成自由エネルギー(△Gf゜[Kcal/g・mol
炭素])が、常温あるいは焼結時の温度の基で、0以下
となるので容易に炭化を生じ易い。この周期律表4a,
5a,6a族の金属は2種以上の金属を選択し、同時に
用いても良い。更に、金属炭化物形成の為の炭素源とな
るダイヤモンド粒子は、用いる周期律表4a,5a,6
a族の金属粉末と炭化物形成に寄与する分の量、これに
最終的な焼結体に於いて炭化物形成に寄与せずにダイヤ
モンド粒子として分散相に留まる分が10〜60体積%
となるような合計量のダイヤモンド粒子を用いる。ま
た、Fe,Co,Niの何れか1種以上の金属粉末を、
焼結後も化合物を形成せずに該焼結体の2〜30体積%
となるような量を用いる。尚、使用する各金属粉末の粒
径、及びダイヤモンド粒子の粒径は、何れも概ね0.1
〜数十μm程度のもので対応できる。
As a raw material, in the final sintered body,
It does not remain as a metal, and all of it is periodic table 4a,
The metal carbide, which forms a carbide of a metal selected from the groups 5a and 6a, is 30 to 88% by volume of the sintered body.
4a of the periodic table of the amount that can be formed without excess or deficiency with the component ratio
A powder of a metal selected from the 5a and 6a groups is used. All of the metals forming these carbides have a standard free energy of formation (ΔGf ° [Kcal / g · mol
Carbon]) becomes 0 or less at room temperature or at the temperature at the time of sintering, so that carbonization easily occurs. This periodic table 4a,
Two or more kinds of metals of the 5a and 6a groups may be selected and used at the same time. Furthermore, the diamond particles that serve as the carbon source for forming the metal carbide are used in the periodic table 4a, 5a, 6 used.
The amount of the metal powder of group a that contributes to the formation of carbides, and the amount that remains in the dispersed phase as diamond particles without contributing to the formation of carbides in the final sintered body is 10 to 60% by volume.
Use a total amount of diamond particles such that Further, any one or more kinds of metal powders of Fe, Co and Ni are
2 to 30% by volume of the sintered body without forming a compound even after sintering
Use an amount such that The particle size of each metal powder used and the particle size of diamond particles are both about 0.1.
It can be supported with a material of about several tens of μm.

【0007】具体的な各原料の配合重量としては、周期
律表4a,5a,6a族の金属粉末量は、B・ρc・M
m・100/(B・ρc・Mm+α・B・ρc・Md+
A・ρd・Mc+100・ρi・Mc−A・ρi・Mc
−B・ρi・Mc)重量%であり、Fe、Co、Niの
量は、(100・ρi・Mc−A・ρi・Mc−B・ρ
i・Mc)・100/(B・ρc・Mm+α・B・ρc
・Md+A・ρd・Mc+100・ρi・Mc−A・ρ
i・Mc−B・ρi・Mc)重量%であり、ダイヤモン
ドの重量は100からこの金属粉末の値及びダイヤモン
ド粒子の値を引いた値となる。ここでMmは用いた金属
のモル質量(g/mol)、Mdはダイヤモンド粒子の
モル質量、Mcは最終的に形成される金属炭化物のモル
質量、但し2種以上の金属炭化物が存在するときはその
配合比率を考慮した平均モル質量、ρcは同じ金属炭化
物の理論密度、ρdはダイヤモンドの密度、ρiはF
e、Co、Niの何れか1種の密度、但し、2種以上の
時は配合比率を考慮した平均密度、Aは焼結体中のダイ
ヤモンド分散相の存在量(体積%)で10≦A≦60、
Bは焼結体中の金属炭化物の存在量(体積%)で30≦
B≦88である。又、αは焼結体中に形成された金属炭
化物の分子式MCα(M:金属、C:炭素)で表される
αであり、0<α≦1である。α値の例として、金属が
Tiならその炭化物はTiCとなりこの場合α=1であ
る。又、金属がMoではその金属炭化物の組成式はMo
2CとなるがこれはMoC0.5と記載でき、α=0.5と
なる。
As the specific blending weight of each raw material, the amount of metal powder of groups 4a, 5a and 6a of the periodic table is B.rho.c.M.
m ・ 100 / (B ・ ρc ・ Mm + α ・ B ・ ρc ・ Md +
A ・ ρd ・ Mc + 100 ・ ρi ・ Mc-A ・ ρi ・ Mc
-B · ρi · Mc)% by weight, and the amounts of Fe, Co, and Ni are (100 · ρi · Mc-A · ρi · Mc-B · ρ
i ・ Mc) ・ 100 / (B ・ ρc ・ Mm + α ・ B ・ ρc
・ Md + A ・ ρd ・ Mc + 100 ・ ρi ・ Mc-A ・ ρ
i · Mc−B · ρi · Mc)% by weight, and the weight of diamond is 100 minus the value of this metal powder and the value of diamond particles. Here, Mm is the molar mass of the metal used (g / mol), Md is the molar mass of the diamond particles, Mc is the molar mass of the metal carbide finally formed, provided that two or more kinds of metal carbides are present. Average molar mass considering the blending ratio, ρc is the theoretical density of the same metal carbide, ρd is the density of diamond, and ρi is F
The density of any one of e, Co and Ni, but the average density considering the compounding ratio when two or more are used, A is the amount (volume%) of the diamond dispersed phase in the sintered body, and 10 ≦ A ≤60,
B is the amount (% by volume) of the metal carbide present in the sintered body, and is 30 ≦
B ≦ 88. Further, α is α represented by the molecular formula MCα (M: metal, C: carbon) of the metal carbide formed in the sintered body, and 0 <α ≦ 1. As an example of the α value, when the metal is Ti, the carbide thereof is TiC, and in this case α = 1. When the metal is Mo, the composition formula of the metal carbide is Mo
It becomes 2 C, but this can be described as MoC 0.5, and α = 0.5.

【0008】前記原料を所定量配合し、湿式又は乾式混
合したものを、粉体状混合物のままで、或いは金型成形
等によって成形物にし、加圧焼成により焼結を行う。通
常は加圧焼成の前に、真空中若しくは水素雰囲気中で、
およそ600℃以下で仮焼成を行う。仮焼成の目的は、
原料や成形物に含まれる水分や不純物等を焼結前に分解
除去することにあり、仮焼成後の成形物中には各金属と
ダイヤモンドが原料調整段階と同じ成分割合で依然未反
応の状態で留まっている。
A predetermined amount of the above-mentioned raw materials are mixed and wet- or dry-mixed to obtain a powdery mixture as it is, or a molded product is formed by die molding or the like, and sintered by pressure sintering. Usually, before pressure firing, in a vacuum or hydrogen atmosphere,
Pre-baking is performed at about 600 ° C. or lower. The purpose of calcination is
The purpose is to decompose and remove water, impurities, etc. contained in the raw material and the molded product before sintering, and each metal and diamond in the molded product after calcination is still unreacted with the same composition ratio as in the raw material preparation step. Stays in.

【0009】次いでこの成形物を加圧焼成する。加圧焼
成中に被焼成物は金属炭化物を生成し、生成した金属炭
化物は、鉄、コバルト、ニッケル等の金属を結合相とし
て緻密化が進行する。この加圧焼成は、温度としては、
周期律表4a,5a,6a族の炭化物と鉄、コバルト、
ニッケルの1種以上の金属からなるサーメットのみを焼
結する際の温度とほぼ同じかそれ以下の温度、例えば、
1200℃〜1450℃程度で、加圧は、概ね1000
kg/cm2以上の圧力を加えて、Ar等の不活性ガス
中または真空中、あるいは、被焼成物が外気と接触でき
ないようなシールドされた状態で行うことで対応でき
る。この加圧焼成は、公知の技術である熱間等方加圧や
超高圧加熱等の手法を用いて行うことができる。このよ
うな加圧焼成によりサーメットとダイヤモンドを構成成
分とする複合焼結体を得ることができる。この複合焼結
体の基材相を構成するサーメットは二種類以上の金属炭
化物より成りたっている場合も適応できる。その焼結体
中での存在状態は、複数種の金属炭化物の混合物からな
る場合、一端形成された複数の金属炭化物が固溶体とな
ったものの場合、或いはその両者が共存している場合の
何れであっても良い。
Next, this molded product is pressure-fired. The object to be fired produces a metal carbide during the pressure firing, and the produced metal carbide progresses to be densified with a metal such as iron, cobalt, or nickel as a binder phase. This pressure firing has a temperature of
Carbides of groups 4a, 5a, 6a of the periodic table and iron, cobalt,
A temperature that is about the same as or lower than the temperature when sintering only a cermet made of one or more metals of nickel, for example,
At about 1200 ° C to 1450 ° C, the pressure is about 1000.
It can be dealt with by applying a pressure of kg / cm 2 or more, in an inert gas such as Ar or in a vacuum, or in a shielded state such that the material to be fired cannot come into contact with the outside air. This pressure calcination can be performed by using a known technique such as hot isostatic pressing or ultrahigh pressure heating. By such pressure firing, a composite sintered body containing cermet and diamond as constituent components can be obtained. The cermet constituting the base material phase of this composite sintered body can be applied even when it is made of two or more kinds of metal carbides. The state of existence in the sintered body is either a mixture of plural kinds of metal carbides, a case where a plurality of metal carbides formed at one end is a solid solution, or a case where both of them coexist. It may be.

【0010】また、この発明に於いては、周期律表4
a,5a,6a族から選択した金属がタングステンであ
るのが好ましい。この炭化物は、Co金属を結合相とし
て用いた場合、超硬合金と称された極めて広範囲に活用
されている最も典型的なサーメット型組成物を形成す
る。
In the present invention, the periodic table 4
Preferably, the metal selected from the a, 5a and 6a groups is tungsten. This carbide forms the most typical and most widely utilized cermet-type composition called cemented carbide when Co metal is used as the binder phase.

【0011】[0011]

【作用】この発明に於けるダイヤモンド粒子原料は、そ
れ自体焼結体中にダイヤモンド粒子として留まるもの
と、金属炭化物形成の為の炭素源となるものの二通りの
作用を示す。前者即ち、焼結体中に分散相として存在す
るダイヤモンド粒子は、固有の特性である最強の硬度に
よって優れた耐摩耗性を発揮し、又、基材となる金属炭
化物結合相中に分散されることによって粒子分散強化に
よる材料としての靱性を飛躍的に向上させる。それ故、
本発明では焼結体中のダイヤモンド粒子の含有量を10
〜60体積%とするのは、10体積%以下の場合にはダ
イヤモンドの絶対量不足から良好な耐摩耗性を得ること
ができないため好ましくない。60体積%以上の場合に
はダイヤモンド相中に金属炭化物相が独立して存在する
傾向が強くなり、金属炭化物の連続した相の形成を阻
み、基材相の結合状態の低下を引き起こすことによっ
て、焼結材料としての強度が著しく低下したり、緻密化
の進展が阻害されることも生じる為、好ましくない。
The diamond particle raw material according to the present invention has two functions: one that remains as diamond particles in the sintered body itself and one that serves as a carbon source for forming metal carbide. The former, that is, the diamond particles that exist as a dispersed phase in the sintered body exhibit excellent wear resistance due to the strongest hardness, which is an inherent property, and are dispersed in the metal carbide binder phase that is the base material. As a result, the toughness as a material is dramatically improved by strengthening the particle dispersion. Therefore,
In the present invention, the content of diamond particles in the sintered body is set to 10
-60% by volume is not preferable when the content is 10% by volume or less because good abrasion resistance cannot be obtained due to insufficient absolute amount of diamond. When the content is 60% by volume or more, the tendency of the metal carbide phase to exist independently in the diamond phase becomes strong, which prevents the formation of a continuous phase of metal carbide and causes a decrease in the bonding state of the base material phase. It is not preferable because the strength as a sintered material is remarkably lowered and the progress of densification is hindered.

【0012】一方後者、即ち、金属の炭化反応に寄与す
るダイヤモンド粉末原料は、このダイヤモンド粉末と周
期律表4a,5a,6a族から選択される金属粉末が加
熱加圧下に於いて、固相反応し、反応生成物として金属
炭化物を形成する。金属炭化物の形成機構は明確には把
握しがたい点があるが、次のように推測される。まず、
金属炭化物が焼結を開始するよりも低い温度でダイヤモ
ンドと周期律表4a,5a,6a族から選択される金属
との接触面に金属炭化物核が生じ、ここを通じてダイヤ
モンドから該金属への拡散が支配的となって炭化物相領
域が金属粒子中心部に向かって拡大していくものと考え
られる。この現象は昇温と共に顕著になるが、この間も
金属は本質的には結晶状態であり液相になることはな
い。ダイヤモンドについては金属への拡散が優先的に生
じる。従って、ダイヤモンドとしての安定存在領域から
外れる低い圧力下に於いても、この発明でのダイヤモン
ドは黒鉛への転移に向かう前に、直接、金属への拡散種
として寄与する。仮に黒鉛への転移化が生じる場合で
も、ダイヤモンドの構造から外れた直後から安定な変態
となる前の過程に於いてその全てが金属への拡散種とな
るものと考えられる。
On the other hand, the latter, that is, the diamond powder raw material which contributes to the carbonization reaction of the metal, is a solid phase reaction between the diamond powder and the metal powder selected from groups 4a, 5a and 6a of the periodic table under heat and pressure. Then, a metal carbide is formed as a reaction product. The formation mechanism of metal carbides is difficult to understand clearly, but it is presumed as follows. First,
At a temperature lower than that at which the metal carbide starts to sinter, a metal carbide nucleus is generated at a contact surface between diamond and a metal selected from the groups 4a, 5a and 6a of the periodic table, through which diffusion of diamond into the metal occurs. It is considered that the carbide phase region becomes dominant and expands toward the central portion of the metal particles. This phenomenon becomes remarkable as the temperature rises, but during this period, the metal is essentially in a crystalline state and does not become a liquid phase. For diamond, diffusion into metal occurs preferentially. Therefore, even under a low pressure that deviates from the stable existence region of diamond, the diamond of the present invention directly contributes as a diffusing species to the metal before going to the transition to graphite. Even if the transformation to graphite occurs, it is considered that all of them become diffusion species to the metal in the process immediately after the diamond is deviated from the structure and before the stable transformation.

【0013】又、鉄、コバルト、ニッケルは、極めて炭
化し難いので本発明で焼結体製造の加圧焼成条件の範囲
ではダイヤモンドと反応した金属炭化物や、周期律表4
a,5a,6a族の金属との合金を形成することは殆ど
なく、金属状態のままで共存することによって、周期律
表4a,5a,6a族の金属とダイヤモンドとの炭化物
生成反応を促進する効果を示す。
Further, iron, cobalt and nickel are extremely hard to be carbonized, and therefore metal carbides which have reacted with diamond and periodic table 4 in the present invention are within the range of pressure firing conditions for producing a sintered body.
It rarely forms an alloy with a metal of group a, 5a, 6a, and coexists in the metal state as it is to promote a carbide formation reaction between a metal of group 4a, 5a, 6a of the periodic table and diamond. Show the effect.

【0014】周期律表4a,5a,6a族の金属内部で
形成されたばかりの金属炭化物は、表面近傍の炭化物に
比較し、より低い炭化状態の金属炭化物が生じている可
能性があるが、加熱の進展と共にこれら炭化物は最も安
定な組成物、例えば分子式TiC、ZrC、HfC、V
C、NbC、TaC、WC、Mo2C、Cr32等で表
されるものに移行する。この炭化反応は周期律表4a,
5a,6a族から選択された金属が全て炭化されるまで
続くが、本発明では焼成時の加圧による作用として、反
応物質相互間の接触面積の増大が常に保たれている為、
炭化反応は速やかに進行し、概ね焼結開始段階前に終了
する。その後の焼成段階に入ると、形成された金属炭化
物が鉄族金属を結合介在物として焼結を起こす。このサ
ーメットの焼結に際しても加圧による効果が見られ、第
一に、加圧により外部エネルギーが焼成物に蓄積される
ことに基づく焼結の初期駆動力の高揚。第二に、より強
固な高緻密体を形成する上での焼結機構、即ち物質移動
として粘性流動機構が強くなることによって難焼結性物
質をも緻密化しうる高い緻密化作用をもたらす。このよ
うな緻密化が行われた焼結体は、破壊源となり得る内部
空隙を殆ど含まず、かつ粒成長を抑制することができる
ので極めて高い強度の焼結体を得ることができる。
The metal carbides that have just been formed inside the metals of groups 4a, 5a and 6a of the periodic table may have metal carbides in a lower carbonized state as compared with the carbides near the surface. With the development of these carbides are the most stable compositions, such as the molecular formulas TiC, ZrC, HfC, V
It shifts to those represented by C, NbC, TaC, WC, Mo 2 C, Cr 3 C 2 . This carbonization reaction is represented by Periodic Table 4a,
The process continues until all the metals selected from the 5a and 6a groups are carbonized. In the present invention, the contact area between the reactants is always increased as a function of the pressure applied during firing.
The carbonization reaction proceeds rapidly and is completed almost before the sintering start stage. Upon entering the subsequent firing step, the formed metal carbide causes sintering using the iron group metal as a binding inclusion. The effect of pressure is also seen in the sintering of this cermet. First, the initial driving force for sintering is increased due to the accumulation of external energy in the fired product by pressure. Secondly, the sintering mechanism for forming a stronger and highly dense body, that is, the viscous flow mechanism as the mass transfer is strengthened, which brings about a high densification action capable of densifying a hardly sinterable substance. The densified sinter has almost no internal voids that can be a fracture source, and grain growth can be suppressed, so that a sinter with extremely high strength can be obtained.

【0015】更に、得られた焼結体は、ダイヤモンドを
炭素源とする金属炭化物の硬質相と未反応部分のダイヤ
モンド及び鉄族金属の介在結合相からなるものと考えら
れる為、従来技術の範疇に入る金属炭化物粉末とダイヤ
モンド粉末及び鉄族金属粉末を原料として焼結体を製造
した場合に見られるような、ダイヤモンド粒子が本質的
には反応せずに独立した相として存在しているのではな
く、分散ダイヤモンド粒子がその周囲の金属炭化物相と
強固な結合を有した界面構造を持ったものであると推定
される。この結合力も加わってダイヤモンド粒子はより
強固に焼結体中に保持される。
Further, the obtained sintered body is considered to be composed of a hard phase of metal carbide having diamond as a carbon source and an intervening bonded phase of diamond and an iron group metal in the unreacted portion, and therefore falls within the category of the prior art. It is possible that the diamond particles do not react essentially and exist as an independent phase, as seen in the case of producing a sintered body from the metal carbide powder, the diamond powder and the iron group metal powder as raw materials. It is presumed that the dispersed diamond particles have an interfacial structure having a strong bond with the surrounding metal carbide phase. This bonding force is also added to more firmly hold the diamond particles in the sintered body.

【0016】又、この発明に於いて、周期律表4a,5
a,6a族から選択した金属としてタングステンが好ま
しいのは、基材相として、特に炭化タングステンとコバ
ルトからなるサーメットは、他の金属炭化物からなるサ
ーメットに比べて耐摩耗、強度等の機械的性状が優れて
おり、この性状的優位性の傾向はダイヤモンドを分散さ
せた複合焼結体に於いても同様に示されるからである。
Further, in the present invention, the periodic table 4a, 5
Tungsten is preferred as the metal selected from the a and 6a groups, especially as a base phase, cermets composed of tungsten carbide and cobalt have mechanical properties such as wear resistance and strength as compared with cermets composed of other metal carbides. This is because it is excellent, and this tendency of property superiority is similarly exhibited in the composite sintered body in which diamond is dispersed.

【0017】[0017]

【実施例】この発明を実施例によって、より詳しく説明
する。
EXAMPLES The present invention will be described in more detail by way of examples.

【0018】(実施例1) 本発明による試料1とし
て、平均粒径15μmのダイヤモンド粒子と平均粒径1
9μmの金属チタン粉末、及び平均粒径5μmの金属ニ
ッケル粉末を、チタンの全てが炭化され反応後の焼結体
組成が、ダイヤモンドが50体積%、TiCが40体積
%、ニッケルが10体積%となるように配合した原料、
即ち、重量比換算でダイヤモンド粒子38.11重量
%、金属チタン粉末42.61重量%、金属ニッケル粉
末を19.28重量%を原料配合物として、有機溶媒を
用いて湿式混合する。湿式混合後真空乾燥させた混合粉
末を平板形状に金型成形し、この成形物を600℃の真
空中で仮焼成した後、加圧焼成することにより焼結体を
作製した。この加圧焼成は、ピストンシリンダー型高温
高圧発生装置を用い、最高温度1300℃、最高圧力1
0000kg/cm2で15分間保持して行った。粉末
X線回折により、この焼結体の結晶相を確認したとこ
ろ、結晶相はTiCとダイヤモンド及びNiからなり、
金属チタン、グラファイト、チタンとニッケルの合金及
び炭化ニッケルは何れも検出されなかった。また、この
焼結体の機械的性状として3点曲げ強度及びビッカース
硬度の測定を行った。その結果、ビッカース硬度は18
20、3点曲げ強度は199kg/mm2であった。更
に、この焼結体の表面をダイヤモンド砥石を用い、ホイ
ール径200mm、切り込み5μm、回転数2700回
転の条件で加工した。加工後の表面のダイヤモンド粒子
の脱落状況を観察することにより焼結体組織中でのダイ
ヤモンドの保持力を調べた。その結果、焼結体の表面に
於けるダイヤモンド粒子の脱落はほとんど起こっておら
ず、ダイヤモンド粒子に対する高い保持力を確認した。
これらの結果は表1に示す。また、本発明による試料2
〜4として、前記と同様のダイヤモンド粒子と金属チタ
ン粉末及び金属ニッケル粉末を用い、その原料配合割合
を変えることにより表1に示す成分組成の焼結体を前記
と同様の方法で作製した。これらの焼結体についても粉
末X線回折により結晶相の確認を行ったが、結晶相は何
れもTiCとダイヤモンド及びニッケルからなり、金属
チタン、グラファイト、TiとNiの合金及び炭化ニッ
ケルは何れも検出されなかった。また、焼結体組織のダ
イヤモンドの保持力も含め機械的性状を前記と同様の方
法にて調べた。その結果も表1に合わせて記す。
Example 1 As sample 1 according to the present invention, diamond particles having an average particle size of 15 μm and an average particle size of 1 were used.
9 μm metallic titanium powder and metallic nickel powder having an average particle size of 5 μm were used, the composition of the sintered body after the reaction of all the titanium was 50% by volume of diamond, 40% by volume of TiC, and 10% by volume of nickel. Raw materials blended to
That is, 38.11% by weight of diamond particles, 42.61% by weight of metallic titanium powder, and 19.28% by weight of metallic nickel powder are used as a raw material mixture in a weight ratio conversion, and wet-mixed using an organic solvent. A mixed powder that was wet-mixed and then vacuum-dried was molded into a flat plate shape, and the molded product was pre-baked in a vacuum at 600 ° C. and then pressure-baked to produce a sintered body. This pressure firing uses a piston-cylinder type high temperature and high pressure generator, and the maximum temperature is 1300 ° C and the maximum pressure is 1.
The test was carried out by holding at 0000 kg / cm 2 for 15 minutes. When the crystal phase of this sintered body was confirmed by powder X-ray diffraction, the crystal phase consisted of TiC, diamond and Ni,
Neither metallic titanium, graphite, an alloy of titanium and nickel, nor nickel carbide was detected. In addition, three-point bending strength and Vickers hardness were measured as mechanical properties of this sintered body. As a result, the Vickers hardness is 18
20,3-point bending strength was 199 kg / mm 2 . Further, the surface of this sintered body was processed using a diamond grindstone under the conditions of a wheel diameter of 200 mm, a cut of 5 μm, and a rotation speed of 2700 rotations. The retaining force of diamond in the structure of the sintered body was examined by observing the state of falling of diamond particles on the surface after processing. As a result, it was confirmed that the diamond particles on the surface of the sintered body did not almost fall off and that the diamond particles had a high holding power.
The results are shown in Table 1. In addition, the sample 2 according to the present invention
As Nos. 4 to 4, the same diamond particles, metallic titanium powder, and metallic nickel powder as those described above were used, and sintered bodies having the component compositions shown in Table 1 were produced by changing the raw material mixing ratio in the same manner as described above. The crystal phase of these sintered bodies was also confirmed by powder X-ray diffraction. The crystal phases were all composed of TiC, diamond, and nickel, and titanium metal, graphite, alloys of Ti and Ni, and nickel carbide were all included. Not detected. In addition, the mechanical properties including the diamond retaining force of the sintered structure were examined by the same method as described above. The results are also shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】(実施例2) 本発明による試料5〜10
として、平均粒径15のμmダイヤモンド粒子、平均粒
径10μmの金属ジルコニウム、平均粒径15μmの金
属タンタル粉末、平均粒径25μmの金属バナジウム粉
末、平均粒径10μmの金属ニオブ粉末、平均粒径0.
7μmの金属モリブデン粉末、平均粒径5.7μmの金
属ハフニウム粉末、平均粒径1μmの金属コバルト粉
末、及び平均粒径5μmの金属ニッケル粉末から、焼結
体成分割合が表1に示したものとなるよう配合を行った
原料配合物を加圧焼成の最高温度を表1に示す値とし、
他は(実施例1)と同様の方法でそれぞれ焼結体を製造
した。これらの焼結体についても粉末X線回折により結
晶相の確認を行った。結晶相は何れも周期律表4a,5
a,6a族の金属炭化物、ダイヤモンド、Ni又はCo
からなり、周期律表4a,5a,6a族の金属単体、周
期律表4a,5a,6a族の金属とニッケル又はコバル
トとの合金、ニッケル又はコバルトの炭化物、及びグラ
ファイトは何れも検出されなかった。また、焼結体組織
のダイヤモンドの保持力も含め機械的性状を前記と同様
の方法にて調べた。その結果も表1に合わせて記す。
(Example 2) Samples 5 to 10 according to the present invention
As the average particle size of 15 μm diamond particles, average particle size of 10 μm metallic zirconium, average particle size of 15 μm metallic tantalum powder, average particle size of 25 μm metallic vanadium powder, average particle size of 10 μm metallic niobium powder, average particle size of 0 .
From the metal molybdenum powder having an average particle size of 7 μm, the hafnium powder having an average particle size of 5.7 μm, the cobalt metal powder having an average particle size of 1 μm, and the nickel metal powder having an average particle size of 5 μm, the sintered body component ratios are shown in Table 1. The maximum temperature of pressure calcination of the raw material mixture prepared as described above is set to the value shown in Table 1,
Others were manufactured in the same manner as in (Example 1). The crystal phase of these sintered bodies was also confirmed by powder X-ray diffraction. The crystal phases are all in Periodic Tables 4a and 5
a, 6a group metal carbide, diamond, Ni or Co
No elemental metal of the periodic table 4a, 5a, 6a group, alloy of metal of the periodic table 4a, 5a, 6a and nickel or cobalt, nickel or cobalt carbide, or graphite was detected. . In addition, the mechanical properties including the diamond retaining force of the sintered structure were examined by the same method as described above. The results are also shown in Table 1.

【0021】(実施例3) 本発明による試料11〜1
3として、平均粒径15のμmダイヤモンド粒子と、平
均粒径19μmの金属チタン粉末、平均粒径0.7μm
の金属タングステン粉末、平均粒径0.7μmの金属モ
リブデン粉末のうちの金属粉末何れか2種、平均粒径1
μmの金属コバルト粉末、及び平均粒径5μmの金属ニ
ッケル粉末何れか1種以上を選定し、焼結体成分割合が
表1に示したものとなるよう配合を行った原料配合物
を、加圧焼成の最高温度を表1に示す値とし、他は(実
施例1)と同様の方法でそれぞれ焼結体を製造した。こ
れらの焼結体についても粉末X線回折により結晶相の確
認を行った。結晶相はTiC、WC、Mo2Cの何れか
2種又は/及びそれらの固溶体、ダイヤモンド、Ni又
は/及びCoからなり、チタン、タングステン、モリブ
デンの各金属やその合金、チタン、タングステン、モリ
ブデンとニッケル又はコバルトとの合金、これらの合金
の炭化物、ニッケル炭化物、コバルト炭化物、及びグラ
ファイトは何れも検出されなかった。また、焼結体組織
のダイヤモンドの保持力も含め機械的性状を(実施例
1)と同様の方法にて調べた。その結果も表1に合わせ
て記す。
(Example 3) Samples 11 to 1 according to the present invention
3, the average particle size of 15 μm diamond particles, the average particle size of 19 μm metallic titanium powder, the average particle size of 0.7 μm
Of the metal tungsten powder, and any one of the metal powders of the metal molybdenum powder having an average particle size of 0.7 μm, the average particle size of 1
A raw material mixture was prepared by selecting at least one of metallic cobalt powder of μm and metallic nickel powder having an average particle size of 5 μm and blending them so that the sintered body component ratio was as shown in Table 1. The maximum temperature for firing was set to the values shown in Table 1, and the sintered body was manufactured in the same manner as in (Example 1) except for the above. The crystal phase of these sintered bodies was also confirmed by powder X-ray diffraction. The crystal phase is composed of any two kinds of TiC, WC and Mo 2 C or / and a solid solution thereof, diamond, Ni or / and Co, and each metal of titanium, tungsten, molybdenum or an alloy thereof, titanium, tungsten or molybdenum. None of the alloys with nickel or cobalt, carbides of these alloys, nickel carbides, cobalt carbides and graphite were detected. Further, the mechanical properties including the diamond retaining force of the sintered body structure were examined by the same method as in (Example 1). The results are also shown in Table 1.

【0022】(実施例4) 本発明による試料14〜1
7として、平均粒径15μmのダイヤモンド粉末と平均
粒径0.7μmの金属タングステン粉末、及び平均粒径
1μmの金属コバルト粉末を用い、炭化反応後の焼結体
成分割合が表1に示したものとなるように配合を行った
原料配合物を、加圧焼成の最高温度のみ1200℃と
し、他は(実施例1)と同様の方法で焼結体を製造し
た。これらの焼結体についても粉末X線回折により結晶
相の確認を行ったが、結晶相は何れもWCとダイヤモン
ドとCoからなり、金属タングステン、タングステンと
コバルトとの合金、該合金の炭化物、コバルト炭化物及
びグラファイトは何れも検出されなかった。また、焼結
体組織のダイヤモンドの保持力も含め機械的性状を(実
施例1)と同様の方法にて調べた。その結果も表1に合
わせて記す。
(Example 4) Samples 14 to 1 according to the present invention
As No. 7, a diamond powder having an average particle size of 15 μm, a metal tungsten powder having an average particle size of 0.7 μm, and a metal cobalt powder having an average particle size of 1 μm were used, and the sintered body component ratio after the carbonization reaction is shown in Table 1. A raw material mixture was mixed in such a manner that only the maximum temperature of pressure firing was 1200 ° C., and otherwise a sintered body was manufactured by the same method as in (Example 1). The crystal phase of these sintered bodies was also confirmed by powder X-ray diffraction. The crystal phases were all composed of WC, diamond, and Co, and were composed of metallic tungsten, an alloy of tungsten and cobalt, a carbide of the alloy, and cobalt. Neither carbide nor graphite was detected. Further, the mechanical properties including the diamond retaining force of the sintered body structure were examined by the same method as in (Example 1). The results are also shown in Table 1.

【0023】(実施例5) 本発明による試料18とし
て、平均粒径15μmのダイヤモンド粒子と平均粒径1
9μmの金属チタン粉末、及び平均粒径5μmの金属ニ
ッケル粉末を、チタンの全てが炭化され反応後の焼結体
組成が、ダイヤモンドが50体積%、TiCが40体積
%、ニッケルが10体積%となるように配合した原料配
合物を、有機溶媒を用いて湿式混合する。湿式混合後真
空乾燥させた混合粉末を平板形状に金型成形し、この成
形物を600℃の真空中で仮焼成した後、この仮焼成後
の成形物をパイレックス(商品名)ガラス容器中に入
れ、容器内部を真空脱気を行って密封する。密封した容
器を熱間等方加圧(HIP)装置内に設置し、アルゴン
ガスを圧力媒体とし、約900℃迄は数気圧程度以下に
保ち、それ以上の温度から実質的な加圧を行って最高圧
力1000kg/cm2、最高温度1350℃で60分
保持することにより焼結体を製造した。得られた焼結体
の相対密度は99%以上の値であり、また、粉末X線回
折により、この焼結体の結晶相を確認したところ、結晶
相はTiCとダイヤモンド及びNiからなり、金属チタ
ン、グラファイト、チタンとニッケルの合金及び炭化ニ
ッケルは何れも検出されなかった。更に、焼結体組織の
ダイヤモンドの保持力も含め機械的性状を(実施例1)
と同様の方法にて調べた。その結果も表1に記す。
Example 5 As sample 18 according to the present invention, diamond particles having an average particle size of 15 μm and an average particle size of 1 were used.
9 μm metallic titanium powder and metallic nickel powder having an average particle size of 5 μm were used, the composition of the sintered body after the reaction of all the titanium was 50% by volume of diamond, 40% by volume of TiC, and 10% by volume of nickel. The raw material mixture prepared as described above is wet mixed using an organic solvent. The mixed powder that was wet-mixed and then vacuum-dried was molded into a flat plate shape, and the molded product was pre-baked in a vacuum at 600 ° C., and the pre-baked molded product was placed in a Pyrex (trade name) glass container. Then, the inside of the container is vacuum deaerated and sealed. The sealed container is installed in a hot isotropic pressure (HIP) device, argon gas is used as a pressure medium, and the pressure is maintained at about several atmospheres or less up to about 900 ° C. A maximum pressure of 1000 kg / cm 2 and a maximum temperature of 1350 ° C. were maintained for 60 minutes to produce a sintered body. The relative density of the obtained sintered body was 99% or more, and the crystal phase of this sintered body was confirmed by powder X-ray diffraction. The crystal phase consisted of TiC, diamond and Ni, Neither titanium, graphite, an alloy of titanium and nickel, nor nickel carbide was detected. Furthermore, the mechanical properties, including the diamond holding power of the sintered body structure (Example 1)
It investigated by the method similar to. The results are also shown in Table 1.

【0024】また、この発明の範囲から外れる場合とし
て次に比較例を示す。 (比較例) この発明の範囲から外れる例の参考試料1
として、平均粒径15μmのダイヤモンド粒子50体積
%、平均粒径1.5μm炭化チタンの粉末50体積%、
及び平均粒径5μmの金属ニッケル粉末10体積%を用
い、これらの原料配合物を有機溶媒中で湿式混合する。
湿式混合後真空乾燥させた混合粉末を平板形状に金型成
形し、得られた成形物を600℃の真空中で仮焼成す
る。次いで、仮焼成後の成形物を加圧焼成する。この加
圧焼成はピストンシリンダー型高温高圧発生装置を用
い、最高温度1300℃、最高圧力10000kg/c
2で15分間保持して行った。得られた焼結体の結晶
相を粉末X線回折により調べたが、TiC、ダイヤモン
ド、及びニッケルが見られた。また、この焼結体の焼結
体組織のダイヤモンドの保持力も含め機械的性状を(実
施例1)と同様の方法にて調べたが、ダイヤモンド粒子
の脱落がかなり生じた。また、この発明の範囲から外れ
る例の参考試料2として、平均粒径19μmの金属チタ
ン、平均粒径15μmのダイヤモンド粒子、平均粒径5
μmの金属ニッケル粉末を用い、反応後の焼結体組成
が、炭化チタン10体積%、ダイヤモンド80体積%、
ニッケル10体積%を含有したものとなるように配合を
行った原料配合物を有機溶媒中で湿式混合する。湿式混
合後真空乾燥させた混合粉末を平板形状に金型成形し、
得られた成形物を600℃の真空中で仮焼成する。次い
で、仮焼成後の成形物を加圧焼成する。この加圧焼成は
ピストンシリンダー型高温高圧発生装置を用い、最高温
度1300℃、最高圧力10000kg/cm2で15
分間保持して行った。得られた焼成体は十分緻密化せ
ず、又、この焼成体の結晶相を粉末X線回折により調べ
たが、結晶相はTiC、ダイヤモンド、Niに加えて大
量のグラファイト相が見られた。この焼成体の3点曲げ
強度を測定したが32kg/mm2と著しく低かった。
更に、この発明の範囲から外れる例の参考試料3とし
て、平均粒径19μmの金属チタン、平均粒径15μm
のダイヤモンド粒子、及び平均粒径5μmの金属ニッケ
ル粉末を用い、焼成条件以外は(実施例1)の試料1と
同様の原料配合及び作製手順で行った。焼成条件は、加
圧焼成を行わず、真空中で最高温度1300℃で60分
常圧焼成した。得られた焼成物は緻密化しなかった。こ
の焼成物を粉末X線回折により調べたが、結晶相は、大
量のグラファイトが存在した。
Further, a comparative example will be shown below as a case where it is out of the scope of the present invention. (Comparative Example) Reference sample 1 of an example outside the scope of the present invention
50% by volume of diamond particles having an average particle size of 15 μm, 50% by volume of titanium carbide powder having an average particle size of 1.5 μm,
And 10% by volume of metallic nickel powder having an average particle diameter of 5 μm, these raw material formulations are wet mixed in an organic solvent.
The wet-mixed and vacuum-dried mixed powder is die-molded into a flat plate shape, and the obtained molded product is pre-baked in a vacuum at 600 ° C. Next, the molded product after the calcination is pressure-calcined. This pressure firing uses a piston cylinder type high temperature and high pressure generator, and the maximum temperature is 1300 ° C and the maximum pressure is 10000 kg / c.
It was held at m 2 for 15 minutes. The crystal phase of the obtained sintered body was examined by powder X-ray diffraction, and TiC, diamond, and nickel were found. Further, the mechanical properties of the sintered body including the diamond retaining force of the sintered body structure were examined by the same method as in (Example 1), but the diamond particles were considerably detached. Further, as reference sample 2 of an example outside the scope of the present invention, titanium metal having an average particle diameter of 19 μm, diamond particles having an average particle diameter of 15 μm, and average particle diameter of 5
Using metallic nickel powder of μm, the composition of the sintered body after the reaction is 10% by volume of titanium carbide, 80% by volume of diamond,
The raw material mixture, which has been mixed so as to contain 10% by volume of nickel, is wet-mixed in an organic solvent. Wet-mix and vacuum-dry the mixed powder into a flat plate mold,
The obtained molded product is pre-baked in vacuum at 600 ° C. Next, the molded product after the calcination is pressure-calcined. This pressure firing uses a piston-cylinder type high temperature and high pressure generator, and the maximum temperature is 1300 ° C. and the maximum pressure is 10000 kg / cm 2 .
Hold for a minute. The obtained fired body was not sufficiently densified, and the crystal phase of the fired body was examined by powder X-ray diffraction. As a crystal phase, a large amount of graphite phase was observed in addition to TiC, diamond and Ni. The three-point bending strength of this fired body was measured and found to be extremely low at 32 kg / mm 2 .
Further, as a reference sample 3 of an example outside the scope of the present invention, metal titanium having an average particle size of 19 μm, and an average particle size of 15 μm
Using the diamond particles and the nickel metal powder having an average particle size of 5 μm, the raw material composition and the manufacturing procedure were the same as those of Sample 1 of (Example 1) except for the firing conditions. Regarding the firing conditions, pressure firing was not performed, and normal pressure firing was performed at a maximum temperature of 1300 ° C. for 60 minutes in vacuum. The obtained fired product was not densified. When this fired product was examined by powder X-ray diffraction, a large amount of graphite was present in the crystal phase.

【0025】[0025]

【発明の効果】この発明による方法によれば、ダイヤモ
ンドの安定領域といった超高圧よりもはるかに低い圧力
でもダイヤモンド分散サーメット複合焼結体を製造する
ことが可能となる為、製造装置上の制約が緩和できると
共により安価な実用部材を製造できる可能性が高い。更
に、この方法で製造された焼結体は構成成分や組織に基
因した優れた耐摩耗性、高靱性、高強度に加えて、生成
過程に基因する強固な分散粒子保持力を有するので、特
に耐衝撃性も要求される耐摩耗部材、或いは断続切削、
重切削等の過酷な条件下で用いる切削工具部材等に活用
できる。また、この方法は、一般に同様な超高圧加熱が
必要とされる他の分散種を用いたサーメット基複合焼結
体の製造にも適用できる可能性がある。
According to the method of the present invention, it is possible to manufacture a diamond-dispersed cermet composite sintered body even at a pressure much lower than an ultrahigh pressure such as a stable region of diamond, and therefore, there are restrictions on a manufacturing apparatus. There is a high possibility that a less expensive practical member that can be relaxed can be manufactured. Furthermore, since the sintered body produced by this method has excellent wear resistance, high toughness, and high strength due to the constituent components and structure, it also has a strong holding force for dispersed particles due to the generation process. Abrasion resistant members that require impact resistance, or intermittent cutting,
It can be used for cutting tool members used under severe conditions such as heavy cutting. In addition, this method may be applicable to the production of a cermet-based composite sintered body using another dispersed species that generally requires the same high-pressure heating.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 10〜60体積%のダイヤモンド粒子
と、30〜88体積%の周期律表4a,5a,6a族か
ら選択した1種以上の金属の炭化物と、2〜30体積%
のFe,Co,Niの何れか1種以上からなる焼結体で
あって、該炭化物がダイヤモンド粒子と、周期律表4
a,5a,6a族から選択した1種以上の金属の粉末
と、Fe,Co,Niの何れか1種以上の金属の粉末か
らなる混合物を加圧焼成することによって焼結体中に形
成されることを特徴とするダイヤモンド分散サーメット
複合焼結体の製造方法。
1. 10 to 60% by volume of diamond particles, 30 to 88% by volume of carbide of one or more metals selected from the groups 4a, 5a and 6a of the periodic table, and 2 to 30% by volume.
Of Fe, Co, or Ni, wherein the carbide is diamond particles and the periodic table 4
It is formed in a sintered body by pressure-calcining a mixture of a powder of one or more kinds of metals selected from a, 5a and 6a groups and a powder of one or more kinds of metals of Fe, Co and Ni. A method for producing a diamond-dispersed cermet composite sintered body, comprising:
【請求項2】 周期律表4a,5a,6a族から選択し
た金属が、タングステンであることを特徴とする請求項
1記載のダイヤモンド分散サーメット複合焼結体の製造
方法。
2. The method for producing a diamond-dispersed cermet composite sintered body according to claim 1, wherein the metal selected from groups 4a, 5a and 6a of the periodic table is tungsten.
JP33930594A 1994-12-28 1994-12-28 Production of diamond dispersed cermet composite sintered compact Pending JPH08176697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33930594A JPH08176697A (en) 1994-12-28 1994-12-28 Production of diamond dispersed cermet composite sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33930594A JPH08176697A (en) 1994-12-28 1994-12-28 Production of diamond dispersed cermet composite sintered compact

Publications (1)

Publication Number Publication Date
JPH08176697A true JPH08176697A (en) 1996-07-09

Family

ID=18326204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33930594A Pending JPH08176697A (en) 1994-12-28 1994-12-28 Production of diamond dispersed cermet composite sintered compact

Country Status (1)

Country Link
JP (1) JPH08176697A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011520031A (en) * 2008-04-15 2011-07-14 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド Super hard reinforced cemented carbide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011520031A (en) * 2008-04-15 2011-07-14 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド Super hard reinforced cemented carbide

Similar Documents

Publication Publication Date Title
JPH08944B2 (en) Mixed sintered metal materials based on boride, nitride and iron binder metals
EP0349740B1 (en) Complex boride cermets
US5256608A (en) High hardness, wear resistant materials
US5215945A (en) High hardness, wear resistant materials
US5089447A (en) High hardness, wear resistant materials
JPH08109431A (en) Diamond sintered compact containing hard alloy as binding material and its production
JP4227835B2 (en) W-Ti-C composite and method for producing the same
JPH08176696A (en) Production of diamond dispersed ceramic composite sintered compact
JPH08176697A (en) Production of diamond dispersed cermet composite sintered compact
JP3213903B2 (en) Tantalum carbide based sintered body and method for producing the same
EP0689525B1 (en) Complex multi-phase reaction sintered hard and wear resistant materials
JP2796011B2 (en) Whisker reinforced cemented carbide
JP3346609B2 (en) Fiber reinforced ceramics and method for producing the same
JP3152783B2 (en) Titanium compound whisker, its production method and composite material
JP3628601B2 (en) WC-WB, WC-W2B or WC-WB-W2B composite having high hardness and high Young&#39;s modulus characteristics and method for producing the same
JP3481702B2 (en) Cubic boron nitride sintered body using hard alloy as binder and method for producing the same
JP3603318B2 (en) Double boride based sintered alloy
JP2677287B2 (en) Nickel-molybdenum compound boride-based sintered body
JPH0687656A (en) Sintered compact based on tantalum-containing multiple compound and its production
JP2001179508A (en) Cutting tool
JPS63282166A (en) High-density metal boride-base sintered ceramics body
JPH0331668B2 (en)
JP2001152203A (en) Planar crystal tungsten carbide-containing powder and producing method therefor
JPH06240401A (en) Hard sintered material
JPS6119593B2 (en)