JPH07109803B2 - Voltage nonlinear resistor and method of manufacturing the same - Google Patents

Voltage nonlinear resistor and method of manufacturing the same

Info

Publication number
JPH07109803B2
JPH07109803B2 JP63287517A JP28751788A JPH07109803B2 JP H07109803 B2 JPH07109803 B2 JP H07109803B2 JP 63287517 A JP63287517 A JP 63287517A JP 28751788 A JP28751788 A JP 28751788A JP H07109803 B2 JPH07109803 B2 JP H07109803B2
Authority
JP
Japan
Prior art keywords
zinc
voltage non
zinc oxide
voltage
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63287517A
Other languages
Japanese (ja)
Other versions
JPH02134801A (en
Inventor
今井  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP63287517A priority Critical patent/JPH07109803B2/en
Publication of JPH02134801A publication Critical patent/JPH02134801A/en
Publication of JPH07109803B2 publication Critical patent/JPH07109803B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酸化亜鉛を主成分とする電圧非直線抵抗体およ
びその製造方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a voltage nonlinear resistor containing zinc oxide as a main component and a method for manufacturing the same.

(従来の技術) 従来から酸化亜鉛(ZnO)を主成分としBi2O3,Sb2O3,SiO
2,Co2O3,MnO2等の少量の添加物を副成分として含有した
抵抗体は、優れた電圧非直線性を示すことが広く知られ
ており、その性質を利用して避雷器等に使用されてい
る。
(Prior Art) Conventionally, zinc oxide (ZnO) was the main component and Bi 2 O 3 , Sb 2 O 3 , SiO
It is widely known that resistors containing a small amount of additives such as 2 , Co 2 O 3 and MnO 2 as an auxiliary component exhibit excellent voltage non-linearity. It is used.

この酸化亜鉛を主成分とする電圧非直線抵抗体におい
て、大電流領域での非直線性を改善させるために、従
来、(1)微量のAlイオン,Gaイオン,Inイオンを焼結中
に拡散させ、ZnOの比抵抗を下げる原子価制御法、
(2)特開昭58−122703号公報で開示された、ZnOとAl2
O3,Ga2O3,In2O3を予じめ仮焼してAl,Ga,Inイオンを焼結
体中へ拡散させた後、副成分と混合し成形する方法が知
られている。
In order to improve the non-linearity in a large current region, the voltage non-linear resistor containing zinc oxide as the main component has been conventionally (1) diffused a small amount of Al ions, Ga ions and In ions during sintering. Valence control method to lower the specific resistance of ZnO,
(2) ZnO and Al 2 disclosed in JP-A-58-122703
A method is known in which O 3 , Ga 2 O 3 and In 2 O 3 are preliminarily calcined to diffuse Al, Ga and In ions into the sintered body, and then mixed with auxiliary components and molded. .

(発明が解決しようとする課題) しかしながら、上述した原子価制御法(1)において
は、主成分のZnOや副成分とともにAlイオン等を単に混
合成形して焼結するだけであるため、微量のAl,Ga,Inイ
オンが十分にZnO結晶中へ均一に分散されず、大部分
は、粒界層、スピネル相へとりこまれていた。従って、
大電流領域の比直線性の改善が不充分で、課電寿命が悪
化するとともに、雷サージ印加後のバリスタ電圧が大き
く低下するため、常時課電では抵抗体が熱暴走するとい
う問題があった。
(Problems to be Solved by the Invention) However, in the valence control method (1) described above, only a small amount of ZnO or a sub-component, Al ion, etc. is simply mixed and molded and sintered. Al, Ga and In ions were not sufficiently dispersed in the ZnO crystal, and most of them were incorporated in the grain boundary layer and spinel phase. Therefore,
The improvement of the relative linearity in the high current region is not sufficient, the life of charging is deteriorated, and the varistor voltage after applying a lightning surge is greatly reduced. .

また、特開昭58−122703号公報で開示された方法(2)
では、上述した原子価制御方法(1)よりも効果はある
が、ZnOが不均一に粒子成長するためサージ耐量が低下
する問題があった。
In addition, the method (2) disclosed in JP-A-58-122703
Then, although it is more effective than the valence control method (1) described above, there is a problem that the surge resistance is lowered because ZnO grows nonuniformly.

本発明の目的は上述した課題を解消して、大電流域にお
ける電圧非直線性を改善できるとともに、課電寿命およ
びサージ耐量も良好な電圧非直線抵抗耐及びその製造方
法を提供しようとするものである。
It is an object of the present invention to solve the above-mentioned problems and to provide a voltage non-linear resistance with good voltage non-linearity in a large current range, and a good voltage life and surge withstand capability, and a method for manufacturing the same. Is.

(課題を解決するための手段) 本発明の電圧非直線抵抗体は、酸化亜鉛を主成分とし電
圧非直線性を有する焼結体において、焼結体中の酸化亜
鉛粒子の中央部に金属亜鉛相を含有することを特徴とす
るものである。
(Means for Solving the Problems) A voltage non-linear resistor of the present invention is a sintered body containing zinc oxide as a main component and having voltage non-linearity, and metallic zinc is provided in the center of the zinc oxide particles in the sintered body. It is characterized by containing a phase.

また、本発明の電圧非直線抵抗体の製造方法は、亜鉛蒸
気を酸化する間接法により製造した酸化亜鉛を主成分と
する電圧非直線抵抗体の製造方法において、酸化亜鉛原
料として亜鉛蒸気を酸素分圧100torr以下の雰囲気で酸
化して得たものを使用することを特徴とするものであ
る。
The method for producing a voltage non-linear resistor of the present invention is a method for producing a voltage non-linear resistor containing zinc oxide as a main component, which is produced by an indirect method of oxidizing zinc vapor. It is characterized in that it is obtained by oxidizing in an atmosphere with a partial pressure of 100 torr or less.

(作 用) 上述した構成において、本発明の電圧非直線抵抗体で
は、例えば第1図に抵抗体中の平均粒径Dが10μm程度
のZnO粒子の断面を示すように、中央部の粒径dの金属
亜鉛相とその周囲の酸化亜鉛相とによりZnO粒子を構成
することにより、各粒子の抵抗が小さくでき、各粒界間
の電位障壁も均一にすることができるため、大電流域に
おける電圧比直線性を改善できるとともに、各種特性も
良好な抵抗体を得ることができる。なお、金属亜鉛相の
大きさは、後述する実施例から明らかなようにd/D=0.3
0〜0.95の範囲が好ましい。ここで金属亜鉛相はすべて
のZnO粒子に含まれることが好ましいが、必ずしもすべ
てに限定されるものではない。
(Operation) In the voltage non-linear resistor of the present invention having the above-described structure, for example, as shown in FIG. 1 showing a cross section of ZnO particles having an average particle diameter D of about 10 μm in the resistor, By forming ZnO particles with the metallic zinc phase of d and the zinc oxide phase around it, the resistance of each particle can be reduced and the potential barrier between each grain boundary can be made uniform, so that in the large current region. It is possible to improve the linearity of the voltage ratio and obtain a resistor having excellent various characteristics. The size of the metallic zinc phase is d / D = 0.3, as will be apparent from the examples described later.
The range of 0 to 0.95 is preferable. Here, the metallic zinc phase is preferably contained in all ZnO particles, but it is not necessarily limited to all.

また、本発明の電圧非直線抵抗体の製造方法では、亜鉛
蒸気を酸素分圧100torr以下好ましくは10torr以下の雰
囲気で酸化させることにより上述したZnO粒子を得るこ
とができ、このZnO粒子を使用して電圧非直線抵抗体を
製造すれば、上述したように大電流域における電圧非直
線性を改善できるとともに、各種特性も良好な抵抗体を
得ることができる。
Further, in the method for producing a voltage non-linear resistor of the present invention, the ZnO particles described above can be obtained by oxidizing zinc vapor in an atmosphere having an oxygen partial pressure of 100 torr or less, preferably 10 torr or less, and using the ZnO particles. When the voltage non-linear resistor is manufactured by using the above method, the voltage non-linearity in the large current region can be improved as described above, and a resistor having excellent various characteristics can be obtained.

この際、抵抗体の本焼成を酸素分圧を小さくした状態で
実施した後に500〜900℃でアニール処理をするか、また
は本焼前半は酸素分圧を小さくして後半は大気中で実施
すると、ZnO粒子の性質が変化しにくいため好ましい。
At this time, after carrying out the main firing of the resistor in a state where the oxygen partial pressure is reduced, an annealing treatment is performed at 500 to 900 ° C, or the oxygen partial pressure is reduced in the first half of the main firing and performed in the atmosphere in the latter half. , ZnO particles are less likely to change in properties, which is preferable.

(実施例) 第2図は従来から公知の本発明の電圧非直線抵抗体の製
造方法を実施する装置の一例の構成を示す図である。第
2図において、1は原料となる金属亜鉛、2は金属亜鉛
1を溶融するための熔融炉、3は酸化反応を実施するレ
トルト炉、4は冷却ダクト、5は捕集タンク、6は排風
器、7はバッグフィルタである。上述した構成の装置に
おいて、熔融炉2で熔融した金属亜鉛1をレトルト炉3
に入れ、外部より約1300〜1400℃に加熱すると、レトル
ト炉3内の亜鉛は沸点(約900℃)に達し、蒸発口より
噴出し、レトルト炉3内の酸素分圧100torr以下の雰囲
気に保持した酸化室3aで燃焼酸化する。燃焼酸化して酸
化室3a中に得られた高温の酸化亜鉛は、排風器6の吸引
力により吸引されて、冷却ダクト4を通過して冷却され
た後、大部分が捕集タンク5内にまた一部はバッグフィ
ルタ7内に中央部がほぼ金属亜鉛相からなる酸化亜鉛と
して得ることができる。
(Embodiment) FIG. 2 is a diagram showing a configuration of an example of an apparatus for carrying out a conventionally known method of manufacturing a voltage nonlinear resistor according to the present invention. In FIG. 2, 1 is metallic zinc as a raw material, 2 is a melting furnace for melting metallic zinc 1, 3 is a retort furnace for carrying out an oxidation reaction, 4 is a cooling duct, 5 is a collection tank, and 6 is a discharge tank. The air blower, 7 is a bag filter. In the apparatus having the above-mentioned configuration, the metal zinc 1 melted in the melting furnace 2 is retort furnace 3
When heated to about 1300 to 1400 ° C from the outside, the zinc in the retort furnace 3 reaches the boiling point (about 900 ° C), ejects from the evaporation port, and is maintained in an atmosphere with an oxygen partial pressure of 100 torr or less in the retort furnace 3. Combustion oxidation is performed in the oxidation chamber 3a. The high temperature zinc oxide obtained by combustion and oxidation in the oxidation chamber 3a is sucked by the suction force of the exhaust fan 6, passes through the cooling duct 4 and is cooled, and then most of it is in the collection tank 5. In addition, a part of the zinc oxide can be obtained in the bag filter 7 as a zinc oxide having a metal zinc phase at the center.

上述したようにして得た酸化亜鉛原料から電圧非直線抵
抗体を得る方法は、以下の通りである。
The method for obtaining the voltage nonlinear resistor from the zinc oxide raw material obtained as described above is as follows.

酸化亜鉛を主成分とする電圧非直線抵抗体を得るには、
まず0.1〜3μmの所定の粒度に調整した酸化亜鉛原料
と1μm以下の所定の粒度に調整した微粉の酸化ビスマ
ス、酸化ゴバルト、酸化マンガン、酸化アンチモン、酸
化クロム、好ましくは非晶質の酸化ケイ素、酸化ニッケ
ル、酸化ホウ素、酸化銀等よりなる添加物の所定量を混
合する。なお、この場合酸化銀、酸化ホウ素の代わりに
硝酸銀、ホウ酸を用いてもよい。好ましくは銀を含むホ
ウケイ酸ビスマスガラスを用いるとよい。ここで添加物
原料は低温で焼結するようにできるだけ1μm以下、好
ましくは0.5μm以下の微粉を用いるのがよい。この
際、これらの原料粉末に対して所定量のポリビニルアル
コール水溶液等を加える。
To obtain a voltage nonlinear resistor whose main component is zinc oxide,
First, a zinc oxide raw material adjusted to a predetermined particle size of 0.1 to 3 μm, and fine bismuth oxide, gobart oxide, manganese oxide, antimony oxide, chromium oxide, preferably amorphous silicon oxide, adjusted to a predetermined particle size of 1 μm or less, A predetermined amount of an additive made of nickel oxide, boron oxide, silver oxide or the like is mixed. In this case, silver nitrate or boric acid may be used instead of silver oxide or boron oxide. Bismuth borosilicate glass containing silver is preferably used. Here, as the additive raw material, it is preferable to use fine powder of 1 μm or less, preferably 0.5 μm or less so that it can be sintered at a low temperature. At this time, a predetermined amount of polyvinyl alcohol aqueous solution or the like is added to these raw material powders.

次に好ましくは200mmHg以下の真空度で減圧脱気を行い
混合泥漿を得る。ここに混合泥漿の水分量は30〜35wt%
程度に、またその混合泥漿の粘度は100±50cpとするの
が好ましい。次に得られた混合泥漿を噴霧乾燥装置に供
給して平均粒径50〜150μm、好ましくは80〜120μm
で、水分量が0.5〜2.0wt%、より好ましくは0.9〜1.5wt
%の造粒粉を造粒する。次に得られた造粒粉を、成形工
程において、成形圧力800〜7000kg/cm2の下で所定の形
状に成形する。成形は通常の圧縮成形、静水圧成形のほ
かにホットプレス成形、HIP処理等で行ってもよい。
Next, vacuum degassing is preferably performed at a vacuum degree of 200 mmHg or less to obtain a mixed sludge. The water content of the mixed slurry is 30-35wt%
The viscosity of the mixed slurry is preferably 100 ± 50 cp. Next, the obtained mixed sludge is supplied to a spray dryer to have an average particle size of 50 to 150 μm, preferably 80 to 120 μm.
And the water content is 0.5 to 2.0 wt%, more preferably 0.9 to 1.5 wt
Granulate% granulated powder. Next, the obtained granulated powder is molded into a predetermined shape under a molding pressure of 800 to 7000 kg / cm 2 in a molding step. Molding may be performed by hot press molding, HIP treatment, etc. in addition to ordinary compression molding and hydrostatic molding.

そして、その成形体の側面に絶縁被覆層を形成する。本
願発明では、Bi2O3,Sb2O3,ZnO,SiO2等の所定量に有機結
合剤としてエチルセルロース、ブチルカルビトール、酢
酸nブチル等を加えた絶縁被覆用混合物ペーストを、60
〜300μmの厚さに成形体の側面に塗布する。次に、こ
れを昇降温速度20〜60℃/hr、700〜900℃好ましくは700
〜800℃、3〜7時間という条件で本焼成する。本焼成
の条件は、酸素分圧を小さくした状態で焼成を実施した
後に500〜900℃でアニール処理するか、または本焼前半
は酸素分圧を小さくして後半は大気中で実施するとさら
に好ましい。なお、本焼成の前に成形体を昇降温速度10
〜100℃/hrで300〜500℃、保持時間1〜10時間で結合剤
を飛散除去することが好ましい。また、ガラス粉末に有
機結合剤としてエチルセルロース、ブチルカルビトー
ル、酢酸nブチル等を加えたガラスペーストを前記の絶
縁被覆層上に100〜300μmの厚さに塗布し、空気中で昇
降温速度50〜200℃/hr400〜800℃保持時間0.5〜2時間
という条件で熱処理することによりガラス層を形成する
と好ましい。
Then, an insulating coating layer is formed on the side surface of the molded body. In the present invention, a mixture paste for insulation coating containing a predetermined amount of Bi 2 O 3 , Sb 2 O 3 , ZnO, SiO 2 or the like, to which ethyl cellulose, butyl carbitol, n-butyl acetate or the like as an organic binder is added,
Apply to the side surface of the molded body to a thickness of ~ 300 μm. Next, this is heated / cooled at a rate of 20-60 ° C / hr, 700-900 ° C, preferably 700 ° C.
Main firing is performed under conditions of ~ 800 ° C and 3 ~ 7 hours. It is more preferable that the conditions of the main calcination are such that after the calcination is carried out in a state where the oxygen partial pressure is small, the anneal treatment is carried out at 500 to 900 ° C. . Before the main firing, the temperature of the molded body is raised and lowered by 10
It is preferable that the binder is scattered and removed at 300 to 500 ° C. at a temperature of 100 ° C./hr and a holding time of 1 to 10 hours. Further, a glass paste obtained by adding ethyl cellulose, butyl carbitol, n-butyl acetate, etc. as an organic binder to glass powder is applied on the above-mentioned insulating coating layer to a thickness of 100 to 300 μm, and the temperature rising / falling rate is 50 to 50 in air. It is preferable to form the glass layer by heat treatment under the conditions of 200 ° C./hr and 400 to 800 ° C. holding time of 0.5 to 2 hours.

その後、得られた電圧非直線抵抗体の両端面をSiC,Al2O
3,ダイヤモンド等の#400〜2000相当の研磨剤により水
好ましくは油を研磨液として使用して研磨する。次に、
研磨面を洗浄後、研磨した両端面に例えばアルミニウム
等によって電極を例えば溶射により設けて電圧非直線抵
抗体を得ている。
After that, both end surfaces of the obtained voltage non-linear resistor are covered with SiC, Al 2 O.
3. Polishing is carried out with water, preferably oil, as a polishing liquid with a polishing agent corresponding to # 400 to 2000 such as diamond. next,
After cleaning the polished surface, an electrode made of, for example, aluminum is provided by thermal spraying on both polished surfaces to obtain a voltage non-linear resistor.

以下、実際に本発明の範囲内および範囲外の電圧非直線
抵抗体において、各種特性を測定した結果について説明
する。
Hereinafter, the results of actually measuring various characteristics of the voltage nonlinear resistor within and outside the range of the present invention will be described.

実施例1 上述した方法に従って、Bi2O3,Co3O4,MnO2,Sb2O3,Cr
2O3,NiO,SiO2を各々0.1〜2.0モル%、銀を含むホウケイ
酸ビスマスガラス0.01〜0.3wt%、および残部が第1表
に示す酸素分圧の雰囲気中から生成されたZnOからなる
原料から直径47mm、厚さ22.5mmの形状でバリスタ電圧
(V1mA)が250〜280V/mmの第1表に示す本発明試料No.1
〜5と比較例試料No.1〜2の電圧非直線抵抗体を準備し
た。なお、抵抗体の焼成は、400℃5時間で脱脂後酸素
分圧1torrのN2+O2雰囲気下で800℃まで昇温し、さらに
大気中で800℃5時間保持後、前記降温の条件で実施し
た。
Example 1 According to the method described above, Bi 2 O 3 , Co 3 O 4 , MnO 2 , Sb 2 O 3 , Cr
2 O 3 , NiO, and SiO 2 are each 0.1 to 2.0 mol%, bismuth borosilicate glass containing silver 0.01 to 0.3 wt%, and the balance is ZnO generated from the atmosphere of oxygen partial pressure shown in Table 1. Sample No. 1 of the present invention shown in Table 1 with a varistor voltage (V 1mA ) of 250 to 280 V / mm in a shape with a diameter of 47 mm and a thickness of 22.5 mm from the raw material.
5 and Comparative Example Sample Nos. 1 and 2 were prepared. The firing of the resistor is performed by degreasing at 400 ° C. for 5 hours, then raising the temperature to 800 ° C. in an N 2 + O 2 atmosphere with an oxygen partial pressure of 1 torr, and further holding it at 800 ° C. for 5 hours in the temperature lowering condition. Carried out.

なお、抵抗体を研磨後SEMで観察し、ZnO粒子の平均粒径
DとZnO粒子中央部の金属亜鉛相の平均粒径dを求めた
結果、d/D=0.3〜0.95となった。
The resistor was observed by SEM after polishing, and the average particle diameter D of the ZnO particles and the average particle diameter d of the metallic zinc phase in the central part of the ZnO particles were determined. As a result, d / D = 0.30 to 0.95.

比較例1の従来法1は、従来法により空気中で亜鉛蒸気
で酸化して得た酸化亜鉛粉末を使用して原料混合物中に
Al(NO3・9H2O0.01モル%添加して焼成によりAlイ
オンを拡散させた原子価制御法によるものを、また比較
例2の従来法2は、特開昭58−122703号公報に開示され
たように、従来法により得た酸化亜鉛粉末を使用してこ
れとAl2O3を混合後900℃で仮焼したものを示している。
The conventional method 1 of Comparative Example 1 uses zinc oxide powder obtained by oxidizing zinc vapor in air according to the conventional method in a raw material mixture.
Al (NO 3) 3 · 9H 2 O0.01 Conventional Method 2 of the by mol% added valence control method by diffusing Al ions by calcination and Comparative Example 2, JP 58-122703 As disclosed in the publication, a zinc oxide powder obtained by a conventional method is used, and this is mixed with Al 2 O 3 and then calcined at 900 ° C.

準備した本発明および比較例の抵抗体に対して、制限電
圧比、V1mA低下率、雷サージ耐量および開閉サージ耐量
を測定するとともに、漏洩電流の比を求めた。結果を第
1表に示す。ここで、制限電圧比は、バリスタ電圧V
10KAとV1mAの比より求めた。V1mA低下率は、30KAの電流
を8/20μsの電流波形で10回印加した前後のV1mAより求
めた。雷サージ耐量は、100KA,110KA,120KAの電流を4/1
0μsの電流波形で2回繰り返し印加した後破壊したも
のを×、破壊しなかったものを○と表示した。開閉サー
ジ耐量は800A,900A,1000Aの電流を2msの電流波形で20回
繰り返し印加した後破壊したものを×、破壊しなかった
ものを○と表示した。さらに、漏洩電流の比は、素子を
周囲温度130℃、課電率95%で課電し、課電直後に対す
る課電100時間後の電流比I100時間/I0時間から求めた。
With respect to the prepared resistors of the present invention and the comparative example, the limiting voltage ratio, the V 1 mA reduction rate, the lightning surge withstand capability and the switching surge withstand capability were measured, and the leakage current ratio was determined. The results are shown in Table 1. Here, the limiting voltage ratio is the varistor voltage V
It was calculated from the ratio of 10KA and V 1mA . The V 1mA decrease rate was obtained from V 1mA before and after applying a current of 30 KA with a current waveform of 8/20 μs 10 times. Lightning surge withstand current of 100KA, 110KA, 120KA is 4/1
A sample that was destroyed after being applied twice with a current waveform of 0 μs was shown as x, and a sample that was not destroyed was shown as ◯. The switching surge resistance is indicated by x when the current of 800 A, 900 A, and 1000 A was repeatedly applied 20 times with a current waveform of 2 ms and was broken, and when it was not broken, it was indicated by ◯. Further, the ratio of the leakage current was obtained from the current ratio I 100 hours / I 0 hours immediately after the power was applied 100 hours after the power was applied to the element at an ambient temperature of 130 ° C. and a charge rate of 95%.

第1表の結果から、所定の雰囲気分圧からなる雰囲気中
での酸化により得た中央部に金属亜鉛相を有する酸化亜
鉛原料を使用した本発明の抵抗体は、比較例に比べて諸
特性が良好なことがわかる。
From the results shown in Table 1, the resistor of the present invention using the zinc oxide raw material having the metal zinc phase in the central portion obtained by the oxidation in the atmosphere having the predetermined atmospheric partial pressure has various characteristics as compared with the comparative example. It turns out that is good.

実施例2 上述した実施例1に従って、酸素分圧100torr以下のN2
+O2雰囲気中で生成された酸化亜鉛を用い、焼成後ZnO
粒子の中央部に金属亜鉛相を有する抵抗体における、金
属亜鉛相の直径の大きさの変化による影響を調べるた
め、第1図におけるd/Dの値を変化させた抵抗体を作製
し、実施例1と同様各種特性を測定した。なお、抵抗体
の焼成も実施例1と同様に実施した。結果を第2表に示
す。
Example 2 N 2 with an oxygen partial pressure of 100 torr or less according to Example 1 described above.
Zinc oxide produced in + O 2 atmosphere, ZnO after firing
In order to investigate the influence of the change in the size of the diameter of the metallic zinc phase on the resistor having the metallic zinc phase in the central part of the particle, resistors with different d / D values in Fig. 1 were prepared and implemented. Various properties were measured as in Example 1. The firing of the resistor was performed in the same manner as in Example 1. The results are shown in Table 2.

第2表の結果から、本発明の方法に従えばいずれも良好
な特性の電圧非直線抵抗体を得ることができるが、その
中でもd/D=0.30〜0.95のものが良好であることがわか
った。また、d/Dの値は0.95を越えると電圧非直線抵抗
体の電圧非直線性が実用に耐えないほど小さくなること
がわかった。
From the results shown in Table 2, it can be seen that the voltage non-linear resistors having good characteristics can be obtained according to the method of the present invention, and among them, the one having d / D = 0.30 to 0.95 is preferable. It was It was also found that when the value of d / D exceeds 0.95, the voltage non-linearity of the voltage non-linear resistance becomes so small that it cannot be used practically.

(発明の効果) 以上の説明から明らかなように、本発明の電圧非直線抵
抗体およびその製造方法によれば、亜鉛蒸気を酸素分圧
100torr以下の雰囲気で酸化させることにより中央部に
金属亜鉛相の存在するZnO粒子を使用して電圧非直線抵
抗体を製造することにより、大電流域における電圧非直
線性を改善できるとともに、課電寿命およびサージ耐量
も良好な電圧非直線抵抗体を得ることができる。
(Effects of the Invention) As is apparent from the above description, according to the voltage nonlinear resistor and the method for manufacturing the same of the present invention, zinc vapor is converted into oxygen partial pressure.
By producing a voltage non-linear resistor using ZnO particles having a metallic zinc phase in the central part by oxidizing in an atmosphere of 100 torr or less, it is possible to improve the voltage non-linearity in the large current region and It is possible to obtain a voltage non-linear resistor having excellent life and surge resistance.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の電圧非直線抵抗体のZnO粒子の一例を
示す断面図、 第2図は本発明の電圧非直線抵抗体の製造方法を実施す
る装置の一例を構成を示す図である。 1……金属亜鉛、2……熔融炉 3……レトルト炉、3a……酸化室 4……冷却ダクト、5……捕集タンク 6……排風器、7……バッグフィルタ
FIG. 1 is a cross-sectional view showing an example of ZnO particles of a voltage nonlinear resistor of the present invention, and FIG. 2 is a view showing a configuration of an example of an apparatus for carrying out the method of manufacturing a voltage nonlinear resistor of the present invention. . 1 ... Metal zinc, 2 ... Melting furnace, 3 ... Retort furnace, 3a ... Oxidizing chamber, 4 ... Cooling duct, 5 ... Collection tank, 6 ... Fan, 7 ... Bag filter

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】酸化亜鉛を主成分とし電圧非直線性を有す
る焼結体において、焼結体中の酸化亜鉛粒子の中央部に
金属亜鉛相を含有することを特徴とする電圧非直線抵抗
体。
1. A voltage non-linear resistor comprising a zinc oxide as a main component and having a voltage non-linearity, wherein the zinc oxide particles in the sintered body contain a metallic zinc phase in the central portion thereof. .
【請求項2】亜鉛蒸気を酸化する間接法により製造した
酸化亜鉛を主成分とする電圧非直線抵抗体の製造方法に
おいて、酸化亜鉛原料として亜鉛蒸気を酸素分圧100tor
r以下の雰囲気で酸化して得たものを使用することを特
徴とする電圧非直線抵抗体の製造方法。
2. A method for producing a voltage non-linear resistor containing zinc oxide as a main component, which is produced by an indirect method of oxidizing zinc vapor, wherein zinc vapor is used as a zinc oxide raw material, and oxygen partial pressure is 100 torr.
A method of manufacturing a voltage non-linear resistor, characterized by using a product obtained by oxidation in an atmosphere of r or less.
JP63287517A 1988-11-16 1988-11-16 Voltage nonlinear resistor and method of manufacturing the same Expired - Lifetime JPH07109803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63287517A JPH07109803B2 (en) 1988-11-16 1988-11-16 Voltage nonlinear resistor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63287517A JPH07109803B2 (en) 1988-11-16 1988-11-16 Voltage nonlinear resistor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH02134801A JPH02134801A (en) 1990-05-23
JPH07109803B2 true JPH07109803B2 (en) 1995-11-22

Family

ID=17718367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63287517A Expired - Lifetime JPH07109803B2 (en) 1988-11-16 1988-11-16 Voltage nonlinear resistor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JPH07109803B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI231174B (en) 2003-01-16 2005-04-21 Honda Motor Co Ltd Walk-behind tiller

Also Published As

Publication number Publication date
JPH02134801A (en) 1990-05-23

Similar Documents

Publication Publication Date Title
JPH0252409B2 (en)
JPH07109803B2 (en) Voltage nonlinear resistor and method of manufacturing the same
JPH0734403B2 (en) Voltage nonlinear resistor
JPH0555008A (en) Voltage-dependent nonlinear resistor
JPH07109805B2 (en) Voltage nonlinear resistor and method of manufacturing the same
JPH01228105A (en) Manufacture of non-linear voltage resistance
JP2634838B2 (en) Method of manufacturing voltage non-linear resistor
JP2549756B2 (en) Manufacturing method of voltage non-linear resistor for arrester with gap
JPH0828285B2 (en) Method of manufacturing voltage non-linear resistor
JPH0541307A (en) Manufacturing method of potential nonlinear resistor
JP2559838B2 (en) Voltage nonlinear resistor
JPH0734406B2 (en) Voltage nonlinear resistor
JPH0686322B2 (en) Zinc oxide raw material for voltage nonlinear resistors
JP2608626B2 (en) Method of manufacturing voltage non-linear resistor
JPH07105286B2 (en) Voltage nonlinear resistor
JPH0379850B2 (en)
JPH0734402B2 (en) Voltage nonlinear resistor
JPH04253301A (en) Manufacture of non-linear varistor
JPH0439761B2 (en)
JPH0812804B2 (en) Voltage nonlinear resistor
JPH03142801A (en) Manufacture of voltage-dependent nonlinear resistor
JPH0555012A (en) Manufacture of voltage-dependent nonlinear resistor
JPH0555011A (en) Manufacture of voltage-dependent nonlinear resistor
JPH0828286B2 (en) Method of manufacturing voltage non-linear resistor
JPH0817122B2 (en) Method of manufacturing voltage non-linear resistor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 13

EXPY Cancellation because of completion of term