JPH0817440A - Electrode for polymer electrolyte-type electrochemical cell - Google Patents

Electrode for polymer electrolyte-type electrochemical cell

Info

Publication number
JPH0817440A
JPH0817440A JP6174707A JP17470794A JPH0817440A JP H0817440 A JPH0817440 A JP H0817440A JP 6174707 A JP6174707 A JP 6174707A JP 17470794 A JP17470794 A JP 17470794A JP H0817440 A JPH0817440 A JP H0817440A
Authority
JP
Japan
Prior art keywords
electrode
carbon
electrochemical cell
polymer electrolyte
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6174707A
Other languages
Japanese (ja)
Inventor
Koichi Sakairi
弘一 坂入
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Stonehart Associates Inc
Original Assignee
Tanaka Kikinzoku Kogyo KK
Stonehart Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK, Stonehart Associates Inc filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP6174707A priority Critical patent/JPH0817440A/en
Publication of JPH0817440A publication Critical patent/JPH0817440A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE: To provide an electrode for high molecular electrolyte type electrochemical cell which can assure the sufficient gas supply and exhaust path. CONSTITUTION: A carbon single fiber 11 supporting a catalytic metallic particles 12, is used as a support. The carbon single fiber is used as a porous support, when it is used as the support, so that the supply of the reaction gas to an electrode catalyst layer, and the exhaust of the produced gas from the catalyst layer can be smoothly performed, and the electrode of high performance can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、反応ガスの供給及び生
成ガスの排出を容易にして得られる限界出力を向上させ
た高分子電解質型電気化学セル用電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode for a polymer electrolyte type electrochemical cell in which a reaction gas can be easily supplied and a generated gas can be easily discharged to improve a limit output.

【0002】[0002]

【従来技術及び問題点】高分子電解質型電気化学セル例
えば燃料電池はリン酸型燃料電池と比較してコンパクト
で高い電流密度を取り出せることから電気自動車、宇宙
船用の電源として注目されている。又この分野の開発に
おいても種々の電極構造や触媒作製方法、システム構成
等に関する提案がなされている。図1は高分子電解質型
燃料電池の原理及び構成を模式的に示すものであり、イ
オン交換膜1の一方面に、アノード側多孔質触媒層2A
とアノード側撥水性多孔質集電体層3Aを接合して成る
アノード側ガス拡散電極4Aが、又他面にはカソード側
多孔質触媒層2Cとカソード側撥水性多孔質集電体層3
Cを接合して成るカソード側ガス拡散電極4Cが接合さ
れている。アノード側のガス拡散電極4Aには反応ガス
供給溝5Aを有するセパレータ6Aが接し、該セパレー
タ6Aの供給溝5A間に集電部7Aが形成されている。
同様にカソード側のガス拡散電極4Cには反応ガス供給
溝5Cを有するセパレータ6Cが接し、該セパレータ6
Cの供給溝5C間に集電部7Cが形成されている。両ガ
ス拡散電極4A、4C間を負荷8を有する導線で接続
し、アノード側に水素、カソード側に酸素を供給すると
前記負荷8から電力を取り出すことができる。
2. Description of the Related Art A polymer electrolyte type electrochemical cell such as a fuel cell is attracting attention as a power source for electric vehicles and spacecraft because it is compact and can obtain a high current density as compared with a phosphoric acid type fuel cell. Also, in the development of this field, various electrode structures, catalyst production methods, system configurations, etc. have been proposed. FIG. 1 schematically shows the principle and configuration of a polymer electrolyte fuel cell. One side of an ion exchange membrane 1 is provided with an anode side porous catalyst layer 2A.
And an anode-side water-repellent porous current collector layer 3A joined together, and an anode-side gas diffusion electrode 4A formed on the other surface, and a cathode-side porous catalyst layer 2C and a cathode-side water-repellent porous current collector layer 3 on the other surface.
A cathode side gas diffusion electrode 4C formed by joining C is joined. A separator 6A having a reaction gas supply groove 5A is in contact with the gas diffusion electrode 4A on the anode side, and a collector 7A is formed between the supply grooves 5A of the separator 6A.
Similarly, a separator 6C having a reaction gas supply groove 5C is in contact with the cathode side gas diffusion electrode 4C.
A collector 7C is formed between the C supply grooves 5C. When the gas diffusion electrodes 4A and 4C are connected by a conductor having a load 8 and hydrogen is supplied to the anode side and oxygen is supplied to the cathode side, electric power can be taken out from the load 8.

【0003】このような電気化学セル用電極の電極触媒
層の担体としてカーボン粒子が使用され、このカーボン
粒子とイオン交換樹脂を混合しホットプレス等により結
着して電極触媒層が形成される。このように形成された
電極触媒層はカーボン粒子が球形であるため隙間無く充
填され、しかもホットプレスにより互いに強固に密着し
て密度が高くなっているため、ガスの流通路が少なく、
従って原料ガスが電極触媒層中を拡散して反応点に到達
しにくく更に反応後の生成ガスの排出も円滑に行いにく
いという欠点がある。そのため原料ガスの供給が更に行
いにくくなり、電極触媒層での反応効率が大幅に低下
し、理論的な最大出力を大きく下回るエネルギーしか取
り出せないという問題点が生じている。
Carbon particles are used as a carrier for an electrode catalyst layer of such an electrode for an electrochemical cell, and the electrode particles are formed by mixing the carbon particles with an ion exchange resin and binding them by hot pressing or the like. The electrode catalyst layer formed in this way is filled with no gaps because the carbon particles are spherical, and since they are firmly adhered to each other by hot pressing to increase the density, there are few gas flow passages,
Therefore, there is a drawback that the raw material gas is difficult to diffuse in the electrode catalyst layer to reach the reaction point and the generated gas after the reaction is not smoothly discharged. Therefore, it becomes more difficult to supply the raw material gas, the reaction efficiency in the electrode catalyst layer is significantly reduced, and there is a problem that only energy far below the theoretical maximum output can be taken out.

【0004】[0004]

【発明の目的】本発明は上記問題点に鑑み、電極触媒層
の空隙度を上げてガスの流通を円滑にして高出力を得ら
れるようにした高分子電解質型電気化学セル用電極を提
供することを目的とする。
SUMMARY OF THE INVENTION In view of the above problems, the present invention provides a polymer electrolyte type electrochemical cell electrode in which the porosity of the electrode catalyst layer is increased to facilitate the flow of gas and obtain a high output. The purpose is to

【0005】[0005]

【問題点を解決するための手段】本発明は、多孔質集電
体表面に担持触媒及びイオン交換樹脂及び/又はカーボ
ン単繊維を含む電極触媒層を形成して成る高分子電解質
型電気化学セル用電極において、触媒担体がカーボン単
繊維であるか、あるいは粒状担持触媒の支持体がカーボ
ン単繊維であることを特徴とする電気化学セル用電極で
ある。
The present invention provides a polymer electrolyte type electrochemical cell in which an electrode catalyst layer containing a supported catalyst and an ion exchange resin and / or carbon single fiber is formed on the surface of a porous current collector. The electrode for use in an electrochemical cell, wherein the catalyst carrier is monofilament carbon, or the support for the particulate supported catalyst is monofilament carbon.

【0006】以下、本発明の詳細について説明する。本
発明では、触媒金属粒子を担持させる担体としてカーボ
ン単繊維を使用する。該カーボン単繊維はカーボン粒子
と異なり担体と使用した場合に多孔性担体となるため、
電極触媒層中への反応ガスの供給及び該触媒層からの生
成ガスの排出が円滑に行われる。高電流密度領域では電
極中のガス拡散が律速となり、特にカソード極では高電
流密度の領域で生成水の発生量が多く、これを効果的に
排出して触媒表面へ酸素ガスを効果的に導入することが
必要で、これが本発明の電極により達成される。同様に
低電流密度領域でもガスの供給及び排出を促進すること
は高出力を取り出すことを可能にする。特に低電流密度
領域で高い電圧を維持するためには、前記電極を使用し
て高分子電解質膜及びガスセパレーターとともに電池を
構成する際に前記電極の電極触媒層内の断面方向の触媒
金属粒子の存在密度を高分子電解質膜に近づくほど高く
することが有効である。
The details of the present invention will be described below. In the present invention, carbon single fibers are used as a carrier for supporting the catalytic metal particles. Unlike the carbon particles, the carbon monofilament becomes a porous carrier when used as a carrier,
The reaction gas is smoothly supplied into the electrode catalyst layer and the generated gas is discharged from the catalyst layer smoothly. Gas diffusion in the electrode is rate-determining in the high current density region, and especially in the cathode electrode, the amount of generated water is large in the high current density region, and this is effectively discharged to effectively introduce oxygen gas to the catalyst surface. This is achieved by the electrodes of the invention. Similarly, facilitating gas supply and discharge even in the low current density region makes it possible to take out high power. In order to maintain a high voltage particularly in a low current density region, when the electrode is used to form a battery together with a polymer electrolyte membrane and a gas separator, the catalyst metal particles in the cross-sectional direction in the electrode catalyst layer of the electrode It is effective to increase the existing density toward the polymer electrolyte membrane.

【0007】本発明の電極では、カーボン単繊維に直接
触媒金属粒子を担持させる態様だけでなく、該触媒金属
粒子を一旦カーボン粒子等の粒状担体に担持させ、この
粒状担体を前記カーボン単繊維に支持させる態様、更に
カーボン単繊維に直接触媒金属粒子を担持させかつ触媒
金属粒子を担持した粒状担体をカーボン単繊維に支持さ
せる態様がある。いずれの態様であっても電極触媒層中
に十分な空隙が形成され、ガス供給及び排出を円滑にす
ることができる。
In the electrode of the present invention, not only is the mode in which the catalytic metal particles are directly supported on the carbon monofilament, but the catalytic metal particle is once carried on a granular carrier such as carbon particles, and the granular carrier is formed on the carbon monofilament. There are modes of supporting, and further modes of directly supporting the catalytic metal particles on the carbon single fiber and supporting the granular carrier carrying the catalytic metal particles on the carbon single fiber. In either case, sufficient voids are formed in the electrode catalyst layer, and gas supply and discharge can be facilitated.

【0008】本発明の電極におけるカーボン単繊維は市
販のものをそのまま使用すれば良く、その径は0.1 〜10
μm、長さは10〜1000μm程度が好ましい。又本発明の
電極における触媒金属粒子としては、白金、パラジウ
ム、ルテニウム等の貴金属を使用できる。又イオン交換
樹脂はパーフルオロカーボンスルホン酸等が用いられ
る。又電極触媒層中にテフロン(商品名)等の撥水性樹
脂を混在させても良い。粒状担体を使用する場合、該担
体は粒径が100 〜1000Åであるカーボン担体であること
が望ましい。使用する多孔質集電体は好ましくはカーボ
ンペーパー又はカーボンクロス等を撥水化処理したもの
を使用する。
The commercially available carbon monofilament may be used as it is for the electrode of the present invention, and its diameter is 0.1 to 10
μm and the length is preferably about 10 to 1000 μm. Further, as the catalytic metal particles in the electrode of the present invention, a noble metal such as platinum, palladium or ruthenium can be used. As the ion exchange resin, perfluorocarbon sulfonic acid or the like is used. Further, a water repellent resin such as Teflon (trade name) may be mixed in the electrode catalyst layer. When a granular carrier is used, it is desirable that the carrier is a carbon carrier having a particle size of 100 to 1000Å. The porous current collector used is preferably carbon paper, carbon cloth, or the like that has been treated to be water repellent.

【0009】カーボン単繊維上に直接触媒金属粒子を担
持する場合には、該触媒金属の化合物、例えば塩化白金
酸や塩化パラジウム等の水溶液にカーボン単繊維を浸漬
した後、還元処理や熱分解を行い触媒金属粒子を担持で
きる。前記水溶液濃度や還元又は熱分解条件及び担体比
表面を適宜設定することにより触媒金属粒子の粒径やカ
ーボン単繊維上での密度を決定できる。このカーボン単
繊維に好ましくはイオン交換樹脂例えばナフィオン(商
品名)を絡めて電極触媒層形成原料とする。又粒状担体
に触媒金属粒子を担持させるには、前記操作のカーボン
単繊維を粒状担体に置き換えて同様に還元法や熱分解法
により行えば良い。触媒金属粒子を担持したこの粒状担
体をイオン交換樹脂を絡めてカーボン単繊維上に担持し
て電極触媒層形成原料とする。
When the catalytic metal particles are directly supported on the carbon monofilament, the carbon monofilament is immersed in an aqueous solution of a compound of the catalytic metal, for example, chloroplatinic acid or palladium chloride, and then subjected to reduction treatment or thermal decomposition. The catalytic metal particles can be carried. The particle size of the catalytic metal particles and the density on the carbon single fiber can be determined by appropriately setting the aqueous solution concentration, the reduction or thermal decomposition conditions and the specific surface of the carrier. An ion exchange resin such as Nafion (trade name) is preferably entangled with the carbon monofilament to obtain an electrode catalyst layer forming raw material. Further, in order to support the catalytic metal particles on the granular carrier, the carbon single fiber in the above operation may be replaced with the granular carrier and the reduction method or the thermal decomposition method may be similarly used. This granular carrier carrying catalytic metal particles is entangled with an ion exchange resin and carried on carbon single fibers to be used as a raw material for forming an electrode catalyst layer.

【0010】又カーボン単繊維に直接触媒金属粒子を担
持させ更に触媒金属粒子を担持した粒状担体とともに用
いる場合には、触媒金属粒子を担持した粒状担体を前述
の通り調製し、該粒状担体を前述と同様に調製した触媒
金属粒子を担持したカーボン単繊維にイオン交換樹脂を
使用して絡めれば良い。このようにして調製した電極触
媒層形成原料を使用して電極基材上に電極触媒層を形成
するには、従来の濾過転写法あるいはペースト印刷法等
の湿式法及びスクリーンと吸引を使用するスクリーン法
等の乾式法のいずれかにより行うことができる。
When the carbon monofilament is directly loaded with the catalytic metal particles and is used together with the granular support loaded with the catalytic metal particles, the granular support loaded with the catalytic metal particles is prepared as described above, and the granular support is prepared as described above. Ion exchange resin may be used to entangle the carbon single fibers supporting the catalytic metal particles prepared in the same manner as in (1). In order to form an electrode catalyst layer on an electrode substrate using the electrode catalyst layer forming raw material thus prepared, a wet method such as a conventional filtration transfer method or a paste printing method, and a screen using a screen and suction are used. It can be performed by any of the dry methods such as the method.

【0011】このようにして製造される電極の電極触媒
層中に、103 〜105 Å程度の細孔が0.2 〜1.0 cc/g
程度の容量で生成するように調節することが望ましい。
細孔容量を0.2 cc/g未満とすると電極中への反応ガ
ス(酸素ガス)流入及び生成ガス(水蒸気)排出用の孔
が減少してガス拡散が律速となる高電流密度領域での電
極特性が低下する。又細孔容量が1.0 cc/gを越える
と電極中のイオン交換樹脂を伝導するプロトンの移動が
律速となり、反応が阻害される。
In the electrocatalyst layer of the electrode thus manufactured, pores of about 10 3 to 10 5 Å are contained in an amount of 0.2 to 1.0 cc / g.
It is desirable to adjust so as to produce in a moderate volume.
When the pore volume is less than 0.2 cc / g, the number of holes for inflowing the reaction gas (oxygen gas) into the electrode and discharging the generated gas (water vapor) is reduced, and gas diffusion is rate-determining. Electrode characteristics in the high current density region Is reduced. On the other hand, if the pore volume exceeds 1.0 cc / g, the migration of protons that conduct through the ion-exchange resin in the electrode becomes rate-determining, which hinders the reaction.

【0012】図2〜4は、本発明に係わる高分子電解質
型電気化学セル用電極の微細構造を例示するもので、そ
れぞれ別個の態様を示す拡大図である。図2では、多数
本のカーボン単繊維11が絡み合ってネットワークを構成
し各カーボン単繊維11に多数の触媒金属粒子12が担持さ
れている。このネットワークにナフィオン等のイオン交
換樹脂(図示略)が絡められて電極触媒層用原料が調製
される。図3には、図2の触媒金属粒子を直接カーボン
単繊維に担持するのではなく、一旦触媒金属粒子12を粒
状担体13に担持し、この粒状担持触媒13をカーボン単繊
維11とともに用いた態様が示されている。このカーボン
単繊維のネットワークに同様にナフィオン等のイオン交
換樹脂(図示略)が絡められて電極触媒層用原料が調製
される。図4には、カーボン単繊維11に直接触媒金属粒
子12が担持され、かつ触媒金属粒子12を担持した粒状担
体13とともに用いた態様が示されている。
2 to 4 exemplify the fine structure of the electrode for polymer electrolyte type electrochemical cell according to the present invention, and are enlarged views showing respective different modes. In FIG. 2, a large number of carbon single fibers 11 are entangled to form a network, and a large number of catalytic metal particles 12 are carried on each carbon single fiber 11. An ion exchange resin (not shown) such as Nafion is entangled with this network to prepare a raw material for the electrode catalyst layer. In FIG. 3, the catalytic metal particles of FIG. 2 are not directly supported on the carbon single fibers, but the catalytic metal particles 12 are once supported on the granular carrier 13, and the granular supported catalyst 13 is used together with the carbon single fibers 11. It is shown. Similarly, an ion exchange resin (not shown) such as Nafion is entangled with the network of carbon single fibers to prepare a raw material for the electrode catalyst layer. FIG. 4 shows an embodiment in which the catalytic metal particles 12 are directly carried on the carbon single fiber 11 and used together with the granular carrier 13 carrying the catalytic metal particles 12.

【0013】[0013]

【実施例】次に本発明に係わる電気化学セル用電極製造
の実施例を記載するが、本実施例は本発明を限定するも
のではない。
EXAMPLES Next, examples of manufacturing electrodes for electrochemical cells according to the present invention will be described, but these examples do not limit the present invention.

【実施例1】平均直径1μmのカーボン単繊維(表面積
1750m2 /g)に塩化白金酸水溶液(白金濃度5g/リ
ットル)を含浸させた後、還元処理を行って30重量%の
白金を担持させ、更に該カーボン単繊維に対して20重量
%となる量の固形分を含むナフィオン溶液を絡め、超音
波ホモジナイザを使用して分散させた。その後溶液を濾
過してテフロンの分散液を用いて撥水化処理したカーボ
ンペーパー上へ転写し、130 ℃でホットプレスして結着
し電極を構成した。この電極をカソード及びアノードと
し、イオン交換膜(ナフィオン)を挟んだサンドイッチ
構造として本実施例の電池とした。
Example 1 Carbon single fiber having an average diameter of 1 μm (surface area
(1750 m 2 / g) was impregnated with a chloroplatinic acid aqueous solution (platinum concentration: 5 g / liter) and then subjected to a reduction treatment to support 30% by weight of platinum, and further 20% by weight based on the carbon single fiber. A Nafion solution containing a certain amount of solid content was entangled and dispersed using an ultrasonic homogenizer. After that, the solution was filtered and transferred onto a water repellent carbon paper using a dispersion of Teflon, and hot pressed at 130 ° C. to bind to form an electrode. This electrode was used as a cathode and an anode, and a sandwich structure with an ion exchange membrane (Nafion) sandwiched was made to be the battery of this example.

【0014】[0014]

【比較例1】表面積が300 m2 /gであるカーボン粒子
に塩化白金酸水溶液(白金濃度5g/リットル)を含浸
させた後、還元処理を行って30重量%の白金を担持さ
せ、更に該カーボン粒子に対して50重量%となる量の固
形分を含むナフィオン溶液中に超音波ホモジナイザで分
散させ、乾燥後、前記ナフィオンを絡めたカーボン粒子
を超音波ホモジナイザを使用してエタノール中に再分散
した溶液を濾過して撥水化処理したカーボンペーパー上
へ転写し、130 ℃でホットプレスして結着し電極を構成
した。この電極をカソード及びアノードとし、イオン交
換膜(ナフィオン)を挟んだサンドイッチ構造として比
較例の電池とした。
Comparative Example 1 Carbon particles having a surface area of 300 m 2 / g were impregnated with a chloroplatinic acid aqueous solution (platinum concentration: 5 g / liter), and then reduction treatment was carried to carry 30% by weight of platinum. Disperse with a ultrasonic homogenizer in a Nafion solution containing a solid content of 50% by weight relative to carbon particles, after drying, redisperse the carbon particles entangled with the Nafion in ethanol using an ultrasonic homogenizer. The solution thus obtained was filtered and transferred onto a carbon paper which had been treated to be water repellent, and hot pressed at 130 ° C. to bond the electrodes to form an electrode. This electrode was used as a cathode and an anode, and a sandwich structure in which an ion exchange membrane (Nafion) was sandwiched was used as a battery of a comparative example.

【0015】[0015]

【実施例2】白金未担持のカーボン単繊維と比較例1で
調製した白金担持カーボン粒子をカーボン比でカーボン
単繊維が25%となるように混合し、更に該カーボン単繊
維及びカーボン粒子の合計に対して50重量%となる量の
ナフィオン溶液に添加して分散させた溶液を濾過して撥
水化処理したカーボンペーパー上へ転写し、130 ℃でホ
ットプレスして結着し電極を構成した。この電極をカソ
ード及びアノードとし、イオン交換膜(ナフィオン)を
挟んだサンドイッチ構造として本実施例の電池とした。
Example 2 Platinum-unsupported carbon single fibers and platinum-supported carbon particles prepared in Comparative Example 1 were mixed so that the carbon single fibers were 25% in terms of carbon ratio, and the total of the carbon single fibers and carbon particles was further added. Of the Nafion solution in an amount of 50% by weight relative to that of the Nafion solution was dispersed and filtered, and the solution was transferred onto a water-repellent carbon paper and hot-pressed at 130 ° C to form an electrode. . This electrode was used as a cathode and an anode, and a sandwich structure with an ion exchange membrane (Nafion) sandwiched was made to be the battery of this example.

【0016】[0016]

【実施例3】白金未担持のカーボン単繊維の代わりに実
施例1で調製した白金担持カーボン単繊維を使用したこ
と以外は実施例2と同様に電極を構成した。この電極を
カソード及びアノードとし、イオン交換膜(ナフィオ
ン)を挟んだサンドイッチ構造として本実施例の電池と
した。
Example 3 An electrode was constructed in the same manner as in Example 2 except that the platinum-supporting carbon single fiber prepared in Example 1 was used in place of the platinum-unsupported carbon single fiber. This electrode was used as a cathode and an anode, and a sandwich structure with an ion exchange membrane (Nafion) sandwiched was made to be the battery of this example.

【0017】[0017]

【実施例4】実施例2と同様に白金未担持のカーボン単
繊維と白金担持カーボン粒子を混合し、更に撥水化処理
したカーボンペーパー上へ転写した。この転写したカー
ボンペーパー上に比較例1のナフィオンを絡めたカーボ
ン粒子を濾過した後(前者の混合物中の白金量に対する
後者の濾過層中の白金量は25%であった)、130 ℃でホ
ットプレスして結着し電極を構成した。この電極をカソ
ード及びアノードとし、イオン交換膜(ナフィオン)を
挟んだサンドイッチ構造として本実施例の電池とした。
Example 4 In the same manner as in Example 2, platinum-unsupported carbon single fibers and platinum-supported carbon particles were mixed and transferred onto a water-repellent treated carbon paper. After the carbon particles entwined with Nafion of Comparative Example 1 were filtered on the transferred carbon paper (the amount of platinum in the latter filter layer was 25% of the amount of platinum in the former mixture), hot at 130 ° C. An electrode was formed by pressing and binding. This electrode was used as a cathode and an anode, and a sandwich structure with an ion exchange membrane (Nafion) sandwiched was made to be the battery of this example.

【0018】実施例1〜4及び比較例1の各電池の性能
評価を次の条件で行った。その結果を表1に示した。 白金担持量:2mg/cm2 セル温度:80℃ アノードガス加湿温度:90℃ ガス圧力:大気圧 ガス:水素及び酸素
Performance evaluation of each battery of Examples 1 to 4 and Comparative Example 1 was carried out under the following conditions. The results are shown in Table 1. Platinum loading: 2 mg / cm 2 Cell temperature: 80 ° C Anode gas humidification temperature: 90 ° C Gas pressure: Atmospheric pressure Gas: Hydrogen and oxygen

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【発明の効果】本発明は、多孔質集電体表面に担持触媒
及びイオン交換樹脂及び/又はカーボン単繊維を含む電
極触媒層を形成して成る高分子電解質型電気化学セル用
電極において、触媒担体がカーボン単繊維であるか、あ
るいは粒状担持触媒の支持体がカーボン単繊維であるこ
とを特徴とする電気化学セル用電極である。
INDUSTRIAL APPLICABILITY The present invention provides a catalyst for a polymer electrolyte type electrochemical cell electrode in which an electrode catalyst layer containing a supported catalyst and an ion exchange resin and / or carbon single fiber is formed on the surface of a porous current collector. The electrode for an electrochemical cell is characterized in that the carrier is a carbon single fiber, or the support of the granular supported catalyst is a carbon single fiber.

【0021】つまり本発明の高分子電解質型電気化学セ
ル用電極の担持触媒は、カーボン単繊維に直接触媒金属
粒子を担持させる態様、該触媒金属粒子を一旦カーボン
粒子等の粒状担体に担持させ、この粒状担体を前記カー
ボン単繊維に支持させる態様、及びカーボン単繊維に直
接触媒金属粒子を担持させかつ触媒金属粒子を担持した
粒状担体をカーボン単繊維に支持させる態様の3種類が
ある。いずれの態様でも、カーボン単繊維はカーボン粒
子と異なり電極触媒層に多孔性を付与するため、電極触
媒層中への反応ガスの供給及び該触媒層からの生成ガス
の排出が円滑に行われる。従って反応ガスが円滑に反応
して高出力が取り出せるとともに高電流密度も達成で
き、高性能の高分子電解質型電気化学セル用電極を提供
できる。
That is, the supported catalyst of the electrode for the polymer electrolyte type electrochemical cell of the present invention is a mode in which the catalytic metal particles are directly supported on the carbon single fiber, and the catalytic metal particles are once supported on the granular carrier such as carbon particles, There are three types of modes, that is, the mode in which the granular carrier is supported on the carbon single fiber, and the mode in which the catalytic metal particles are directly supported on the carbon single fiber and the granular carrier supporting the catalytic metal particles is supported on the carbon single fiber. In any of the embodiments, unlike the carbon particles, the carbon monofilament imparts porosity to the electrode catalyst layer, so that the reaction gas can be supplied into the electrode catalyst layer and the generated gas can be smoothly discharged from the catalyst layer. Therefore, the reaction gas reacts smoothly, a high output can be taken out, a high current density can be achieved, and a high-performance polymer electrolyte type electrochemical cell electrode can be provided.

【0022】特に生成水の発生量が多くこれを効果的に
排出して触媒表面へ反応ガスを効果的に導入することが
必要な高電流密度の領域では、電極触媒層の厚み方向の
触媒金属粒子の存在密度を前記高分子電解質膜に近づく
ほど高くすると、水分の排出を効果的に行うことができ
る。更に電極触媒層中に存在する103 〜105 Åの径の細
孔の容積を0.2 〜1.0 cc/gとすると、ガス供給及び
排出用の孔が十分確保され、かつ反応を促進するイオン
交換樹脂のネットワークが保たれ、プロトンの移動を円
滑にすることができる。
Particularly in a high current density region where a large amount of generated water is required to be effectively discharged to effectively introduce the reaction gas to the catalyst surface, the catalyst metal in the thickness direction of the electrode catalyst layer is formed. When the existing density of particles is increased toward the polymer electrolyte membrane, water can be effectively discharged. Further, when the volume of the pores having a diameter of 10 3 to 10 5 Å present in the electrode catalyst layer is 0.2 to 1.0 cc / g, sufficient gas supply and discharge pores are ensured and ion exchange that promotes the reaction is promoted. The resin network is maintained and the movement of protons can be facilitated.

【図面の簡単な説明】[Brief description of drawings]

【図1】高分子電解質型燃料電池の原理及び構成を模式
図。
FIG. 1 is a schematic diagram showing the principle and configuration of a polymer electrolyte fuel cell.

【図2】本発明に係わる高分子電解質型電気化学セル用
電極の製造用原料の第1の態様を示す拡大図。
FIG. 2 is an enlarged view showing a first embodiment of a raw material for producing a polymer electrolyte type electrochemical cell electrode according to the present invention.

【図3】同じく第2の態様を示す拡大図。FIG. 3 is an enlarged view showing a second aspect of the same.

【図4】同じく第3の態様を示す拡大図。FIG. 4 is an enlarged view showing a third aspect of the same.

【符号の説明】[Explanation of symbols]

11・・・カーボン単繊維 12・・・触媒金属粒子 13・
・・粒状担体(粒状担持触媒)
11 ・ ・ ・ Carbon monofilament 12 ・ ・ ・ Catalyst metal particles 13 ・
..Granular carrier (granular supported catalyst)

───────────────────────────────────────────────────── フロントページの続き (71)出願人 391016716 ストンハルト・アソシエーツ・インコーポ レーテッド STONEHART ASSOCIATE S INCORPORATED アメリカ合衆国 06443 コネチカット州、 マジソン、コテッジ・ロード17、ピー・オ ー・ボックス1220 (72)発明者 坂入 弘一 神奈川県平塚市新町2番73号 田中貴金属 工業株式会社技術開発センター内 ─────────────────────────────────────────────────── ─── Continuation of front page (71) Applicant 391016716 STONEHART ASSOCIATES IN CORPORATED United States 06443 Connecticut, Madison, Cottage Road 17, P-O Box 1220 (72) Inventor Hirokazu Sakairi Kanagawa 2-7 Shinmachi, Hiratsuka-shi, Japan Tanaka Kikinzoku Kogyo Co., Ltd. Technology Development Center

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 多孔質集電体表面に担持触媒及びイオン
交換樹脂を含む電極触媒層を形成して成る高分子電解質
型電気化学セル用電極において、前記担持触媒が、カー
ボン単繊維上に触媒金属粒子を担持したものであること
を特徴とする電気化学セル用電極。
1. A polymer electrolyte type electrochemical cell electrode comprising an electrode catalyst layer containing a supported catalyst and an ion exchange resin formed on the surface of a porous current collector, wherein the supported catalyst is a catalyst on carbon single fiber. An electrode for an electrochemical cell, characterized in that it carries metal particles.
【請求項2】 多孔質集電体表面に担持触媒及びイオン
交換樹脂を含む電極触媒層を形成して成る高分子電解質
型電気化学セル用電極において、前記担持触媒が、粒状
カーボン担体上に触媒金属粒子を担持したものであっ
て、イオン交換樹脂とともにカーボン単繊維に支持され
ていることを特徴とする電気化学セル用電極。
2. A polymer electrolyte type electrochemical cell electrode comprising an electrode catalyst layer containing a supported catalyst and an ion exchange resin formed on the surface of a porous current collector, wherein the supported catalyst is a catalyst on a granular carbon carrier. An electrode for an electrochemical cell, which carries metal particles and is supported by carbon single fibers together with an ion exchange resin.
【請求項3】 多孔質集電体表面に担持触媒及びイオン
交換樹脂を含む電極触媒層を形成して成る高分子電解質
型電気化学セル用電極において、前記担持触媒の担体
が、粒状カーボン及びカーボン単繊維であることを特徴
とする電気化学セル用電極。
3. A polymer electrolyte type electrochemical cell electrode comprising an electrode catalyst layer containing a supported catalyst and an ion exchange resin formed on the surface of a porous current collector, wherein the carrier of the supported catalyst is granular carbon or carbon. An electrode for an electrochemical cell, which is a single fiber.
【請求項4】 多孔質集電体表面に、電極触媒層を形成
して成る高分子電解質型電気化学セル用電極の他面側を
高分子電解質膜に密着させて使用する際に、電極触媒層
の厚み方向の触媒金属粒子又は担持触媒の存在密度を前
記高分子電解質膜に近づくほど高くした請求項1に記載
の電極。
4. An electrode catalyst when the other side of a polymer electrolyte type electrochemical cell electrode formed by forming an electrode catalyst layer on the surface of a porous current collector is used in close contact with the polymer electrolyte membrane. The electrode according to claim 1, wherein the existence density of the catalytic metal particles or the supported catalyst in the thickness direction of the layer is increased toward the polymer electrolyte membrane.
【請求項5】 電極触媒層中に存在する103 〜105 Åの
径の細孔の容積が0.2〜1.0 cc/gである請求項1に
記載の電極。
5. The electrode according to claim 1, wherein the volume of pores having a diameter of 10 3 to 10 5 Å present in the electrode catalyst layer is 0.2 to 1.0 cc / g.
JP6174707A 1994-07-04 1994-07-04 Electrode for polymer electrolyte-type electrochemical cell Pending JPH0817440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6174707A JPH0817440A (en) 1994-07-04 1994-07-04 Electrode for polymer electrolyte-type electrochemical cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6174707A JPH0817440A (en) 1994-07-04 1994-07-04 Electrode for polymer electrolyte-type electrochemical cell

Publications (1)

Publication Number Publication Date
JPH0817440A true JPH0817440A (en) 1996-01-19

Family

ID=15983255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6174707A Pending JPH0817440A (en) 1994-07-04 1994-07-04 Electrode for polymer electrolyte-type electrochemical cell

Country Status (1)

Country Link
JP (1) JPH0817440A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245802A (en) * 1996-03-11 1997-09-19 Tanaka Kikinzoku Kogyo Kk Electrode for polymer solid electrolyte type fuel cell
JP2001519594A (en) * 1997-10-10 2001-10-23 ミネソタ マイニング アンド マニュファクチャリング カンパニー Catalyst for membrane electrode assembly and fabrication method
WO2002056404A1 (en) * 2001-01-16 2002-07-18 Showa Denko K. K. Catalyst composition for cell, gas diffusion layer, and fuel cell comprising the same
JP2005026174A (en) * 2003-07-01 2005-01-27 Honda Motor Co Ltd Solid polymer type fuel cell
US7094492B2 (en) 2001-10-11 2006-08-22 Honda Giken Kogyo Kabushiki Kaisha Electrode for polymer electrolyte fuel cell
JP2006228745A (en) * 2001-03-28 2006-08-31 Toshiba Corp Catalyst material for fuel cell and manufacturing method of catalyst material for fuel cell
US7125822B2 (en) * 2002-08-12 2006-10-24 Kabushiki Kaisha Toshiba Fuel cell catalyst and fuel cell
JP2007042650A (en) * 2005-07-29 2007-02-15 Samsung Sdi Co Ltd Electrode for fuel cell, membrane-electrode assembly including it and fuel cell system including it
JP2007213919A (en) * 2006-02-08 2007-08-23 Gs Yuasa Corporation:Kk Electrode catalyst for polymer electrolyte fuel cell, and polymer electrolyte fuel cell having the same
JP2009117374A (en) * 2001-03-28 2009-05-28 Toshiba Corp Catalyst sheet for fuel cell, electrode for fuel cell, and fuel cell
JP2009238601A (en) * 2008-03-27 2009-10-15 Equos Research Co Ltd Membrane electrode assembly
US7820316B2 (en) 2006-10-23 2010-10-26 Toyota Jidosha Kabushiki Kaisha Membrane electrode assembly and fuel cell
US7842432B2 (en) 2004-12-09 2010-11-30 Nanosys, Inc. Nanowire structures comprising carbon
US7939218B2 (en) 2004-12-09 2011-05-10 Nanosys, Inc. Nanowire structures comprising carbon
US8007957B2 (en) 2004-11-26 2011-08-30 Samsung Sdi Co., Ltd. Electrode for fuel cell, fuel cell system comprising the same, and method for preparing the same
US8017284B2 (en) 2004-09-08 2011-09-13 Samsung Sdi Co., Ltd. Electrode for a fuel cell, and a membrane-electrode assembly and fuel cell system comprising the same
US8278011B2 (en) 2004-12-09 2012-10-02 Nanosys, Inc. Nanostructured catalyst supports
US8357475B2 (en) 2004-12-09 2013-01-22 Nanosys, Inc. Nanowire-based membrane electrode assemblies for fuel cells
WO2015141595A1 (en) * 2014-03-20 2015-09-24 国立大学法人九州大学 Fuel cell electrode material and production method thereof, fuel cell electrode, membrane electrode assembly, and solid polymer fuel cell
US9346673B2 (en) 2004-06-23 2016-05-24 Samsung Sdi Co., Ltd. Electrode for fuel cell, membrane-electrode assembly for fuel cell comprising the same, fuel cell system comprising the same, and method for preparing the electrode
WO2018155220A1 (en) * 2017-02-23 2018-08-30 パナソニックIpマネジメント株式会社 Membrane electrode assembly and fuel cell
US10490817B2 (en) 2009-05-19 2019-11-26 Oned Material Llc Nanostructured materials for battery applications

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245802A (en) * 1996-03-11 1997-09-19 Tanaka Kikinzoku Kogyo Kk Electrode for polymer solid electrolyte type fuel cell
JP2001519594A (en) * 1997-10-10 2001-10-23 ミネソタ マイニング アンド マニュファクチャリング カンパニー Catalyst for membrane electrode assembly and fabrication method
JP4837822B2 (en) * 1997-10-10 2011-12-14 スリーエム カンパニー Catalyst for membrane electrode assembly
WO2002056404A1 (en) * 2001-01-16 2002-07-18 Showa Denko K. K. Catalyst composition for cell, gas diffusion layer, and fuel cell comprising the same
JP2006228745A (en) * 2001-03-28 2006-08-31 Toshiba Corp Catalyst material for fuel cell and manufacturing method of catalyst material for fuel cell
JP2009117374A (en) * 2001-03-28 2009-05-28 Toshiba Corp Catalyst sheet for fuel cell, electrode for fuel cell, and fuel cell
US7094492B2 (en) 2001-10-11 2006-08-22 Honda Giken Kogyo Kabushiki Kaisha Electrode for polymer electrolyte fuel cell
US7125822B2 (en) * 2002-08-12 2006-10-24 Kabushiki Kaisha Toshiba Fuel cell catalyst and fuel cell
JP2005026174A (en) * 2003-07-01 2005-01-27 Honda Motor Co Ltd Solid polymer type fuel cell
US9346673B2 (en) 2004-06-23 2016-05-24 Samsung Sdi Co., Ltd. Electrode for fuel cell, membrane-electrode assembly for fuel cell comprising the same, fuel cell system comprising the same, and method for preparing the electrode
US8017284B2 (en) 2004-09-08 2011-09-13 Samsung Sdi Co., Ltd. Electrode for a fuel cell, and a membrane-electrode assembly and fuel cell system comprising the same
US8007957B2 (en) 2004-11-26 2011-08-30 Samsung Sdi Co., Ltd. Electrode for fuel cell, fuel cell system comprising the same, and method for preparing the same
US8357475B2 (en) 2004-12-09 2013-01-22 Nanosys, Inc. Nanowire-based membrane electrode assemblies for fuel cells
USRE48084E1 (en) 2004-12-09 2020-07-07 Oned Material Llc Nanostructured catalyst supports
US7842432B2 (en) 2004-12-09 2010-11-30 Nanosys, Inc. Nanowire structures comprising carbon
US7939218B2 (en) 2004-12-09 2011-05-10 Nanosys, Inc. Nanowire structures comprising carbon
USRE46921E1 (en) 2004-12-09 2018-06-26 Oned Material Llc Nanostructured catalyst supports
USRE45703E1 (en) 2004-12-09 2015-09-29 Oned Material Llc Nanostructured catalyst supports
US8440369B2 (en) 2004-12-09 2013-05-14 Nanosys, Inc. Nanowire-based membrane electrode assemblies for fuel cells
US8278011B2 (en) 2004-12-09 2012-10-02 Nanosys, Inc. Nanostructured catalyst supports
US8057958B2 (en) 2005-07-29 2011-11-15 Samsung Sdi Co., Ltd. Electrode for fuel cell, membrane-electrode assembly comprising same and fuel cell system comprising same
JP4585492B2 (en) * 2005-07-29 2010-11-24 三星エスディアイ株式会社 Fuel cell electrode, membrane-electrode assembly including the same, and fuel cell system including the same
JP2007042650A (en) * 2005-07-29 2007-02-15 Samsung Sdi Co Ltd Electrode for fuel cell, membrane-electrode assembly including it and fuel cell system including it
JP2007213919A (en) * 2006-02-08 2007-08-23 Gs Yuasa Corporation:Kk Electrode catalyst for polymer electrolyte fuel cell, and polymer electrolyte fuel cell having the same
US7820316B2 (en) 2006-10-23 2010-10-26 Toyota Jidosha Kabushiki Kaisha Membrane electrode assembly and fuel cell
JP2009238601A (en) * 2008-03-27 2009-10-15 Equos Research Co Ltd Membrane electrode assembly
US11600821B2 (en) 2009-05-19 2023-03-07 Oned Material, Inc. Nanostructured materials for battery applications
US10490817B2 (en) 2009-05-19 2019-11-26 Oned Material Llc Nanostructured materials for battery applications
US11233240B2 (en) 2009-05-19 2022-01-25 Oned Material, Inc. Nanostructured materials for battery applications
WO2015141595A1 (en) * 2014-03-20 2015-09-24 国立大学法人九州大学 Fuel cell electrode material and production method thereof, fuel cell electrode, membrane electrode assembly, and solid polymer fuel cell
JPWO2015141595A1 (en) * 2014-03-20 2017-04-06 国立大学法人九州大学 ELECTRODE MATERIAL FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME, ELECTRODE FOR FUEL CELL, MEMBRANE ELECTRODE ASSEMBLY AND SOLID POLYMER FUEL CELL
WO2018155220A1 (en) * 2017-02-23 2018-08-30 パナソニックIpマネジメント株式会社 Membrane electrode assembly and fuel cell
JPWO2018155220A1 (en) * 2017-02-23 2019-12-12 パナソニックIpマネジメント株式会社 Membrane electrode assembly and fuel cell
US11569519B2 (en) 2017-02-23 2023-01-31 Panasonic Intellectual Property Management Co., Ltd. Membrane electrode assembly and fuel cell
CN110383548A (en) * 2017-02-23 2019-10-25 松下知识产权经营株式会社 Membrane-electrode assembly and fuel cell

Similar Documents

Publication Publication Date Title
JPH0817440A (en) Electrode for polymer electrolyte-type electrochemical cell
JP3245929B2 (en) Fuel cell and its application device
US5607785A (en) Polymer electrolyte electrochemical cell and process of preparing same
US5523177A (en) Membrane-electrode assembly for a direct methanol fuel cell
JP3271801B2 (en) Polymer solid electrolyte fuel cell, humidifying method of the fuel cell, and manufacturing method
US5728485A (en) Electrode for polymer electrolyte electrochemical cell and process of preparing same
JP2842150B2 (en) Polymer electrolyte fuel cell
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
JPH08162123A (en) Polymer electrolyte-type electro-chemical cell and its manufacture
JP2002110180A (en) Film-electrode unit for polyelectrolyte fuel cell, method for making the same, and ink for making the same
JP3755840B2 (en) Electrode for polymer electrolyte fuel cell
CN101000967A (en) Membrane electrode of protone exchange membrane fuel cell and preparation method thereof
JP4337406B2 (en) Electrode for polymer electrolyte fuel cell and polymer electrolyte fuel cell using the same
JP4266624B2 (en) Fuel cell electrode and fuel cell
JP3113499B2 (en) Electrode for imparting ionic conductivity and electrode-electrolyte assembly and cell using such electrode
JP2002536565A (en) Non-woven web
JP3326254B2 (en) Fuel cell
JP2004079420A (en) Conductive carbon, electrode catalyst for fuel cell using it, and fuel cell
JP4428774B2 (en) Manufacturing method of fuel cell electrode
JP2004335252A (en) Electrode catalyst for fuel cell, and its manufacturing method
JP3649686B2 (en) Method for producing electrode for polymer electrolyte fuel cell
US20050147868A1 (en) Fuel cell
JP2003151564A (en) Electrode for solid high polymer fuel cell
JP2003115299A (en) Solid polymer fuel cell
JP2002216778A (en) Fuel cell electrode and its producing method and solid polymer electrolyte fuel cell