JPH04253301A - Manufacture of non-linear varistor - Google Patents

Manufacture of non-linear varistor

Info

Publication number
JPH04253301A
JPH04253301A JP3026672A JP2667291A JPH04253301A JP H04253301 A JPH04253301 A JP H04253301A JP 3026672 A JP3026672 A JP 3026672A JP 2667291 A JP2667291 A JP 2667291A JP H04253301 A JPH04253301 A JP H04253301A
Authority
JP
Japan
Prior art keywords
cooling rate
rate
cooling
temperature
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3026672A
Other languages
Japanese (ja)
Inventor
Osamu Imai
修 今井
Ritsu Sato
立 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP3026672A priority Critical patent/JPH04253301A/en
Publication of JPH04253301A publication Critical patent/JPH04253301A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a non-linear varistor which is composed mainly of a zinc oxide and has an excellent moisture resistance, V1mA charging rate characteris tic, and voltage-applied life characteristic. CONSTITUTION:In the manufacturing process of a non-linear varistor which is formed by sintering a body prepared by forming a mixture which is made mainly of zinc oxide and contains at least a bismuth compound and an additive into a prescribed shape, the temperature lowering in cooling in the sintering process is set at 70-200 deg.C/hr from 800 deg.C to 600 deg.C and at 20-50 deg.C/hr from 600 deg.C and, at the same time, the furnace atmosphere is forcedly agitated in the temperature zone from 800 deg.C down to 600 deg.C by introducing air having an oxygen partial pressure of 150mmHg from the outside.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、酸化亜鉛を主成分とす
る電圧非直線抵抗体の製造方法に関し、特に耐湿性を改
善した電圧非直線抵抗体を得るための製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a voltage nonlinear resistor containing zinc oxide as a main component, and more particularly to a method for producing a voltage nonlinear resistor with improved moisture resistance.

【0002】0002

【従来の技術】従来から酸化亜鉛を主成分としSiO2
,Sb2O3, Bi2O3, Co2O3, MnO
2 等の少量の添加物を含有した抵抗体は、優れた電圧
非直線性を示すことが広く知られており、その性質を利
用して避雷器等に使用されている。
[Prior art] SiO2 has traditionally been made with zinc oxide as its main component.
, Sb2O3, Bi2O3, Co2O3, MnO
It is widely known that resistors containing small amounts of additives such as 2 and the like exhibit excellent voltage nonlinearity, and are used in lightning arresters and the like by taking advantage of this property.

【0003】特に避雷器として使用した場合、落雷によ
り過大な電流が流れても、その電流を通常は絶縁体であ
り所定電流よりも過大な電流が流れると導体となる電圧
非直線抵抗体により接地するため落雷による事故を防止
することができる。
[0003] Especially when used as a lightning arrester, even if an excessive current flows due to a lightning strike, the current is grounded by a voltage nonlinear resistor that is normally an insulator and becomes a conductor when a current exceeding a predetermined current flows. Therefore, accidents caused by lightning can be prevented.

【0004】この電圧非直線抵抗体は、主成分の酸化亜
鉛にビスマス化合物等の添加剤を添加した混合物を所定
の形状に成形した後、成形体を焼結して製造される。こ
のうち、焼成工程の降温過程の降温速度を規定して各種
特性のバラツキをなくす技術が、特公昭54−9719
 号公報、特開昭58−200507 号公報、特開昭
58−67605号公報等において知られている。
This voltage nonlinear resistor is manufactured by molding a mixture of zinc oxide as a main component and additives such as a bismuth compound into a predetermined shape, and then sintering the molded body. Among these, a technology to eliminate variations in various characteristics by regulating the temperature decreasing rate in the temperature decreasing process of the firing process was published in the Japanese Patent Publication No. 54-9719.
It is known from Japanese Patent Application Laid-open No. 58-200507, Japanese Patent Application Laid-Open No. 58-67605, etc.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述し
た降温過程の降温速度のみの規定では、電気的な諸特性
特に耐湿性、ΔV1mA変化率特性、課電寿命特性が十
分でない問題があった。
However, by specifying only the temperature decreasing rate in the temperature decreasing process described above, there is a problem that various electrical characteristics, particularly moisture resistance, ΔV1 mA change rate characteristics, and energized life characteristics are insufficient.

【0006】本発明の目的は上述した課題を解消して、
耐湿性、ΔV1mA変化率特性を改善できるとともに課
電寿命特性を向上することができる電圧非直線抵抗体の
製造方法を提供しようとするものである。
[0006] The purpose of the present invention is to solve the above-mentioned problems,
It is an object of the present invention to provide a method for manufacturing a voltage nonlinear resistor that can improve moisture resistance and ΔV1mA change rate characteristics, as well as improve charging life characteristics.

【0007】[0007]

【課題を解決するための手段】本発明の電圧非直線抵抗
体の製造方法は、酸化亜鉛を主成分とし、酸化亜鉛を主
成分とし,添加成分として少なくともビスマス化合物を
含む混合物を所定の形状に成形した後、成形体を焼結し
てなる電圧非直線抵抗体の製造方法において、前記焼結
工程における降温過程の800 ℃〜600 ℃の間を
70〜200 ℃/hr の冷却速度で冷却し、600
 ℃以降を20〜50℃/hrの冷却速度で冷却すると
ともに、少なくとも800 ℃〜600 ℃の間は炉の
外部から酸素分圧が150mmHg 以上の空気を導入
することにより炉内雰囲気を強制攪拌することを特徴と
するものである。
[Means for Solving the Problems] The method for manufacturing a voltage nonlinear resistor of the present invention involves forming a mixture containing zinc oxide as a main component and containing at least a bismuth compound as an additive component into a predetermined shape. In the method for manufacturing a voltage nonlinear resistor by sintering the molded body after molding, cooling is performed at a cooling rate of 70 to 200 °C/hr between 800 °C and 600 °C during the cooling process in the sintering step. , 600
℃ and below at a cooling rate of 20-50℃/hr, and at least between 800℃ and 600℃, the atmosphere inside the furnace is forcibly stirred by introducing air with an oxygen partial pressure of 150 mmHg or more from outside the furnace. It is characterized by this.

【0008】[0008]

【作用】上述した構成において、焼成時の降温過程の所
定温度領域における降温速度を所定の値にするとともに
、焼成時の雰囲気を一定の雰囲気にすることの相乗効果
により、耐湿性、ΔV1mA変化率特性および課電寿命
特性の良好な電圧非直線抵抗体を得ることができる。
[Function] In the above-mentioned configuration, the synergistic effect of setting the temperature decreasing rate in a predetermined temperature range in the temperature decreasing process during firing to a predetermined value and keeping the atmosphere during firing constant, improves moisture resistance, ΔV1mA change rate. A voltage nonlinear resistor with good characteristics and energized life characteristics can be obtained.

【0009】ここで降温過程の800 ℃〜600 ℃
の冷却速度を70〜200 ℃/hrと限定したのは、
200 ℃/hrを超えるとサージ変化率が悪化し、雷
サージ限界耐量が低下するとともに、70℃/hr未満
であると耐湿特性が低下し、V−I特性も低下するため
である。また、600 ℃以降の冷却速度を20〜50
℃/hrと限定したのは、50℃/hrを超えるとサー
ジ変化率が悪化し、課電寿命特性が低下するとともに、
20℃/hr未満であるとV−I特性が低下するためで
ある。なお、最高温度から800 ℃までの間の冷却速
度は特に限定するものでないが、30〜70℃/hrで
あるとサージ変化率がさらに減少するとともにV1mA
のバラツキもさらに減少するため好ましい。
[0009] Here, the temperature decreases from 800°C to 600°C.
The cooling rate was limited to 70 to 200 °C/hr because
This is because when it exceeds 200° C./hr, the surge change rate worsens and the lightning surge limit withstand capacity decreases, and when it is less than 70° C./hr, the moisture resistance characteristics and V-I characteristics also deteriorate. In addition, the cooling rate after 600 °C is set to 20 to 50 °C.
The reason why we limited it to ℃/hr is that if it exceeds 50℃/hr, the surge rate of change will deteriorate, the charging life characteristics will deteriorate, and
This is because if it is less than 20°C/hr, the VI characteristics will deteriorate. Note that the cooling rate from the maximum temperature to 800 °C is not particularly limited, but if it is 30 to 70 °C/hr, the surge change rate will further decrease and the V1mA
This is preferable because it further reduces the variation in .

【0010】焼成時の雰囲気制御として、800 〜6
00 ℃の炉内雰囲気を空気を吹き込むことにより強制
攪拌するのは、制限電圧(特にV1mA)のバラツキが
減少するためである。また、導入する空気中の酸素分圧
を150mmHg 以上とするのは、150mmHg 
未満ではV−I特性が極端に低下するとともにサージ変
化率も悪化するためである。また、添加剤として添加す
る酸化ビスマス量は、0.5 モル%未満であると充分
に粒界層を形成できずに粒成長促進効果が低減し、一部
に粒径の不均一部ができることがあるとともに、1.5
 モル%を超えると粒界層が厚くなり過ぎて電気特性が
低下することがあるため、0.5 〜1.5 モル%で
あると好ましい。さらに、酸化ホウ素は、0.001 
モル%未満であると粒界層を安定させる効果が低下し、
課電寿命特性が悪化する場合があるとともに、0.05
モル%を超えると過剰ホウ素が粒界層に偏析し、サージ
に対する安定性が低下し、雷サージ変化率特性が悪化す
る場合があるので、0.001 〜0.05モル%であ
ると好ましい。
[0010] As atmosphere control during firing, 800 to 6
The reason why the atmosphere inside the furnace at 00° C. is forcibly stirred by blowing air is to reduce the variation in the limiting voltage (particularly V1 mA). In addition, the partial pressure of oxygen in the introduced air must be 150 mmHg or more.
This is because if it is less than this, the V-I characteristics will be extremely deteriorated and the surge rate of change will also be deteriorated. In addition, if the amount of bismuth oxide added as an additive is less than 0.5 mol%, grain boundary layers cannot be formed sufficiently, the grain growth promotion effect is reduced, and uneven grain sizes may be formed in some parts. There is 1.5
If it exceeds 0.5 to 1.5 mol %, the grain boundary layer may become too thick and the electrical properties may deteriorate, so it is preferably 0.5 to 1.5 mol %. Furthermore, boron oxide is 0.001
If it is less than mol%, the effect of stabilizing the grain boundary layer will decrease,
The charging life characteristics may deteriorate, and 0.05
If it exceeds 0.001 to 0.05 mol %, excess boron will segregate in the grain boundary layer, reducing stability against surges and deteriorating lightning surge change rate characteristics.

【0011】[0011]

【実施例】酸化亜鉛を主成分とする電圧非直線抵抗体を
得るには、まず所定の粒度に調整した酸化亜鉛原料と所
定の粒度に調整した酸化ビスマス、酸化コバルト、酸化
マンガン、酸化アンチモン、酸化クロム、好ましくは非
晶質の酸化ケイ素、酸化ニッケル、酸化ホウ素、酸化銀
よりなる添加物の所定量を混合する。なお、この場合酸
化銀、酸化ホウ素の代わりに硝酸銀、ホウ酸を用いても
よい。好ましくは銀を含むホウケイ酸ビスマスガラスを
用いるとよい。また、添加物を800 〜1000℃で
仮焼した後粉砕し、所定粒度に調整したものと酸化亜鉛
原料を混合してもよい。この際、これらの原料粉末に対
して所定量のポリビニルアルコール水溶液等を加える。 また好ましくは硝酸アルミニウム溶液を加える。
[Example] In order to obtain a voltage nonlinear resistor whose main component is zinc oxide, first, zinc oxide raw material adjusted to a predetermined particle size, bismuth oxide, cobalt oxide, manganese oxide, antimony oxide, adjusted to a predetermined particle size, A predetermined amount of an additive consisting of chromium oxide, preferably amorphous silicon oxide, nickel oxide, boron oxide, and silver oxide is mixed. In this case, silver nitrate or boric acid may be used instead of silver oxide or boron oxide. Preferably, bismuth borosilicate glass containing silver is used. Alternatively, the additive may be calcined at 800 to 1000°C, then pulverized and adjusted to a predetermined particle size, and mixed with the zinc oxide raw material. At this time, a predetermined amount of polyvinyl alcohol aqueous solution or the like is added to these raw material powders. Preferably, an aluminum nitrate solution is also added.

【0012】次に好ましくは200mmHg 以下の真
空度で減圧脱気を行い、混合泥漿の水分量は30〜35
wt%程度に、またその混合泥漿の粘度は100 ±5
0cpとするのが好ましい。次に得られた混合泥漿を噴
霧乾燥装置に供給して平均粒径50〜150 μm 、
好ましくは80〜120 μm で、水分量が0.5 
〜2.0 wt%、より好ましくは0.9 〜1.5 
wt%の造粒粉を造粒する。次に得られた造粒粉を、成
形工程において、成形圧力800 〜1000kg/c
m2の下で所定の形状に成形する。
[0012] Next, vacuum degassing is preferably performed at a vacuum degree of 200 mmHg or less, and the water content of the mixed slurry is 30 to 35 mmHg.
wt%, and the viscosity of the mixed slurry is 100 ±5
It is preferable to set it to 0 cp. Next, the obtained mixed slurry was fed to a spray dryer to obtain an average particle size of 50 to 150 μm.
Preferably 80 to 120 μm and moisture content of 0.5
~2.0 wt%, more preferably 0.9 ~1.5
The wt% granulated powder is granulated. Next, the obtained granulated powder is subjected to a molding process under a molding pressure of 800 to 1000 kg/c.
m2 and molded into a predetermined shape.

【0013】次に、その成形体を昇降温速度10〜10
0 ℃/hr温度400 〜700 ℃で有機成分を飛
散除去し脱脂体を得る。次に、脱脂体を昇温速度50〜
70℃/hrで800 〜1000℃、保持時間1〜5
時間で焼成し、仮焼体を得る。次に、仮焼体の側面に高
抵抗層を形成する。本例ではBi2O3,Sb2O3,
ZnO,SiO2等の所定量に有機結合剤としてエチル
セルロース、ブチルカルビトール、酢酸nブチル等を加
えた絶縁被覆用混合物ペーストを、30〜300 μm
 の厚さに仮焼体の側面に塗布する。
Next, the molded body is heated and cooled at a rate of 10 to 10
Organic components are removed by scattering at a temperature of 400 to 700°C at 0°C/hr to obtain a degreased body. Next, the degreased body is heated at a heating rate of 50~
800-1000℃ at 70℃/hr, holding time 1-5
It is fired for a certain period of time to obtain a calcined body. Next, a high resistance layer is formed on the side surface of the calcined body. In this example, Bi2O3, Sb2O3,
An insulating coating mixture paste made by adding ethyl cellulose, butyl carbitol, n-butyl acetate, etc. as an organic binder to a predetermined amount of ZnO, SiO2, etc. is applied to a thickness of 30 to 300 μm.
Coat the sides of the calcined body to a thickness of .

【0014】次に、これを昇温速度20〜100 ℃/
hr、最高保持温度1000〜1300℃好ましくは1
050〜1250℃、3〜7時間という条件で本焼成す
る。この本焼成時の降温過程において、本発明で重要な
のは、800 ℃〜600 ℃の間の冷却速度を70〜
200 ℃/hrの範囲とするとともに、600 ℃以
降の冷却速度を20〜50℃/hrの範囲とすることで
ある。ここで、最高温度から800 ℃までの間は冷却
速度を30〜70℃/hrとすると好ましい。また、雰
囲気については、炉の外部から酸素分圧150mmHg
 以上の空気を炉内に導入して、炉内雰囲気を強制攪拌
する必要がある。
[0014] Next, this is heated at a heating rate of 20 to 100°C/
hr, maximum holding temperature 1000-1300℃ preferably 1
Main firing is performed at 050 to 1250°C for 3 to 7 hours. What is important in the present invention in the temperature decreasing process during the main firing is that the cooling rate between 800 °C and 600 °C is
The cooling rate should be in the range of 200°C/hr, and the cooling rate after 600°C should be in the range of 20 to 50°C/hr. Here, it is preferable that the cooling rate is 30 to 70°C/hr from the maximum temperature to 800°C. Regarding the atmosphere, the oxygen partial pressure is 150 mmHg from outside the furnace.
It is necessary to introduce the above air into the furnace and forcibly stir the atmosphere inside the furnace.

【0015】その後、ガラス粉末に有機結合剤としてエ
チルセルロース、ブチルカルビトール、酢酸nブチル等
を加えたガラスペーストを前記側面の高抵抗層上に50
〜300 μm の厚さに塗布し、空気中で昇降温速度
50〜200 ℃/hr、400 〜800 ℃保持時
間0.5 〜4時間という条件で熱処理することにより
ガラス層を形成すると好ましい。
[0015] Thereafter, a glass paste prepared by adding ethyl cellulose, butyl carbitol, n-butyl acetate, etc. as an organic binder to glass powder was applied to the high resistance layer on the side surface for 50 minutes.
It is preferable to form a glass layer by coating to a thickness of ~300 μm and heat-treating in air at a temperature increase/decrease rate of 50 to 200°C/hr and a holding time of 400 to 800°C for 0.5 to 4 hours.

【0016】その後、得られた電圧非直線抵抗体の両端
面をダイヤモンド砥石等で研磨する。次に、研磨面を洗
浄後、研磨した両端面に例えばアルミニウム等によって
電極を例えば溶射により設けて電圧非直線抵抗体を得る
[0016] Thereafter, both end faces of the obtained voltage nonlinear resistor are polished with a diamond grindstone or the like. Next, after cleaning the polished surface, electrodes made of aluminum or the like are provided on both polished end surfaces by, for example, thermal spraying to obtain a voltage nonlinear resistor.

【0017】以下、実際に本発明範囲内および範囲外の
電圧非直線抵抗体について各種特性を測定した結果につ
いて説明する。 実施例1 焼成時の800 ℃以降の降温速度および800 ℃〜
600 ℃の間の空気導入の影響を調べるため、表1に
示す条件で上述した方法に従って、組成がBi2O3 
0.7 モル%、Sb2O3 1.0 モル%、Cr2
O3 0.7 モル%、MnO20.5 モル%、Co
3O40.6モル%、SiO21.3 モル%、NiO
1.3モル%、Al3+150ppmさらに外配でAg
2O0.02wt%、B2O30.01wt%からなり
、直径47mm、厚さ25mmの本発明試験No1〜1
2、比較例試験No.13 〜25の電圧非直線抵抗体
を準備し、それぞれの制限電圧(V1mA)、制限電圧
比(V40KA /V1mA)、サージ限界耐量、雷サ
ージ変化率(ΔV1mA)および耐湿性を測定した。な
お、焼成時の最高温度までの昇温速度は40℃/hr、
最高温度から800 ℃までの降温速度は60℃/hr
とするとともに、導入空気の酸素分圧は159mmHg
 とした。 結果を、表1に示す。
Below, the results of actually measuring various characteristics of voltage nonlinear resistors within and outside the range of the present invention will be explained. Example 1 Temperature reduction rate after 800 °C during firing and 800 °C ~
In order to investigate the effect of introducing air between
0.7 mol%, Sb2O3 1.0 mol%, Cr2
O3 0.7 mol%, MnO2 0.5 mol%, Co
3O40.6 mol%, SiO2 1.3 mol%, NiO
1.3 mol%, Al3 + 150 ppm and additional Ag on the outside
Invention test No. 1 to 1 consisting of 2O0.02wt% and B2O30.01wt%, diameter 47mm, thickness 25mm
2. Comparative test No. 13 to 25 voltage nonlinear resistors were prepared, and the limiting voltage (V1 mA), limiting voltage ratio (V40KA/V1 mA), surge limit withstand capacity, lightning surge rate of change (ΔV1 mA), and moisture resistance of each were measured. In addition, the heating rate to the maximum temperature during firing was 40°C/hr,
Cooling rate from maximum temperature to 800℃ is 60℃/hr
At the same time, the oxygen partial pressure of the introduced air is 159 mmHg.
And so. The results are shown in Table 1.

【0018】表1において、サージ限界耐量は、4/1
0μs の波形で120KA 、130KA 、140
KA の雷サージを2回印加し、破壊しなかったものを
○、破壊したものを×として表示した。雷サージ変化率
は、4/10μs の電流波形で30KAの電流を10
回繰り返し印加したのちのバリスタ電圧(V1mA)の
変化から求めた。耐湿性は、素子を蛍光探傷液中に圧力
200kg/cm2 の状態で24時間浸漬した後の吸
湿状態を検査し、滲みのないものを○、滲みのあるもの
を×として表示した。
[0018] In Table 1, the surge limit withstand capacity is 4/1
120KA, 130KA, 140 with 0μs waveform
KA's lightning surge was applied twice, and items that were not destroyed were shown as ○, and items that were destroyed were shown as ×. The lightning surge rate of change is as follows: 10% of the current of 30KA with a current waveform of 4/10μs.
It was determined from the change in varistor voltage (V1 mA) after repeated application. Moisture resistance was determined by inspecting the moisture absorption state after immersing the element in a fluorescent flaw detection liquid at a pressure of 200 kg/cm2 for 24 hours, and marking no bleeding as ○ and showing bleeding as ×.

【0019】[0019]

【表1】[Table 1]

【0020】表1の結果から、800 ℃〜600 ℃
の冷却速度を70〜200 ℃/hrとし、600 ℃
以降の冷却速度を20〜50℃/hrとし、さらに空気
を導入して強制攪拌した本発明試験No. 1〜12は
、いずれかの点で本発明範囲外の比較例試験No. 1
3〜25と比較して、良好な特性を得ることができるこ
とがわかる。
From the results in Table 1, 800°C to 600°C
cooling rate of 70 to 200 °C/hr, 600 °C
Inventive test No. 1, in which the subsequent cooling rate was set to 20 to 50° C./hr, and air was further introduced for forced stirring. 1 to 12 are comparative test Nos. 1 to 12 which are outside the scope of the present invention in any respect. 1
It can be seen that better characteristics can be obtained compared to samples No. 3 to No. 3 to No. 25.

【0021】実施例2 実施例1と同様に作製した電圧比直線抵抗体において、
強制攪拌のための空気中の酸素分圧の影響を調べるため
、焼成時の導入空気中の酸素分圧を変えて焼成を行い、
本発明範囲内の試験No. 1〜5と範囲外の比較例試
験No. 6〜8を準備して、それぞれに対し実施例1
と同様に各種の特性を測定した。なお、800 ℃〜6
00 ℃の間の冷却速度は100 ℃/hr、600 
℃以降の冷却速度は35℃/hrであった。結果を表2
に示す。
Example 2 In a voltage ratio linear resistor manufactured in the same manner as in Example 1,
In order to investigate the effect of oxygen partial pressure in the air for forced stirring, firing was performed by varying the oxygen partial pressure in the air introduced during firing.
Test No. within the scope of the present invention. Comparative example test No. 1 to 5 and outside the range. 6 to 8 were prepared, and Example 1 was applied to each of them.
Various characteristics were measured in the same manner. In addition, 800℃~6
Cooling rate between 00 °C and 100 °C/hr, 600 °C
The cooling rate after the temperature was 35°C/hr. Table 2 shows the results.
Shown below.

【0022】[0022]

【表2】[Table 2]

【0023】表2の結果から、焼成時の降温過程におけ
る800 ℃〜600 ℃の間の強制攪拌に使用する空
気の酸素分圧は、150mmHg 以上である必要があ
ることがわかる。
From the results in Table 2, it can be seen that the oxygen partial pressure of the air used for forced stirring between 800° C. and 600° C. during the temperature decreasing process during firing needs to be 150 mmHg or more.

【0024】実施例3 800 ℃以上の降温速度の影響を調べるため、実施例
1と同様の方法で最高温度から800 ℃までの降温速
度を種々変化させて抵抗体を作製し、それぞれ実施例1
と同様の各種特性を測定した。なお、800 ℃〜60
0℃の間の冷却速度は100 ℃/hr、600 ℃以
降の冷却速度は35℃/hrであった。結果を表3に示
す。
Example 3 In order to investigate the influence of the temperature decreasing rate of 800° C. or higher, resistors were manufactured by varying the temperature decreasing rate from the maximum temperature to 800° C. in the same manner as in Example 1.
Various characteristics similar to those were measured. In addition, 800℃~60℃
The cooling rate between 0°C and 600°C was 100°C/hr, and the cooling rate after 600°C was 35°C/hr. The results are shown in Table 3.

【0025】[0025]

【表3】[Table 3]

【0026】表3の結果から、本発明例のなかでも最高
温度から800 ℃までの冷却速度を30〜70℃/h
rとした試験No. 1〜4は、それ以外の試験No.
 6〜8と比べて、良好な特性を有し、好ましいことが
わかる。
From the results in Table 3, it can be seen that among the examples of the present invention, the cooling rate from the highest temperature to 800°C was 30 to 70°C/h.
Test No. r. 1 to 4 are other test numbers.
It can be seen that it has better characteristics and is preferable compared to No. 6 to No. 8.

【0027】[0027]

【発明の効果】以上の説明から明らかなように、本発明
の電圧比直線抵抗体の製造方法によれば、焼成工程の降
温過程の800 ℃〜600 ℃の間を70〜200 
℃/hr、600 ℃以降を20〜50℃/hrの冷却
速度で冷却するとともに、少なくとも800 ℃〜60
0 ℃の間は炉の外部から酸素分圧が150mmHg 
以上の空気を導入して強制攪拌しているため、耐湿性、
ΔV1mA変化率特性を改善できるとともに課電寿命特
性を向上できる電圧非直線抵抗体を得ることができる。
Effects of the Invention As is clear from the above explanation, according to the method for manufacturing a voltage ratio linear resistor of the present invention, the temperature in the temperature decreasing process of the firing process is reduced to 70 to 200 °C.
℃/hr, cooling from 600 ℃ at a cooling rate of 20 to 50 ℃/hr, and at least 800 ℃ to 60 ℃
During 0 °C, the oxygen partial pressure from outside the furnace is 150 mmHg.
Because more air is introduced and forcibly stirred, moisture resistance and
It is possible to obtain a voltage nonlinear resistor that can improve the ΔV1mA change rate characteristic and the energized life characteristic.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  酸化亜鉛を主成分とし,添加成分とし
て少なくともビスマス化合物を含む混合物を所定の形状
に成形した後、成形体を焼結してなる電圧非直線抵抗体
の製造方法において、前記焼結工程における降温過程の
800 ℃〜600 ℃の間を70〜200 ℃/hr
 の冷却速度で冷却し、600 ℃以降を20〜50℃
/hrの冷却速度で冷却するとともに、少なくとも80
0 ℃〜600 ℃の間は炉の外部から酸素分圧が15
0mmHg 以上の空気を導入することにより炉内雰囲
気を強制攪拌することを特徴とする電圧非直線抵抗体の
製造方法。
1. A method for manufacturing a voltage non-linear resistor, which comprises molding a mixture containing zinc oxide as a main component and at least a bismuth compound as an additive component into a predetermined shape, and then sintering the molded body. 70-200℃/hr between 800℃ and 600℃ during the cooling process in the freezing process.
Cool at a cooling rate of 20-50℃ from 600℃ onwards.
/hr cooling rate and at least 80
Between 0 °C and 600 °C, the oxygen partial pressure from outside the furnace is 15
A method for manufacturing a voltage nonlinear resistor, characterized by forcibly stirring the atmosphere in a furnace by introducing air of 0 mmHg or more.
【請求項2】  前記焼成工程における降温過程の最高
温度から800 ℃までを30〜70℃/hrの冷却速
度で冷却することを特徴とする請求項1記載の電圧非直
線抵抗体の製造方法。
2. The method of manufacturing a voltage nonlinear resistor according to claim 1, wherein cooling is performed from a maximum temperature of a temperature decreasing process in the firing step to 800° C. at a cooling rate of 30 to 70° C./hr.
JP3026672A 1991-01-29 1991-01-29 Manufacture of non-linear varistor Pending JPH04253301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3026672A JPH04253301A (en) 1991-01-29 1991-01-29 Manufacture of non-linear varistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3026672A JPH04253301A (en) 1991-01-29 1991-01-29 Manufacture of non-linear varistor

Publications (1)

Publication Number Publication Date
JPH04253301A true JPH04253301A (en) 1992-09-09

Family

ID=12199890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3026672A Pending JPH04253301A (en) 1991-01-29 1991-01-29 Manufacture of non-linear varistor

Country Status (1)

Country Link
JP (1) JPH04253301A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011171665A (en) * 2010-02-22 2011-09-01 Toshiba Corp Current-voltage nonlinear resistor, and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011171665A (en) * 2010-02-22 2011-09-01 Toshiba Corp Current-voltage nonlinear resistor, and method of manufacturing the same

Similar Documents

Publication Publication Date Title
CA2050097C (en) Voltage non-linear resistor and method of producing the same
US4420737A (en) Potentially non-linear resistor and process for producing the same
JPH04253301A (en) Manufacture of non-linear varistor
US4906964A (en) Voltage non-linear resistor
JPH04245602A (en) Nonlinearly voltage-dependent resistor
JPH0555008A (en) Voltage-dependent nonlinear resistor
JPH01228105A (en) Manufacture of non-linear voltage resistance
JPH0379850B2 (en)
JPH05234716A (en) Zinc oxide varistor
JP2549756B2 (en) Manufacturing method of voltage non-linear resistor for arrester with gap
JPH04245603A (en) Nonlinearly voltage-dependent resistor
JP2559838B2 (en) Voltage nonlinear resistor
JPH07109803B2 (en) Voltage nonlinear resistor and method of manufacturing the same
JPS62249401A (en) Manufacture of voltage nonlinear resistance element
JPH06204006A (en) Manufacture of zinc oxide varistor
JP2002305104A (en) Voltage nonlinear resistor and manufacturing method therefor
JPH0734406B2 (en) Voltage nonlinear resistor
JPH04257201A (en) Voltage non-linear resistor
JPH0541307A (en) Manufacturing method of potential nonlinear resistor
JPH02135701A (en) Manufacture of voltage non-linear resistor
JPH0812812B2 (en) Method of manufacturing voltage non-linear resistor
JPH02220402A (en) Voltage non-linear resistor and its manufacture
JPH07249505A (en) Manufacture of nonlinear resistor
JPH03250605A (en) Manufacture of voltage non-linearity resistor
JPH0247802A (en) Voltage nonlinear resistor body

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19981215