JPH08169752A - Aluminous sintered compact and its production - Google Patents

Aluminous sintered compact and its production

Info

Publication number
JPH08169752A
JPH08169752A JP6315051A JP31505194A JPH08169752A JP H08169752 A JPH08169752 A JP H08169752A JP 6315051 A JP6315051 A JP 6315051A JP 31505194 A JP31505194 A JP 31505194A JP H08169752 A JPH08169752 A JP H08169752A
Authority
JP
Japan
Prior art keywords
alumina
oxide
dispersed phase
sintered body
crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6315051A
Other languages
Japanese (ja)
Other versions
JP3359443B2 (en
Inventor
Usou Ou
雨叢 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP31505194A priority Critical patent/JP3359443B2/en
Publication of JPH08169752A publication Critical patent/JPH08169752A/en
Application granted granted Critical
Publication of JP3359443B2 publication Critical patent/JP3359443B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE: To provide an aluminous sintered compact capable of enhancing strength at room temp., strength at high temp. and fracture toughness. CONSTITUTION: This aluminous sintered compact consists of alumina platy crystals 1 arranged so that they come in contact one another in the thickness direction and a dispersed phase 2 existing at the crystal boundaries of the platy crystals 1. The dispersed phase 2 is made of oxide of at least one among groups IIa, IIIa and IVa elements of the Periodic Table, Ta and Mn and/or a multiple oxide consisting of the oxide and Al2 O3 . This sintered compact is obtd. by applying uniaxial compressive stress to a sintered compact consisting of alumina crystals and a dispersed phase existing at the crystal boundaries of the alumina crystals in a heated state. The dispersed phase is made of oxide of at least one among groups IIa, IIIa and IVa elements of the Periodic Table, Ta and Mn and/or a multiple oxide consisting of the oxide and Al2 O3 .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、強度、靭性に優れたア
ルミナ質焼結体およびその製造方法に関するもので、例
えば、航空・宇宙業界,精錬業界,化学業界で用いられ
たり、ガスタービンエンジン、自動車部品、切削工具材
料等に好適に使用されるアルミナ質焼結体およびその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alumina sintered body having excellent strength and toughness and a method for producing the same, which is used, for example, in the aviation / space industry, refining industry, chemical industry, and gas turbine engine. The present invention relates to an alumina-based sintered body that is preferably used for automobile parts, cutting tool materials and the like, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来から、耐高温の構造部材として、ア
ルミナは耐環境性、高温強度ともに優れることで注目さ
れていたが、アルミナの固有の欠点である低靭性によ
り、その用途が限られている。
2. Description of the Related Art Conventionally, alumina has been attracting attention as a high temperature resistant structural member because of its excellent environmental resistance and high temperature strength. However, its use is limited due to its low toughness which is an inherent defect of alumina. There is.

【0003】そこで、近年では、アルミナの破壊靭性を
向上させるために、種々の複合化が試みられている。例
えば、Al2 3 −SiCナノコンポジィット、Al2
3−ZrO2 複合材料(例えば、特開昭61−122
164号公報、特開昭63−139044号公報等参
照)、および板状β−Al2 3 の分散(例えば、特開
昭63−134551号公報等参照)等により、純粋な
アルミナの焼結体より強度と靭性を向上することができ
る。
Therefore, in recent years, various composites have been tried in order to improve the fracture toughness of alumina. For example, Al 2 O 3 —SiC nanocomposite, Al 2
O 3 -ZrO 2 composite material (see, for example, JP-A-61-122)
164, JP-A-63-139044, etc.), and plate-like β-Al 2 O 3 dispersion (see, for example, JP-A-63-134551, etc.), etc. to sinter pure alumina. Strength and toughness can be improved over the body.

【0004】[0004]

【発明が解決しようとする問題点】しかし、上記Al2
3 −SiCナノコンポジィットでは、Al2 3 中に
非酸化物のSiCを分散させているために、酸化雰囲気
において高温状態で使用される場合には耐酸化性に欠け
るという問題があった。
[Problems to be Solved by the Invention] However, the above Al 2
The O 3 -SiC nanocomposite has a problem that it lacks oxidation resistance when used at high temperature in an oxidizing atmosphere because non-oxide SiC is dispersed in Al 2 O 3 . .

【0005】また、Al2 3 −ZrO2 複合材料は9
00℃付近の温度で強度が急激に低下するため高温強度
が低く、高温下において応力が作用するような状態での
使用には適しないという問題があった。
Al 2 O 3 -ZrO 2 composite material is 9
Since the strength sharply decreases at a temperature near 00 ° C., the high temperature strength is low, and there is a problem that it is not suitable for use in a state where stress acts at high temperature.

【0006】さらに、板状のβ−Al2 3 を分散した
アルミナ焼結体では、通常の焼成温度でアルミナ母相結
晶粒子の粒成長速度がβ−Al2 3 の粒成長速度より
大きいため、アルミナ母相の粒成長により板状β−Al
2 3 による靱性向上の効果が大きく低減するという問
題があった。
Further, in the plate-shaped β-Al 2 O 3 -dispersed alumina sintered body, the grain growth rate of the alumina matrix crystal grains is higher than that of β-Al 2 O 3 at a normal firing temperature. Therefore, due to the grain growth of the alumina matrix, plate-like β-Al
There is a problem that the effect of 2 O 3 for improving toughness is greatly reduced.

【0007】[0007]

【問題点を解決するための手段】本発明者は、アルミナ
の組織と機械的特性の関係に対して研究を重ねた結果、
板状形状を有するアルミナ結晶が一定方向に配列した組
織を有し、さらに、特定の粒界分散相が存在することに
より、材料の室温強度、高温強度および破壊靭性が同時
に向上できることを知見し、本発明に至った。また、こ
のような板状アルミナ結晶が一定方向に配列した組織
は、一旦、アルミナ結晶の粒界に特定の粒界分散相が存
在した焼結体を作製し、この焼結体を所定の温度で一軸
加圧することにより得られることを見い出し、本発明に
至った。
As a result of repeated studies on the relationship between the structure and mechanical properties of alumina, the present inventor found that
It was found that the alumina crystal having a plate-like shape has a structure in which the crystals are arranged in a certain direction, and further, due to the existence of a specific grain boundary dispersed phase, room temperature strength, high temperature strength and fracture toughness of the material can be simultaneously improved, The present invention has been completed. In addition, such a structure in which plate-like alumina crystals are arranged in a certain direction, once, a sintered body in which a specific grain boundary dispersed phase is present in the grain boundaries of the alumina crystal is prepared, and the sintered body is heated to a predetermined temperature. The inventors have found that it can be obtained by uniaxially pressurizing, and reached the present invention.

【0008】即ち、本発明のアルミナ質焼結体は、アル
ミナ板状結晶が、その厚み方向に相互に当接して配列
し、前記アルミナ板状結晶の粒界に、周期律表第2a,
3a,4a族元素,TaおよびMnのうち少なくとも一
種の酸化物および/または該酸化物とAl2 3 との複
合酸化物からなる分散相が存在するものである。
That is, in the alumina-based sintered body of the present invention, the alumina plate crystals are arranged in contact with each other in the thickness direction, and are arranged at the grain boundaries of the alumina plate crystals at the periodic table 2a,
There is a dispersed phase composed of an oxide of at least one of 3a and 4a group elements, Ta and Mn and / or a complex oxide of the oxide and Al 2 O 3 .

【0009】また、本発明のアルミナ質焼結体は、アル
ミナ結晶と、これらのアルミナ結晶の粒界に周期律表第
2a,3a,4a族元素,TaおよびMnのうち少なく
とも一種の酸化物および/または該酸化物とAl2 3
との複合酸化物からなる分散相が存在する焼結体を、加
熱した状態で一軸圧縮応力を加えることにより得られ
る。
Further, the alumina-based sintered body of the present invention has alumina crystals, and at the grain boundaries of these alumina crystals, at least one oxide of Group 2a, 3a, and 4a elements of the periodic table, Ta and Mn, and / Or the oxide and Al 2 O 3
It can be obtained by applying a uniaxial compressive stress to a sintered body in which a dispersed phase composed of a complex oxide of and is present in a heated state.

【0010】以下、本発明を詳述する。The present invention will be described in detail below.

【0011】本発明のアルミナ質焼結体では、図1に示
すように、アルミナ板状結晶1と、このアルミナ板状結
晶1の粒界に特定の分散相2を有するものである。そし
て、アルミナ板状結晶1は、その厚み方向t(加圧方
向)に対して直角の長さ方向Hが相互にほぼ平行になる
ように配列している。言い換えれば、アルミナ板状結晶
1はその厚み方向に相互に当接(面接触)し、加圧方向
に積層している状態となる。このようなアルミナ板状結
晶のアスペクト比(長さH/厚みt)は1.7〜5、特
には3〜5が望ましい。
As shown in FIG. 1, the alumina sintered body of the present invention has an alumina plate crystal 1 and a specific dispersed phase 2 at the grain boundary of this alumina plate crystal 1. The alumina plate crystals 1 are arranged so that their lengthwise directions H, which are perpendicular to the thickness direction t (pressurizing direction), are substantially parallel to each other. In other words, the alumina plate crystals 1 are in contact with each other in the thickness direction (surface contact) and are stacked in the pressing direction. The aspect ratio (length H / thickness t) of such an alumina plate crystal is preferably 1.7 to 5, and more preferably 3 to 5.

【0012】また、アルミナ板状結晶の粒界に存在する
分散相は、周期律表第2a,3a,4a族元素,Taお
よびMnのうち少なくとも一種の酸化物および/または
該酸化物とAl2 3 との複合酸化物であることが必要
である。即ち、分散相は、周期律表第2a,3a,4a
族元素,TaおよびMnの少なくとも一種の酸化物から
なる場合、周期律表第2a,3a,4a族元素,Taお
よびMnのうち少なくとも一種の酸化物とAl2 3
の複合酸化物からなる場合、周期律表第2a,3a,4
a族元素,TaおよびMnのうち少なくとも一種の酸化
物および該酸化物とAl2 3 との複合酸化物からなる
場合がある。
The dispersed phase existing at the grain boundary of the alumina plate crystal is an oxide of at least one of the elements of groups 2a, 3a and 4a of the periodic table, Ta and Mn and / or the oxide and Al 2 It must be a complex oxide with O 3 . That is, the dispersed phase is the periodic table 2a, 3a, 4a.
When it is composed of an oxide of at least one of the group elements Ta and Mn, it is composed of a complex oxide of at least one of the elements of groups 2a, 3a and 4a of the periodic table, Ta and Mn and Al 2 O 3. In case of periodic table 2a, 3a, 4
It may consist of an oxide of at least one of the group a elements, Ta and Mn, and a complex oxide of the oxide and Al 2 O 3 .

【0013】周期律表第2a族元素としては、Be,M
g,Ca,Sr,Ba,Raがあり、周期律表第3a族
元素としては、Sc,Y,ランタノイド系やアクチノイ
ド系があり、周期律表第4a族元素としては、Ti,Z
r,Hfがある。
As elements of Group 2a of the periodic table, Be, M
g, Ca, Sr, Ba and Ra, Sc, Y, lanthanoids and actinoids are included as elements of Group 3a of the periodic table, and Ti and Z are included as elements of Group 4a of the periodic table.
There are r and Hf.

【0014】本発明においては、Mgおよび周期律表第
3a、4a族元素の少なくとも一種の酸化物からなる分
散相や、Mgおよび周期律表第3a、4a族元素の少な
くとも一種の酸化物とAl2 3 との複合酸化物からな
る分散相や、前述した酸化物からなる分散相と複合酸化
物からなる分散相が混在する場合が、焼結体の組織制御
の効果が大きく好ましい。分散相としては、MgAl2
4 ,BaAl1219,ZrO2 ,Al2 TiO5 ,Y
3 Al5 12,Ta2 5 ,MnAl2 4 が望まし
い。
In the present invention, a dispersed phase composed of Mg and at least one oxide of elements of Groups 3a and 4a of the Periodic Table, and at least one oxide of Mg and elements of Groups 3a and 4a of the Periodic Table and Al. It is preferable that the dispersed phase composed of a composite oxide of 2 O 3 and the dispersed phase composed of the aforementioned oxide and the dispersed phase composed of a composite oxide are mixed, because the effect of controlling the structure of the sintered body is large. As the dispersed phase, MgAl 2
O 4 , BaAl 12 O 19 , ZrO 2 , Al 2 TiO 5 , Y
3 Al 5 O 12, Ta 2 O 5, MnAl 2 O 4 is preferred.

【0015】このような分散相は全量中5〜25体積%
含有することが望ましい。これは、5体積%よりも分散
相が少ない場合には、アルミナ板状結晶の粒界の安定性
が低く、高温で粒成長を発生し易くなり、分散相が25
体積%よりも多くなると、アルミナ板状結晶の配向組織
の形成を阻害し、材料の特性を低下させる傾向があるか
らである。分散相の平均結晶粒径は3μm以下が望まし
い。
Such a dispersed phase is 5 to 25% by volume in the total amount.
It is desirable to contain. This is because when the dispersed phase is less than 5% by volume, the stability of the grain boundaries of the alumina plate crystal is low, and grain growth is likely to occur at a high temperature.
This is because when the content is more than the volume%, the formation of the oriented structure of the alumina plate crystal is obstructed and the material properties tend to be deteriorated. The average crystal grain size of the dispersed phase is preferably 3 μm or less.

【0016】次に、本発明のアルミナ質焼結体の製法に
ついて述べる。本発明のアルミナ質焼結体は、先ず公知
の原料、例えば、Alと周期律表第2a,3a,4a族
元素,TaおよびMnの少なくとも一種の金属粉末、ま
たはこれらの酸化物粉末、当該金属を含む有機、無機物
あるいはその溶液を用い、所定の組成に調合、混合後、
所望の成型手段、例えば、金型プレス,鋳込み成型,押
出成型,射出成型,冷間静水圧プレスなどにより任意の
形状に成形する。この成形体を公知の焼結法、例えば、
ホットプレス法,常圧焼成法,ガス加圧焼成法により焼
成することにより得られる。さらに、焼結後に熱間静水
圧処理(HIP)処理、およびガラスシール後HIP処
理しても良く、この場合には、対理論密度比95%以上
の緻密な焼結体を得ることができる。
Next, a method for producing the alumina-based sintered body of the present invention will be described. The alumina-based sintered body of the present invention comprises a known raw material, for example, Al and at least one metal powder of elements 2a, 3a, 4a of the periodic table, Ta and Mn, or an oxide powder thereof, or the metal. Using an organic or inorganic substance or solution containing, after preparing and mixing to a predetermined composition,
It is molded into a desired shape by a desired molding means, for example, a die press, a casting molding, an extrusion molding, an injection molding, a cold isostatic pressing and the like. This molded body is subjected to a known sintering method, for example,
It is obtained by firing by a hot press method, a normal pressure firing method, or a gas pressure firing method. Furthermore, hot isostatic pressing (HIP) treatment may be performed after sintering, and HIP treatment may be performed after glass sealing. In this case, a dense sintered body having a theoretical density ratio of 95% or more can be obtained.

【0017】そして、本発明の製法では、上記アルミナ
板状結晶と分散相からなる焼結体を加熱した状態で一軸
圧縮応力を加えて変形させることが重要である。このよ
うな加熱状態での加圧処理により、アルミナ結晶が板状
に塑性変形すると同時に、アルミナ板状結晶の長さ方向
Hが互いに平行となるように配列した組織を形成するこ
とができる。
In the manufacturing method of the present invention, it is important to apply uniaxial compressive stress to deform the sintered body composed of the alumina plate crystals and the dispersed phase while being heated. By the pressure treatment in such a heated state, the alumina crystals are plastically deformed into a plate shape, and at the same time, a structure can be formed in which the length directions H of the alumina plate crystals are arranged to be parallel to each other.

【0018】加圧処理する以前の焼結体のアルミナの平
均結晶粒径は5μm以下が望ましい。これは、5μmよ
りも大きくなると、大きなアスペクト比を有する板状結
晶を形成し難くなるからである。加圧処理する以前の焼
結体のアルミナの平均結晶粒径は3μm以下が特に望ま
しい。
The average crystal grain size of alumina in the sintered body before pressure treatment is preferably 5 μm or less. This is because if it exceeds 5 μm, it becomes difficult to form a plate crystal having a large aspect ratio. It is particularly desirable that the average crystal grain size of alumina in the sintered body before pressure treatment is 3 μm or less.

【0019】また、一軸圧縮応力を加える際の加熱処理
条件については、1100℃以下では、結晶の変形抵抗
が大きく、材料が脆性的な破壊が発生し易い。また16
00℃以上の温度では、動的再結晶や、粒界軟化により
異方性結晶(アルミナ板状結晶)の形成と配列が困難と
なる。従って、加熱処理条件の好ましい温度範囲は11
00〜1600℃、特に1150〜1500℃が望まし
い。
Regarding the heat treatment conditions for applying the uniaxial compressive stress, when the temperature is 1100 ° C. or less, the deformation resistance of the crystal is large and the material is liable to be brittle. Again 16
At a temperature of 00 ° C. or higher, dynamic recrystallization and grain boundary softening make it difficult to form and arrange anisotropic crystals (alumina plate crystals). Therefore, the preferable temperature range of the heat treatment condition is 11
00 to 1600 ° C, particularly 1150 to 1500 ° C is desirable.

【0020】さらに、上記焼結体を加圧により変形させ
る時の平均歪速度は1×10-5〜1×10-3/sの範囲
が好適である。歪速度が1×10-3/sより高いと、変
形抵抗が大幅に増加するだけでなく、材料中に多くの欠
陥が生成する傾向にあるからである。また、歪速度が1
×10-5より低ければ、変形中での拡散により変形した
結晶が等軸結晶に回復する傾向にあるからである。ま
た、本発明の組織を形成するためには、加圧処理におけ
る最終的な歪みを、0.10以上、特には0.3以上と
することが望ましい。
Further, the average strain rate when deforming the sintered body by pressurization is preferably in the range of 1 × 10 -5 to 1 × 10 -3 / s. This is because if the strain rate is higher than 1 × 10 −3 / s, not only the deformation resistance increases significantly, but also many defects tend to be generated in the material. Also, the strain rate is 1
This is because if it is lower than × 10 −5 , the deformed crystal tends to recover to an equiaxed crystal due to diffusion during deformation. Further, in order to form the texture of the present invention, it is desirable that the final strain in the pressure treatment is 0.10 or more, particularly 0.3 or more.

【0021】[0021]

【作用】本発明のアルミナ質焼結体では、アルミナの板
状結晶が、その厚さ方向に相互に当接して配列している
ため、アルミナ板状結晶の長さ方向に平行な(アルミナ
板状結晶の厚み方向と直角方向)引張応力が作用した場
合における強度が大幅に向上し、さらに焼結体自体の靱
性を著しく向上できる。これにより、特に荷重が平面応
力である部材に好適に用いることができる。
In the alumina-based sintered body of the present invention, since the plate crystals of alumina are arranged in contact with each other in the thickness direction, they are parallel to the length direction of the alumina plate crystals (alumina plate). The strength when a tensile stress acts on the crystal is significantly improved, and the toughness of the sintered body itself can be significantly improved. Accordingly, it can be suitably used especially for a member whose load is a plane stress.

【0022】また、アルミナの板状結晶の粒界に、周期
律2a,3a,4a族金属,TaおよびMnの酸化物お
よび/または該酸化物とAl2 3 との複合酸化物から
なる化合物の分散相が存在しているため、アルミナ板状
結晶の異常粒成長を抑制でき、板状結晶形状を安定した
状態で存在させることができる。これらの元素の酸化物
は高温でも安定性が高く、周期律2a,3a,4a族金
属,TaおよびMnの酸化物やこれらの金属が互いに複
合酸化物を形成し、もしくはこれらの周期律2a,3
a,4a族金属,TaおよびMnとアルミナとにより安
定な複合酸化物を形成し、アルミナ板状結晶の粒界を安
定させ、結晶の異方性を保持し、アルミナ質焼結体の強
度を向上する。
Further, at the grain boundary of the plate-like crystal of alumina, a compound consisting of an oxide of metals of the periodic groups 2a, 3a, 4a, Ta and Mn and / or a complex oxide of the oxide and Al 2 O 3 . Due to the existence of the dispersed phase of, the abnormal grain growth of the alumina plate crystal can be suppressed, and the plate crystal shape can exist in a stable state. Oxides of these elements are highly stable even at high temperatures, and oxides of the periodic metals 2a, 3a, 4a, Ta and Mn and these metals form complex oxides with each other, or these periodic metals 2a, Three
Forming a stable composite oxide with a, 4a group metals, Ta and Mn and alumina, stabilizing the grain boundary of the alumina plate crystal, maintaining the crystal anisotropy, and improving the strength of the alumina sintered body. improves.

【0023】よって、本発明のアルミナ質焼結体では、
安定性が高いアルミナ板状結晶が一定方向で配列し、こ
れらの粒界に所定の分散相が存在する組織となり、室温
から高温まで優れた強度と破壊靭性を有する構造材料を
提供できる。
Therefore, in the alumina-based sintered body of the present invention,
It is possible to provide a structural material in which highly stable alumina plate crystals are arranged in a certain direction and a predetermined dispersed phase exists in these grain boundaries, and which has excellent strength and fracture toughness from room temperature to high temperature.

【0024】[0024]

【実施例】アルミナ原料粉末と周期律2a,3a,4a
族金属,TaおよびMnの酸化物原料粉末を出発原料と
し、焼結体組成が、表1に示すような組成となるように
秤量し、これらの混合粉末を1ton/cm2 の圧力で
プレス成形した後、3ton/cm2 の圧力で静水圧成
形を行った。
[Examples] Alumina raw material powder and periodicity 2a, 3a, 4a
Starting powders of oxide raw materials of group metals, Ta and Mn are weighed so that the composition of the sintered body is as shown in Table 1, and these mixed powders are press-molded at a pressure of 1 ton / cm 2. After that, hydrostatic molding was performed at a pressure of 3 ton / cm 2 .

【0025】これらの成形体を大気中において1650
℃で5時間常圧焼成した。焼結体中の分散相の種類と存
在量およびアルミナ粒子の平均結晶粒径を表1に示す。
These molded bodies were subjected to 1650 in the atmosphere.
It was baked at atmospheric pressure for 5 hours at atmospheric pressure. Table 1 shows the types and abundances of the dispersed phase in the sintered body and the average crystal grain size of the alumina particles.

【0026】そして、上記の焼結体を表1に示すような
温度で加熱し、表1に示すような平均歪速度となるよう
に一軸圧縮応力を加え、最終的に表1に示すような歪を
焼結体に生じさせた。
Then, the above-mentioned sintered body is heated at a temperature as shown in Table 1, uniaxial compressive stress is applied so as to obtain an average strain rate as shown in Table 1, and finally as shown in Table 1. Strain was created in the sintered body.

【0027】[0027]

【表1】 [Table 1]

【0028】加圧処理後の焼結体組織を光学顕微鏡によ
り観察したところ、本発明の焼結体のアルミナ結晶粒が
板状になっていることを確認した。このアルミナ板状結
晶の平均アスペクト比を表2に示す。尚、アルミナ板状
結晶のアスペクト比とは、図1に示すように、焼結体の
一断面において、アルミナ板状結晶の長さHと厚みtと
の比(長さH/厚みt)とした。
When the structure of the sintered body after pressure treatment was observed with an optical microscope, it was confirmed that the alumina crystal grains of the sintered body of the present invention had a plate shape. Table 2 shows the average aspect ratio of this alumina plate crystal. The aspect ratio of the alumina plate crystal is, as shown in FIG. 1, the ratio of the length H to the thickness t of the alumina plate crystal in one cross section of the sintered body (length H / thickness t). did.

【0029】さらに、これらの焼結体をJIS−R16
01にて指定されている形状まで研磨し抗折試料を作製
した。この試料についてJIS−R1601に基づく室
温および1400℃での4点曲げ抗折強度試験を実施し
た。また、ビッカース圧痕法により破壊靭性(KIC)を
測定した。これらの結果を表2に示した。
Further, these sintered bodies were made into JIS-R16.
The sample was manufactured by polishing to a shape designated by 01. This sample was subjected to a 4-point bending bending strength test at room temperature and 1400 ° C. based on JIS-R1601. The fracture toughness (K IC ) was also measured by the Vickers indentation method. Table 2 shows the results.

【0030】[0030]

【表2】 [Table 2]

【0031】表1、2の結果から、本発明に基づいて得
られた、板状配列組織を有する焼結体は、従来のアルミ
ナ材料およびアルミナ基複合材料に比べて、優れた室温
と高温強度および破壊靭性を示すことが判る。
From the results shown in Tables 1 and 2, the sintered body having a plate-like array structure obtained according to the present invention has excellent room temperature and high temperature strength as compared with conventional alumina materials and alumina-based composite materials. It can be seen that the material exhibits fracture toughness.

【0032】即ち、本発明のアルミナ質焼結体では、室
温での曲げ強度が650MPa以上であり、1400℃
での曲げ強度が360MPa以上であり、さらに靱性が
4.0MPa・m1/2 以上と優れた特性を示す。特に、
試料No.1〜9については、室温での曲げ強度が700
MPa以上であり、1400℃での曲げ強度が390M
Pa以上であり、さらに靱性が4.8MPa・m1/2
上の優れた特性を有する。
That is, in the alumina-based sintered body of the present invention, the bending strength at room temperature is 650 MPa or more, and 1400 ° C.
Flexural strength at 360 MPa or more and toughness of 4.0 MPa · m 1/2 or more, which are excellent characteristics. In particular,
Sample Nos. 1 to 9 have bending strength of 700 at room temperature.
MPa or more, bending strength at 1400 ° C is 390M
It has excellent characteristics of Pa or more and toughness of 4.8 MPa · m 1/2 or more.

【0033】一方、試料No.15は従来のアルミナ焼結
体であり、分散相が存在しない場合である。この場合に
は、室温や高温での曲げ強度が低く、また靱性も低い。
さらに、試料No.16は、従来のアルミナ−ジルコニア
系の焼結体であり、加圧処理をせず、アルミナが板状結
晶となっていない場合である。この場合には、室温での
曲げ強度は高いが高温強度が極端に低くなることが判
る。
On the other hand, sample No. 15 is a conventional alumina sintered body, and there is no dispersed phase. In this case, the bending strength at room temperature or high temperature is low, and the toughness is also low.
Further, Sample No. 16 is a conventional alumina-zirconia-based sintered body, which is a case where the pressure treatment is not performed and alumina is not a plate crystal. In this case, the bending strength at room temperature is high, but the high temperature strength is extremely low.

【0034】[0034]

【発明の効果】本発明のアルミナ質焼結体では、アルミ
ナの板状結晶が、その厚み方向に相互に当接して配列
し、アルミナ板状結晶の粒界に、周期律2a,3a,4
a族金属,TaおよびMnの酸化物および/または該酸
化物とAl2 3 との複合酸化物からなる化合物の分散
相が存在しているため、アルミナ板状結晶の長さ方向に
平行な引張応力が作用した場合における強度が大幅に向
上し、さらに焼結体自体の靱性を著しく向上でき、ま
た、周期律2a,3a,4a族金属,TaおよびMnか
らなる酸化物や、これらの酸化物とAl2 3 との複合
酸化物からなる分散相により、アルミナ板状結晶の異常
粒成長を抑制でき、板状結晶形状を安定した状態で存在
させることができる。これにより、室温から高温まで優
れた強度と破壊靭性を有するアルミナ質焼結体を提供で
きる。
In the alumina-based sintered body of the present invention, the plate-like crystals of alumina are arranged in contact with each other in the thickness direction, and are arranged at the grain boundaries of the alumina plate-like crystals at the periodic intervals 2a, 3a, 4
Since the dispersed phase of the group a metal, the oxide of Ta and Mn and / or the compound consisting of the complex oxide of the oxide and Al 2 O 3 exists, it is parallel to the length direction of the alumina plate crystal. The strength when tensile stress acts is significantly improved, the toughness of the sintered body itself can be significantly improved, and the oxides of the periodic metals 2a, 3a, 4a, Ta and Mn, and the oxides of these metals are used. By the dispersed phase composed of a complex oxide of a substance and Al 2 O 3 , abnormal grain growth of alumina plate crystals can be suppressed, and the plate crystal shape can exist in a stable state. This makes it possible to provide an alumina sintered body having excellent strength and fracture toughness from room temperature to high temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のアルミナ質焼結体の縦断面図である。FIG. 1 is a vertical cross-sectional view of an alumina-based sintered body of the present invention.

【符号の説明】[Explanation of symbols]

1・・・アルミナ板状結晶 2・・・分散相 1 ... Alumina plate crystal 2 ... Dispersed phase

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】アルミナ板状結晶が、その厚み方向に相互
に当接して配列し、前記アルミナ板状結晶の粒界に、周
期律表第2a,3a,4a族元素,TaおよびMnのう
ち少なくとも一種の酸化物および/または該酸化物とA
2 3 との複合酸化物からなる分散相が存在すること
を特徴とするアルミナ質焼結体。
1. Alumina plate crystals are arranged so as to be in contact with each other in the thickness direction, and at the grain boundaries of the alumina plate crystals, among the elements of groups 2a, 3a, 4a of the periodic table, Ta and Mn. At least one oxide and / or the oxide and A
An alumina-based sintered body, characterized in that a dispersed phase consisting of a complex oxide with l 2 O 3 is present.
【請求項2】アルミナ結晶と、これらのアルミナ結晶の
粒界に周期律表第2a,3a,4a族元素,Taおよび
Mnのうち少なくとも一種の酸化物および/または該酸
化物とAl2 3 との複合酸化物からなる分散相が存在
する焼結体を、加熱した状態で一軸圧縮応力を加えるこ
とを特徴とするアルミナ質焼結体の製造方法。
2. An alumina crystal, and an oxide of at least one of the elements of groups 2a, 3a and 4a of the periodic table, Ta and Mn and / or the oxide and Al 2 O 3 at the grain boundaries of these alumina crystals. A method for producing an alumina-based sintered body, which comprises applying a uniaxial compressive stress in a heated state to a sintered body having a dispersed phase composed of a complex oxide of
JP31505194A 1994-12-19 1994-12-19 Alumina sintered body and method for producing the same Expired - Fee Related JP3359443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31505194A JP3359443B2 (en) 1994-12-19 1994-12-19 Alumina sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31505194A JP3359443B2 (en) 1994-12-19 1994-12-19 Alumina sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08169752A true JPH08169752A (en) 1996-07-02
JP3359443B2 JP3359443B2 (en) 2002-12-24

Family

ID=18060849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31505194A Expired - Fee Related JP3359443B2 (en) 1994-12-19 1994-12-19 Alumina sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP3359443B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155546A (en) * 1999-11-29 2001-06-08 Ngk Spark Plug Co Ltd Insulator for spark plug and spark plug having the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155546A (en) * 1999-11-29 2001-06-08 Ngk Spark Plug Co Ltd Insulator for spark plug and spark plug having the same
JP4530380B2 (en) * 1999-11-29 2010-08-25 日本特殊陶業株式会社 Spark plug insulator and spark plug including the same

Also Published As

Publication number Publication date
JP3359443B2 (en) 2002-12-24

Similar Documents

Publication Publication Date Title
CN102933519B (en) Max-phase oriented ceramic and production method therefor
JPS6168373A (en) Silicon nitride sintered body and manufacture
JP2507479B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
JP3279885B2 (en) Method for producing alumina-based sintered body
JPH0859367A (en) Preparation of porous ceramic or porous ceramic laminated body by using hollow spherical polymeric precursor
JP3359443B2 (en) Alumina sintered body and method for producing the same
JP3145519B2 (en) Aluminum nitride sintered body
JPH08208317A (en) Alumina sintered body and production thereof
JP3145597B2 (en) Alumina sintered body and method for producing the same
JPH0812417A (en) Rare earth element silicate sintered compact and its production
JPH05279129A (en) Low-thermally conductive ceramic and its production
JP3152853B2 (en) Alumina sintered body and method for producing the same
JP2925089B2 (en) Ceramic composite sintered body and method of manufacturing the same
JP3101972B2 (en) Alumina sintered body and method for producing the same
JPH03504959A (en) Ultra-tough monolithic silicon nitride
JP2854340B2 (en) Ceramic composite sintered body and method of manufacturing the same
JPH1179848A (en) Silicon carbide sintered compact
JPH08151254A (en) Alumina-based sintered compact
JP3044290B2 (en) Method for producing particle-dispersed composite ceramics
JP3340025B2 (en) Alumina sintered body and method for producing the same
JP2664760B2 (en) Ceramic composite material and method for producing the same
JPH05319910A (en) Ceramic composite material and its production
JP3211908B2 (en) Silicon nitride sintered body and method for producing the same
JPH11157919A (en) Alumina-based sintered compact having high strength and its production
JP3965466B2 (en) Alumina sintered body and manufacturing method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees