JPH0817122B2 - Method of manufacturing voltage non-linear resistor - Google Patents

Method of manufacturing voltage non-linear resistor

Info

Publication number
JPH0817122B2
JPH0817122B2 JP1177071A JP17707189A JPH0817122B2 JP H0817122 B2 JPH0817122 B2 JP H0817122B2 JP 1177071 A JP1177071 A JP 1177071A JP 17707189 A JP17707189 A JP 17707189A JP H0817122 B2 JPH0817122 B2 JP H0817122B2
Authority
JP
Japan
Prior art keywords
oxide
sic
raw material
voltage
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1177071A
Other languages
Japanese (ja)
Other versions
JPH0342802A (en
Inventor
今井  修
立 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP1177071A priority Critical patent/JPH0817122B2/en
Priority to DE69013252T priority patent/DE69013252T2/en
Priority to CA002020788A priority patent/CA2020788C/en
Priority to EP90307522A priority patent/EP0408308B1/en
Priority to KR1019900010500A priority patent/KR970007283B1/en
Priority to US07/551,151 priority patent/US5248452A/en
Publication of JPH0342802A publication Critical patent/JPH0342802A/en
Priority to US07/796,367 priority patent/US5250281A/en
Priority to US07/921,327 priority patent/US5269971A/en
Publication of JPH0817122B2 publication Critical patent/JPH0817122B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酸化亜鉛を主成分とする電圧非直線抵抗体の
製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a voltage nonlinear resistor containing zinc oxide as a main component.

(従来の技術) 従来から酸化亜鉛(ZnO)を主成分としBi2O3,Sb2O3,S
iO2,Co2O3,MnO2等の少量の添加物を副成分として含有し
た抵抗体は、優れた電圧非直線性を示すことが広く知ら
れており、その性質を利用して避雷器等に使用されてい
る。
(Prior Art) Bi 2 O 3 , Sb 2 O 3 , S containing zinc oxide (ZnO) as a main component
It is widely known that resistors containing a small amount of additives such as iO 2 , Co 2 O 3 , and MnO 2 as an auxiliary component show excellent voltage nonlinearity. Is used for.

この酸化亜鉛を主成分とする電圧避直線抵抗体におい
て、放電耐量の向上のためには焼成体中の内部欠陥を低
減するとよいことが知られており、従来から成形・焼成
条件の検討や、特開昭56−115503号公報に記載されてい
るように、造粒前にスラリー篩に通して異物を除去する
ことが行なわれている。
It is known that, in this voltage-straightening resistor containing zinc oxide as a main component, it is preferable to reduce internal defects in the fired body in order to improve the discharge withstand capacity. As described in JP-A-56-115503, foreign matter is removed by passing it through a slurry sieve before granulation.

(発明が解決しようとする課題) しかしながら、上述した従来の内部欠陥の低減方法で
は、内部欠陥を充分に低減できないためいまだに充分な
効果を得ることができず、雷サージ耐量や開閉サージ耐
量等の放電耐量を充分に向上させることができない問題
があった。
(Problems to be Solved by the Invention) However, in the above-described conventional method of reducing internal defects, sufficient effects cannot be obtained yet because internal defects cannot be sufficiently reduced. There is a problem that the discharge withstand capability cannot be improved sufficiently.

本発明の目的は上述した課題を解消して、内部欠陥の
低減を図り、良好な放電耐量を得ることができる電圧非
直線抵抗体の製造方法を提供しようとするものである。
An object of the present invention is to solve the above-mentioned problems and to provide a method for manufacturing a voltage non-linear resistor capable of reducing internal defects and obtaining good discharge withstand capability.

(課題を解決するための手段) 本発明の電圧非直線抵抗体の製造方法は、酸化亜鉛を
主成分とする原料に酸化ビスマス、酸化アンチモン等の
金属酸化物を添加、混合、焼成して得られる電圧非直線
抵抗体の製造方法において、SiC含有量が10wt ppm以下
の混合物を、100℃以上の酸化雰囲気で焼成することを
特徴とするものである。
(Means for Solving the Problem) The method for manufacturing a voltage nonlinear resistor of the present invention is obtained by adding, mixing, and firing a metal oxide such as bismuth oxide or antimony oxide to a raw material containing zinc oxide as a main component. In the method for producing a voltage non-linear resistance resistor, a mixture having a SiC content of 10 wt ppm or less is fired in an oxidizing atmosphere at 100 ° C. or higher.

(作 用) 上述した構成において、本発明では、混合物中にSiC
が存在していると内部欠陥が発生しやすくなり、混合物
中のSiC含有量を10wt ppm以下好ましくは0.1wt ppm以下
とすることにより、内部欠陥を充分に低減でき、良好な
放電耐量を得ることができることを見出したことによ
る。
(Operation) With the above-mentioned configuration, in the present invention, SiC is contained in the mixture.
If the presence of the above, the internal defects are likely to occur, and by setting the SiC content in the mixture to 10 wt ppm or less, preferably 0.1 wt ppm or less, the internal defects can be sufficiently reduced, and good discharge withstand capability can be obtained. It is because I found that I can do it.

この理由は、混合物中にSiCが混入していると焼成過
程のうち1000℃以上で分解したガスが閉気孔を形成し、
気孔を発生する原因となるためである。また、SiCの含
有量が10wt ppm以下と限定したのは、SiCの含有量が10w
t ppmを越えると、後述する実施例から明らかなよう
に、雷サージ放電耐量および開閉サージ放電耐量のいず
れもが極端に悪化するためである。
The reason for this is that when SiC is mixed in the mixture, the gas decomposed at 1000 ° C or higher in the firing process forms closed pores,
This is because it causes the generation of pores. In addition, the content of SiC was limited to 10 wt ppm or less because the content of SiC was 10 w
This is because when t ppm is exceeded, both the lightning surge discharge withstand capability and the switching surge discharge withstand capability are extremely deteriorated, as will be apparent from the examples described later.

また、添加剤として酸化ビスマスをBi2O3に換算して
0.5wt%以上(2wt%以上では顕著)、酸化アンチモンを
Sb2O3で換算して0.3wt%以上(1.5wt%以上は顕著)、
酸化プラセオジウムをPr6O11で換算して0.01wt%以上
(0.05wt%以上は顕著)含有すると、SiCの分解反応が
促進するため、SiCの混入の影響は大となる。
Also, converting bismuth oxide as an additive into Bi 2 O 3
0.5 wt% or more (remarkable at 2 wt% or more), antimony oxide
Converted to Sb 2 O 3 0.3 wt% or more (1.5 wt% or more is remarkable),
When praseodymium oxide is contained in terms of Pr 6 O 11 and contained in an amount of 0.01 wt% or more (0.05 wt% or more is remarkable), the decomposition reaction of SiC is promoted, and the influence of inclusion of SiC becomes large.

混合物中へのSiCの混入は、ZnO原料から入ることが多
く、この点におけるSiC混入防止手段としては、(1)Z
nO原料製造時に使用するSiC製の溶解槽をAl2O3製とする
こと、(2)溶解槽に堰を設け溶湯表面のスラッジの混
入を防止すること(スラッジ中にはSiC含有)、(3)
直列に設けられた捕集タンクのうち最下流側のタンクよ
り得られるZnO原料を用いる(最下流側のタンクではSiC
混入が最も少ない)等の手段がある。なお、異物混入防
止の手段として一般に用いられているスラリーの篩通し
はSiC混入防止手段としてはあまり効果がない。
Mixing of SiC into the mixture often comes from the ZnO raw material, and as a means for preventing mixing of SiC at this point, (1) Z
The SiC dissolution tank used for nO raw material production is made of Al 2 O 3 , and (2) a weir is provided in the dissolution tank to prevent sludge from mixing on the surface of the molten metal (SiC is contained in the sludge), ( 3)
The ZnO raw material obtained from the most downstream tank of the collection tanks installed in series is used (SiC is used in the most downstream tank).
(Least mixed)). It should be noted that sieving the slurry, which is generally used as a means for preventing foreign matter inclusion, is not very effective as a means for preventing SiC inclusion.

(実施例) 酸化亜鉛を主成分とする電圧非直線抵抗体を得るに
は、まず0.1〜3μmの所定の粒度に調整した酸化亜鉛
原料と1μm以下の所定の粒度に調整した微粉の酸化ビ
スマス、酸化コバルト、酸化マンガン、酸化アンチモ
ン、酸化クロム、好ましくは非晶質の酸化ケイ素、酸化
ニッケル、酸化ホウ素、酸化銀等よりなる添加物の所定
量を混合する。なお、この場合酸化銀、酸化ホウ素の代
わりに硝酸銀、ホウ酸を用いてもよい。好ましくは銀を
含むホウケイ酸ビスマスガラスを用いるとよい。ここで
添加物原料は低温で焼結するようにできるだけ1μm以
下、好ましくは0.5μm以下の微粉を用いるのがよい。
この際、これらの原料粉末に対して所定量のポリビニル
アルコール水溶液及び酸化アルミニウム源として硝酸ア
ルミニウム溶液の所定量等を加えて混合物を得る。
(Example) In order to obtain a voltage nonlinear resistor containing zinc oxide as a main component, first, a zinc oxide raw material adjusted to a predetermined particle size of 0.1 to 3 μm and fine bismuth oxide fine particles adjusted to a predetermined particle size of 1 μm or less, A predetermined amount of an additive made of cobalt oxide, manganese oxide, antimony oxide, chromium oxide, preferably amorphous silicon oxide, nickel oxide, boron oxide, silver oxide or the like is mixed. In this case, silver nitrate or boric acid may be used instead of silver oxide or boron oxide. Bismuth borosilicate glass containing silver is preferably used. Here, as the additive raw material, it is preferable to use fine powder of 1 μm or less, preferably 0.5 μm or less so that it can be sintered at a low temperature.
At this time, a predetermined amount of a polyvinyl alcohol aqueous solution and a predetermined amount of an aluminum nitrate solution as an aluminum oxide source are added to these raw material powders to obtain a mixture.

本発明で重要なのは、この段階で、得られた混合物中
のSiC含有量が10wt ppm以下の混合物を以下に述べる製
造工程において使用することである。
What is important in the present invention is that at this stage, a mixture having a SiC content of 10 wt ppm or less in the obtained mixture is used in the production process described below.

次に好ましくは200mmHg以下の真空度で減圧脱気を行
い混合泥漿を得る。ここに混合泥漿の水分量は30〜35wt
%程度に、またその混合泥漿の粘度は100±50cpとする
のが好ましい。次に得られた混合泥漿を噴霧乾燥装置に
供給して平均粒径50〜150μm、好ましくは80〜120μm
で、水分量が0.5〜2.0wt%、より好ましくは0.9〜1.5wt
%の造粒粉を造粒する。次に得られた造粒粉を、成形工
程において、成形圧力800〜7000kg/cm2の下で所定の形
状に成形する。成形は通常の圧縮成形のほか、静水圧成
形等で行ってもよい。
Next, vacuum degassing is preferably performed at a vacuum degree of 200 mmHg or less to obtain a mixed sludge. The water content of the mixed slurry is 30-35 wt.
%, And the viscosity of the mixed slurry is preferably 100 ± 50 cp. Next, the obtained mixed sludge is supplied to a spray dryer to have an average particle size of 50 to 150 μm, preferably 80 to 120 μm.
And the water content is 0.5 to 2.0 wt%, more preferably 0.9 to 1.5 wt
Granulate% granulated powder. Next, the obtained granulated powder is molded into a predetermined shape under a molding pressure of 800 to 7000 kg / cm 2 in a molding step. The molding may be carried out not only by ordinary compression molding but also by hydrostatic molding or the like.

そして、その成形体を昇降温速度100℃/hr以下で800
〜1000℃、保持時間1〜5時間という条件で仮焼成す
る。なお、仮焼成の前に成形体を昇降温速度100℃/hr以
下で400〜600℃、保持時間1〜10時間で結合剤等を飛散
除去することが好ましい。
Then, the molded body is heated at a temperature rising / falling rate of 100 ° C / hr or less to 800
Pre-baking is performed under the conditions of ~ 1000 ° C and holding time of 1-5 hours. Before the pre-baking, it is preferable to scatter and remove the binder and the like at a temperature rising / falling rate of 100 ° C./hr or less at 400 to 600 ° C. for a holding time of 1 to 10 hours.

次に仮焼成した仮焼体の側面に絶縁被覆層を形成す
る。本願発明では、Bi2O3,Sb2O3,ZnO,SiO2等の所定量に
有機結合剤としてエチルセルロース、ブチルカルビトー
ル、酢酸nブチル等を加えた絶縁被覆用混合物ペースト
を、60〜300μmの厚さに仮焼体の側面に塗布する。次
に、これを昇降温速度20〜60℃/hr、1000〜1300℃好ま
しくは1050〜1250℃、3〜7時間という条件で本焼成す
る。なお、ガラス粉末に有機結合剤としてエチルセルロ
ース、ブチルカルビトール、酢酸nブチル等を加えたガ
ラスペーストを前記の絶縁被覆層上に100〜300μmの厚
さに塗布し、空気中で昇降温速度50〜200℃/hr400〜800
℃保持時間0.5〜2時間という条件で熱処理することに
よりガラス層を形成すると好ましい。
Next, an insulating coating layer is formed on the side surface of the calcined body that has been calcined. In the present invention, a mixture paste for insulation coating having a predetermined amount of Bi 2 O 3 , Sb 2 O 3 , ZnO, SiO 2 or the like, to which ethyl cellulose, butyl carbitol, n-butyl acetate or the like is added as an organic binder is 60 to 300 μm. Apply to the side of the calcined body to the thickness of. Next, this is main-baked under the conditions of a temperature rising / falling rate of 20 to 60 ° C./hr, 1000 to 1300 ° C., preferably 1050 to 1250 ° C., and 3 to 7 hours. In addition, a glass paste obtained by adding ethyl cellulose, butyl carbitol, n-butyl acetate, etc. as an organic binder to glass powder is applied on the above-mentioned insulating coating layer to a thickness of 100 to 300 μm, and the temperature rising / falling speed is 50 to 50 200 ° C / hr 400-800
It is preferable to form the glass layer by heat treatment under the condition that the temperature is kept at 0.5 ° C. for 2 hours.

その後、得られた電圧非直線抵抗体の両端面をSiC,Al
2O3,ダイヤモンド等の#400〜2000相当の研磨剤により
水好ましくは油を研磨液として使用して研磨する。次
に、研磨面を洗浄後、研磨した両端面に例えばアルミニ
ウム等によって電極を例えば溶射により設けて電圧非直
線抵抗体を得ている。
After that, both end surfaces of the obtained voltage nonlinear resistor are
Polishing is performed with water, preferably oil, as a polishing liquid with an abrasive corresponding to # 400 to 2000 such as 2 O 3 and diamond. Next, after cleaning the polished surface, electrodes are provided, for example, by spraying, on the polished both end surfaces by, for example, aluminum or the like to obtain a voltage non-linear resistor.

上述した本発明の電圧非直線抵抗体の製造方法におい
て、混合物中のSiC含有量を10wt ppm以下とするのに大
きく影響を与えるのは、上述したように組成中大きな割
合を占めるZnO原料の製造過程である。
In the method for producing a voltage non-linear resistor of the present invention described above, it has a great influence on the SiC content in the mixture to be 10 wt ppm or less, as described above, the production of ZnO raw material occupying a large proportion in the composition. It is a process.

第1図は従来から公知のZnO原料を製造する装置の一
例を示す図である。第1図において、1は原料となる金
属亜鉛、2は金属亜鉛1を溶融するためのSiC製の溶解
槽を持った溶融炉、3は酸化反応を実施するレトルト
炉、4は冷却ダクト、5は捕集タンク、6は排風器、7
はバッグフィルタである。上述した構成の装置におい
て、溶融炉2で溶融した金属亜鉛1をレトルト炉3に入
れ、外部より約1100〜1400℃に加熱すると、レトルト炉
3内の亜鉛は沸点(約900℃)に達し、蒸発口より噴出
し、レトルト炉3内の酸化室3aで燃焼酸化する。燃焼酸
化して酸化室3a中に得られた高温の酸化亜鉛は、排風器
6の吸引力により吸引されて、冷却ダクト4を通過して
冷却された後、大部分が捕集タンク5内にまた一部はバ
ッグフィルタ7内に酸化亜鉛として得ることができる。
FIG. 1 is a diagram showing an example of a conventionally known apparatus for producing a ZnO raw material. In FIG. 1, 1 is metallic zinc as a raw material, 2 is a melting furnace having a melting tank made of SiC for melting metallic zinc 1, 3 is a retort furnace for carrying out an oxidation reaction, 4 is a cooling duct, 5 Is a collection tank, 6 is an exhaust fan, 7
Is a bag filter. In the apparatus having the above-mentioned configuration, when the metallic zinc 1 melted in the melting furnace 2 is put in the retort furnace 3 and heated to about 1100 to 1400 ° C from the outside, the zinc in the retort furnace 3 reaches the boiling point (about 900 ° C), It is ejected from the evaporation port and burned and oxidized in the oxidation chamber 3a in the retort furnace 3. The high temperature zinc oxide obtained by combustion and oxidation in the oxidation chamber 3a is sucked by the suction force of the exhaust fan 6, passes through the cooling duct 4 and is cooled, and then most of it is in the collection tank 5. In addition, a part of them can be obtained as zinc oxide in the bag filter 7.

第1図に示す装置において、得られるZnO原料中のSiC
含有量を少なくするためには、上述したように、(1)
溶融炉2の材質を現在のSiC製からAl2O3製等の他の材質
にすること、(2)溶融炉2中の溶湯面に堰8を設けス
ラッジ9がレトルト炉3内へ入らないようにすること、
(3)通常数段のタンクを直列に配置して構成する捕集
タンク5のうち最下流側のタンクで得られたZnO原料を
使用すること等が重要である。もちろん、他の添加剤中
のSiC量も厳密に管理する必要がある。
In the equipment shown in Fig. 1, SiC in the ZnO raw material obtained
In order to reduce the content, as described above, (1)
Change the material of the melting furnace 2 from other materials such as current SiC to Al 2 O 3 ; (2) Provide a weir 8 on the molten metal surface in the melting furnace 2 so that the sludge 9 does not enter the retort furnace 3. To do,
(3) It is important to use the ZnO raw material obtained in the most downstream tank of the collection tank 5, which is usually constituted by arranging several stages of tanks in series. Of course, it is necessary to strictly control the amount of SiC in other additives.

以下、実際に本発明の範囲内および範囲外の電圧非直
線抵抗体において、各種特性を測定した結果について説
明する。
Hereinafter, the results of actually measuring various characteristics of the voltage nonlinear resistor within and outside the range of the present invention will be described.

実施例1 上述した方法に従って、Co3O4,MnO2,Cr2O3,NiO,SiO2
を各々0.1〜2.0モル%、Al(NO3・9H2O 0.005モル
%、銀を含むホウケイ酸ビスマスガラス0.1wt%Bi2O3
4.5wt%、Sb2O3を3.0wt%、および残部がZnOからなる原
料から第1表に示すようにSiC含有量を変えて、直径47m
m、厚さ20mmの形状でバリスタ電圧(V1mA)が200V/mmの
第1表に示す本発明試料No.1〜6と比較例試料No.1〜2
の電圧非直線抵抗体を準備した。
Example 1 According to the method described above, Co 3 O 4 , MnO 2 , Cr 2 O 3 , NiO, SiO 2
Each 0.1 to 2.0 mol%, Al (NO 3) 3 · 9H 2 O 0.005 mole%, the borosilicate bismuth glass 0.1 wt% Bi 2 O 3 containing silver
4.5 wt%, Sb 2 O 3 3.0 wt% and the balance ZnO as the raw material consisting of ZnO as shown in Table 1, the diameter 47 m
Inventive sample Nos. 1 to 6 and comparative sample Nos. 1 to 2 shown in Table 1 in which the varistor voltage (V 1mA ) was 200 V / mm in the shape of m and thickness 20 mm.
The non-linear voltage resistor of was prepared.

準備した本発明および比較例の抵抗体に対して、焼成
体欠陥発生率(%)、開閉サージ放電耐量破壊率(%)
および雷サージ放電耐量破壊率(%)を測定した。結果
を第1表に示す。ここで、焼成体欠陥発生率は、超音波
探傷試験により直径1mm以上の欠陥が存在する抵抗体の
割合として求めた。開閉サージ放電耐量破壊率は、800
A,900A,1000Aの電流を2msの電流波形で20回繰り返し印
加した後破壊したものの割合として求めた。雷サージ放
電耐量破壊率は、100KA,120KA,140KAの電流を4/10μs
の電流波形で2回繰り返し印加した後破壊したものの割
合として求めた。
With respect to the prepared resistors of the present invention and the comparative example, fired body defect occurrence rate (%), switching surge discharge withstand breakdown rate (%)
And the lightning surge discharge withstand breakdown rate (%) was measured. The results are shown in Table 1. Here, the defect occurrence rate of the fired body was obtained as a ratio of resistors having defects having a diameter of 1 mm or more by an ultrasonic flaw detection test. Switching surge discharge resistance destruction rate is 800
The currents of A, 900 A, and 1000 A were repeatedly applied 20 times with a current waveform of 2 ms, and the results were calculated as the ratio of the breakdown. The lightning surge discharge withstand breakdown rate is 4 / 10μs for currents of 100KA, 120KA, 140KA
The current waveform was calculated as a ratio of those which were destroyed after being applied twice.

なお、SiC含有量は、原料を酸、アルカリ等で溶解
し、濾過、洗浄後不溶解残渣を蛍光X線で定量する方法
より求めた。
The SiC content was determined by a method in which the raw material was dissolved in acid, alkali, etc., filtered, washed, and the insoluble residue was quantified by fluorescent X-rays.

第1表の結果から、所定のSiC含有量からなる混合物
を使用した本発明の抵抗体は、比較例と比べて諸特性が
良好なことがわかる。
From the results shown in Table 1, it can be seen that the resistor of the present invention using the mixture having the predetermined SiC content has various properties as compared with the comparative example.

実施例2 添加剤としてBi2O3、Sb2O3のかわりにPr6O11を0.05wt
%添加し、形状を直径32mm、厚さ30mmとし、開閉サージ
放電耐量破壊率の測定を300A,400A,500Aとするとともに
雷サージ放電耐量破壊率の測定を60KA,70KA,80KAで実施
した以外は実施例1と同様に各種試験を実施した。結果
を第2表に示す。
Example 2 As an additive, 0.05 wt% of Pr 6 O 11 was used instead of Bi 2 O 3 and Sb 2 O 3 .
%, The shape is 32 mm in diameter, 30 mm in thickness, the switching surge discharge withstand breakdown rate is 300A, 400A, 500A, and the lightning surge withstand breakdown rate is 60KA, 70KA, 80KA. Various tests were carried out in the same manner as in Example 1. The results are shown in Table 2.

第2表の結果から、Pr6O11を添加した系においても、
所定のSiC含有量からなる混合物を使用した本発明の抵
抗体は、比較例と比べて諸特性が良好なことがわかる。
From the results in Table 2, even in the system to which Pr 6 O 11 was added,
It can be seen that the resistor of the present invention using a mixture having a predetermined SiC content has various properties as compared with the comparative example.

(発明の効果) 以上の説明から明らかなように、本発明の電圧非直線
抵抗体の製造方法によれば、混合物中のSiC含有量を10w
t ppm以下と限定することにより、焼成体中の内部欠陥
を減少でき、雷サージ放電耐量および開閉サージ放電耐
量の良好な電圧非直線抵抗体を得ることができる。ま
た、制限電圧、課電寿命についても良好な特性が確認さ
れた。
(Effects of the Invention) As is clear from the above description, according to the method for producing a voltage nonlinear resistor of the present invention, the SiC content in the mixture is 10 w.
By limiting the content to t ppm or less, it is possible to reduce internal defects in the fired body, and to obtain a voltage non-linear resistor having excellent lightning surge discharge withstand capability and open / close surge discharge withstand capability. In addition, good characteristics were confirmed with respect to the limiting voltage and the voltage application life.

【図面の簡単な説明】[Brief description of drawings]

第1図は酸化亜鉛原料を製造する装置の一例を示す図で
ある。 1……金属亜鉛、2……溶融炉 3……レトルト炉、3a……酸化室 4……冷却ダクト、5……捕集タンク 6……排風器、7……バッグフィルタ
FIG. 1 is a diagram showing an example of an apparatus for producing a zinc oxide raw material. 1 ... Metallic zinc, 2 ... Melting furnace 3 ... Retort furnace, 3a ... Oxidizing chamber 4 ... Cooling duct, 5 ... Collection tank 6 ... Blower, 7 ... Bag filter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】酸化亜鉛を主成分とする原料に酸化ビスマ
ス、酸化アチモン等の金属酸化物を添加、混合、焼成し
て得られる電圧非直線抵抗体の製造方法において、SiC
含有量が10wt ppm以下の混合物を、1000℃以上の酸化雰
囲気で焼成することを特徴とする電圧非直線抵抗体の製
造方法。
1. A method for producing a voltage non-linear resistor obtained by adding, mixing and firing a metal oxide such as bismuth oxide or atimonium oxide to a raw material containing zinc oxide as a main component, and a SiC
A method for producing a voltage nonlinear resistor, which comprises firing a mixture having a content of 10 wt ppm or less in an oxidizing atmosphere at 1000 ° C or higher.
JP1177071A 1989-07-11 1989-07-11 Method of manufacturing voltage non-linear resistor Expired - Lifetime JPH0817122B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP1177071A JPH0817122B2 (en) 1989-07-11 1989-07-11 Method of manufacturing voltage non-linear resistor
DE69013252T DE69013252T2 (en) 1989-07-11 1990-07-10 Method of making a non-linear voltage dependent resistor using a zinc oxide material.
CA002020788A CA2020788C (en) 1989-07-11 1990-07-10 Process for manufacturing a voltage non-linear resistor and a zinc oxide material to be used therefor
EP90307522A EP0408308B1 (en) 1989-07-11 1990-07-10 Process for manufacturing a voltage non-linear resistor and a zinc oxide material to be used therefor
US07/551,151 US5248452A (en) 1989-07-11 1990-07-11 Process for manufacturing a voltage non-linear resistor
KR1019900010500A KR970007283B1 (en) 1989-07-11 1990-07-11 Process for manufacturing a voltage non-linear resistor & a zinc oxide material to be used therefor
US07/796,367 US5250281A (en) 1989-07-11 1991-11-22 Process for manufacturing a voltage non-linear resistor and a zinc oxide material to be used therefor
US07/921,327 US5269971A (en) 1989-07-11 1992-07-29 Starting material for use in manufacturing a voltage non-linear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1177071A JPH0817122B2 (en) 1989-07-11 1989-07-11 Method of manufacturing voltage non-linear resistor

Publications (2)

Publication Number Publication Date
JPH0342802A JPH0342802A (en) 1991-02-25
JPH0817122B2 true JPH0817122B2 (en) 1996-02-21

Family

ID=16024617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1177071A Expired - Lifetime JPH0817122B2 (en) 1989-07-11 1989-07-11 Method of manufacturing voltage non-linear resistor

Country Status (1)

Country Link
JP (1) JPH0817122B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180003A (en) * 1982-04-15 1983-10-21 マルコン電子株式会社 Method of producing voltage nonlinear resistor

Also Published As

Publication number Publication date
JPH0342802A (en) 1991-02-25

Similar Documents

Publication Publication Date Title
EP0504269A1 (en) Metal oxide varistors and method therefor
KR970007283B1 (en) Process for manufacturing a voltage non-linear resistor & a zinc oxide material to be used therefor
JPH0817122B2 (en) Method of manufacturing voltage non-linear resistor
US5250281A (en) Process for manufacturing a voltage non-linear resistor and a zinc oxide material to be used therefor
JPH0686322B2 (en) Zinc oxide raw material for voltage nonlinear resistors
JP2836893B2 (en) Method of manufacturing voltage non-linear resistor
JPH0734403B2 (en) Voltage nonlinear resistor
JPH07109803B2 (en) Voltage nonlinear resistor and method of manufacturing the same
JPH0828285B2 (en) Method of manufacturing voltage non-linear resistor
JP5334636B2 (en) Voltage non-linear resistor, lightning arrester equipped with voltage non-linear resistor, and method of manufacturing voltage non-linear resistor
JPH07109805B2 (en) Voltage nonlinear resistor and method of manufacturing the same
JPH0541307A (en) Manufacturing method of potential nonlinear resistor
JPH03142802A (en) Manufacture of voltage-dependent nonlinear resistor
US5269971A (en) Starting material for use in manufacturing a voltage non-linear resistor
JPH07109804B2 (en) Method for manufacturing voltage non-linear resistor
JPH0734402B2 (en) Voltage nonlinear resistor
JP2608626B2 (en) Method of manufacturing voltage non-linear resistor
JP2559838B2 (en) Voltage nonlinear resistor
JPH0555009A (en) Voltage-dependent nonlinear resistor
JPH0793203B2 (en) Voltage nonlinear resistor and method of manufacturing the same
JPH04253301A (en) Manufacture of non-linear varistor
JPH0541309A (en) Manufacturing method of potential nonlinear resistor
JPH05258920A (en) Manufacture of voltage non-linear resistor
JPH07105286B2 (en) Voltage nonlinear resistor
JPH0828286B2 (en) Method of manufacturing voltage non-linear resistor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 14