JP2925089B2 - Ceramic composite sintered body and method of manufacturing the same - Google Patents

Ceramic composite sintered body and method of manufacturing the same

Info

Publication number
JP2925089B2
JP2925089B2 JP1243133A JP24313389A JP2925089B2 JP 2925089 B2 JP2925089 B2 JP 2925089B2 JP 1243133 A JP1243133 A JP 1243133A JP 24313389 A JP24313389 A JP 24313389A JP 2925089 B2 JP2925089 B2 JP 2925089B2
Authority
JP
Japan
Prior art keywords
sintered body
ceramic composite
silicon carbide
composite sintered
carbide particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1243133A
Other languages
Japanese (ja)
Other versions
JPH03103360A (en
Inventor
裕 古瀬
啓治 松廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17099289&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2925089(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP1243133A priority Critical patent/JP2925089B2/en
Priority to US07/582,462 priority patent/US5217932A/en
Priority to DE69014793T priority patent/DE69014793T2/en
Priority to CA002025426A priority patent/CA2025426C/en
Priority to EP90310090A priority patent/EP0419150B1/en
Publication of JPH03103360A publication Critical patent/JPH03103360A/en
Application granted granted Critical
Publication of JP2925089B2 publication Critical patent/JP2925089B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、靱性を改良したセラミックス複合焼結体お
よびその製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a ceramic composite sintered body having improved toughness and a method for producing the same.

[従来の技術] セラミックスは耐熱性、耐食性に優れるとともに硬度
が大きい点から耐火物や化学材料として古くから使用さ
れてきている。また、最近の化学技術の発展により高純
度の原料の精製、合成技術が進み、プロセス制御技術の
進歩とともにセラミックスの特性も大きく変化し、多く
の期待が寄せられるようになってきている。特に、ガス
タービンブレード等におけるように、高温あるいは悪環
境に晒されるような用途では耐熱合金が従来より用いら
れてきたが、近年の高性能化を目指す市場動向から高温
構造材料としてより優秀な材料が求められるようになっ
てきており、セラミックスがこれらの要件を満たす重要
な材料として注目され始めている。これはセラミックス
材が他の材料に比べて耐熱性、耐酸化性、耐食性に著し
く優れていることによる。
[Related Art] Ceramics have long been used as refractories and chemical materials because of their excellent heat resistance and corrosion resistance and high hardness. In addition, with the recent development of chemical technology, the purification and synthesis techniques of high-purity raw materials have advanced, and with the progress of process control technology, the characteristics of ceramics have also changed significantly, and many expectations have been raised. In particular, heat-resistant alloys have been used in applications where they are exposed to high temperatures or adverse environments such as gas turbine blades. Has been required, and ceramics have begun to attract attention as an important material satisfying these requirements. This is because the ceramic material is remarkably excellent in heat resistance, oxidation resistance and corrosion resistance as compared with other materials.

然しながら、窒化珪素、アルミナ、炭化珪素等のセラ
ミックスは一般に脆く、例えば、破壊靱性値で5MNm-3/2
以下のものが多い。このためセラミックスの靱性を改善
する種々の方法が提案され、実施されている。
However, silicon nitride, alumina, ceramics such as silicon carbide are generally fragile, for example, 5MNm in fracture toughness value -3/2
There are many things below. For this reason, various methods for improving the toughness of ceramics have been proposed and implemented.

例えば、セラミックスを強靱化するものとして特開昭
59−30770号に開示されるように、ウィスカやファイバ
等の針状形態を有するものを強化材として添加する方法
が知られている。この場合、セラミックス中に分散され
たウィスカ等によりセラミックス中に生じたクラックが
曲げられるクラック偏向効果、ウィスカの引き抜き効果
等によって靱性の向上が達成されていると考えられる。
For example, Japanese Patent Application Laid-Open
As disclosed in JP-A-59-30770, a method of adding a material having a needle-like form such as whisker or fiber as a reinforcing material is known. In this case, it is considered that the improvement in toughness is achieved by a crack deflecting effect in which cracks generated in the ceramics are bent by the whiskers and the like dispersed in the ceramics, a whisker pull-out effect, and the like.

然しながら、セラミックス中に針状の強化材を均一に
分散させることは困難である。これは、ファイバ等の場
合、セラミックス中でファイバ同士が互いに絡み合い、
塊状になり易いことによる。
However, it is difficult to uniformly disperse the acicular reinforcing material in the ceramic. This is because, in the case of a fiber or the like, the fibers are entangled with each other in the ceramic,
Due to the tendency to clump.

一方、アルミナセラミックスを強靱化する方法とし
て、特公昭59−25748号に示されるように、強化材とし
てジルコニアを添加する方法も提案されている。この方
法は、アルミナ中にジルコニアの準安定正方晶を室温ま
で残留させ、発生したクラックの先端での応力により誘
起される正方晶系から単斜晶系への結晶変態の約4%の
体積膨張に起因する残留圧縮応力により室温での機械的
性質を著しく改善するようにしている。
On the other hand, as a method for toughening alumina ceramics, a method of adding zirconia as a reinforcing material has been proposed as shown in JP-B-59-25748. In this method, a metastable tetragonal crystal of zirconia is allowed to remain in alumina at room temperature, and a volume expansion of about 4% of a crystal transformation from tetragonal to monoclinic induced by stress at a crack tip. The mechanical properties at room temperature are remarkably improved by the residual compressive stress caused by the above.

然しながら、この方法においても、上記の変態温度で
ある約900℃以上の大気中で長時間保持されると、酸化
ジルコニウムと非酸化物である母材との間で反応が進行
し、母材特性が維持されなくなるため上記の強靱化効果
は期待出来なかった。
However, also in this method, when the material is kept for a long time in the atmosphere at the above transformation temperature of about 900 ° C. or more, a reaction proceeds between the zirconium oxide and the non-oxide base material, and the base material characteristics Cannot be maintained, the above toughening effect could not be expected.

さらに、特公昭63−62474号公報には、窒化珪素を主
体とするセラミックスの靱性を改善するものとして、珪
化物あるいは炭化物の板状微粒子を適当な割合で分散さ
せるものが示されている。
Further, Japanese Patent Publication No. 63-62474 discloses a method of improving the toughness of ceramics mainly composed of silicon nitride by dispersing plate-like fine particles of silicide or carbide at an appropriate ratio.

また、特開昭62−246865号公報には焼結助剤として希
土類、MgO、ZrO2を添加した窒化珪素焼結体、特開昭63
−100067号公報には、Y2O3、Er2O3、Tm2O3、Yb2O3、Lu2
O3のうち、いずれか2種以上を含む窒化珪素焼結体が開
示されているが、強化材である炭化珪素は含まれていな
い。
Also, rare earths in JP 62-246865 as a sintering aid, MgO, silicon nitride was added ZrO 2 sintered body, JP 63
No. -100067 discloses that Y 2 O 3 , Er 2 O 3 , Tm 2 O 3 , Yb 2 O 3 , Lu 2
A silicon nitride sintered body containing any two or more of O 3 is disclosed, but does not include silicon carbide as a reinforcing material.

[発明が解決しようとする課題] 然しながら、上記セラミックスにウィスカやファイバ
等を分散させることによる高靱化の場合、ウィスカやフ
ァイバ等を均一に分散させることが困難である。また、
これらを比較的均一に分散させ得たとしても、製造プロ
セスにおいて特殊な処理を施さない限り良好な特性のセ
ラミックス複合焼結体を得ることが出来ず、また、強化
材としてウィスカやファイバ等を使用すると高価になる
等の問題点があった。また、上記酸化ジルコニウム粒子
を分散させることにより高靱化を図る場合、変態が進行
しない高温ではその高靱化効果が消失してしまう。さら
に、高温で長時間保持すると酸化ジルコニウムと母材で
ある非酸化物との間で反応が進行し、母材特性の維持が
出来なくなる等の問題点があった。
[Problems to be Solved by the Invention] However, in the case of increasing the toughness by dispersing whiskers, fibers, and the like in the above ceramics, it is difficult to uniformly disperse the whiskers, fibers, and the like. Also,
Even if they can be dispersed relatively uniformly, ceramic composite sintered bodies with good characteristics cannot be obtained unless special treatment is applied in the manufacturing process, and whiskers or fibers are used as reinforcing materials. Then, there was a problem that it became expensive. Further, in the case of increasing the toughness by dispersing the zirconium oxide particles, the toughening effect is lost at a high temperature at which the transformation does not proceed. Further, when the composition is kept at a high temperature for a long time, the reaction between zirconium oxide and the non-oxide as the base material progresses, so that there is a problem that the properties of the base material cannot be maintained.

本発明の目的は、窒化珪素母材の所定の形状の炭化珪
素粒子を強化材として付加することにより高靱化された
セラミックス複合焼結体およびその製造方法を提供する
ことにある。
An object of the present invention is to provide a ceramic composite sintered body which is made tough by adding silicon carbide particles of a predetermined shape of a silicon nitride base material as a reinforcing material, and a method for producing the same.

[課題を解決するための手段] 上記の目的を達成するために、本発明に係るセラミッ
クス複合焼結体は、焼結助剤としてY2O3、Er2O3、Tm
2O3、Yb2O3、Lu2O3のうち、いずれか2種以上、あるい
は希土類、MgO、ZrO2を含む窒化珪素を母材とし、強化
材として、大きさが5〜20μmの炭化珪素粒子を含むこ
とを特徴とする。
To achieve the above object [Means for Solving the Problems], ceramic composite sintered body according to the present invention, as a sintering aid Y 2 O 3, Er 2 O 3, Tm
As a base material, silicon nitride containing at least two of 2 O 3 , Yb 2 O 3 , and Lu 2 O 3 , or a rare earth, MgO, or ZrO 2 , and a reinforcing material having a size of 5 to 20 μm It is characterized by containing silicon particles.

また、本発明は大きさが5〜20μmの炭化珪素粒子を
母材に対して容積比で3〜50%含み、残部が実質的にY2
O3、Er2O3、Tm2O3、Yb2O3、Lu2O3のうち、いずれか2種
以上、あるいは希土類、MgO、ZrO2を含む窒化珪素から
なる混合粉体を形成し、前記混合粉体から得られた成形
体を1500〜2000℃の範囲の温度で焼結することを特徴と
する。
Further, the present invention contains silicon carbide particles having a size of 5 to 20 μm in a volume ratio of 3 to 50% with respect to the base material, and the balance is substantially Y 2.
A mixed powder of silicon nitride containing at least two of O 3 , Er 2 O 3 , Tm 2 O 3 , Yb 2 O 3 , and Lu 2 O 3 or a rare earth, MgO, and ZrO 2 is formed. And sintering a compact obtained from the mixed powder at a temperature in the range of 1500 to 2000 ° C.

さらに、本発明は焼結助剤としてY2O3、Er2O3、Tm
2O3、Yb2O3、Lu2O3のうち、いずれか2種以上、あるい
は希土類、MgO、ZrO2を含む窒化珪素を母材とし、強化
材として、最大径が5〜50μm、厚さが最大径の1/3以
下の板状炭化珪素粒子を含むことを特徴とする。
Furthermore, the present invention provides Y 2 O 3 , Er 2 O 3 , Tm
Of 2 O 3 , Yb 2 O 3 , Lu 2 O 3 , any one or more of them, or silicon nitride containing rare earth, MgO, ZrO 2 as a base material, as a reinforcing material, a maximum diameter of 5 to 50 μm, thickness Is characterized by containing plate-like silicon carbide particles having a maximum diameter of 1/3 or less.

また、本発明は最大径が5〜50μm、厚さが最大径の
1/3以下の板状炭化珪素粒子を容積比で3〜50%含み、
残部が実質的にY2O3、Er2O3、Tm2O3、Yb2O3、Lu2O3のう
ち、いずれか2種以上、あるいは希土類、MgO、ZrO2
含む窒化珪素からなる混合粉体を形成し、前記混合粉体
から得られた成形体を1500〜2000℃の範囲の温度で焼結
することを特徴とする。
Further, the present invention has a maximum diameter of 5 to 50 μm and a thickness of the maximum diameter.
Contains 3 to 50% by volume ratio of 1/3 or less plate-like silicon carbide particles,
The balance is substantially at least two of Y 2 O 3 , Er 2 O 3 , Tm 2 O 3 , Yb 2 O 3 , Lu 2 O 3 , or rare earth, MgO, silicon nitride containing ZrO 2 A mixed powder is formed, and a compact obtained from the mixed powder is sintered at a temperature in the range of 1500 to 2000 ° C.

[作用] 本発明では、焼結助剤としてY2O3、Er2O3、Tm2O3、Yb
2O3、Lu2O3のうち、いずれか2種以上、あるいは希土
類、MgO、ZrO2を含む窒化珪素を母材とし、強化材とし
て大きさが5〜20μmの炭化珪素粒子を容積比で3〜50
%、好ましくは10〜30%加えて混合粉体を形成し、また
は、最大径が5〜50μm、好ましくは10〜40μm、厚さ
が最大径の1/3以下の板状をなす炭化珪素粒子を容積比
で3〜50%、好ましくは10〜30%加えて混合粉体を形成
し、得られた成形体を1500〜2000℃の温度範囲で焼結す
ることにより高靱性のセラミックス複合焼結体が得られ
る。さらに靱性改善の効果は板状炭化珪素粒子を強化材
として用いた方が炭化珪素粒子を強化材として用いるよ
り大となる。
[Action] In the present invention, Y 2 O 3 , Er 2 O 3 , Tm 2 O 3 , Yb
2 O 3 , Lu 2 O 3 , silicon carbide particles having a size of 5 to 20 μm as a reinforcing material based on silicon nitride containing at least two kinds, or rare earth, MgO, ZrO 2 3 to 50
%, Preferably 10 to 30% to form a mixed powder, or plate-shaped silicon carbide particles having a maximum diameter of 5 to 50 μm, preferably 10 to 40 μm, and a thickness of 1/3 or less of the maximum diameter. Is added at a volume ratio of 3 to 50%, preferably 10 to 30% to form a mixed powder, and the obtained molded body is sintered at a temperature in the range of 1500 to 2000 ° C to obtain a high-toughness ceramic composite sintered body. The body is obtained. Further, the effect of improving toughness is greater when plate-like silicon carbide particles are used as a reinforcing material than when silicon carbide particles are used as a reinforcing material.

[実施例] 次に、本発明に係るセラミックス複合焼結体およびそ
の製造方法について好適な実施例を挙げ、添加の図面に
基づいて詳細に説明する。
EXAMPLES Next, preferred examples of the ceramic composite sintered body and the method for producing the same according to the present invention will be described in detail with reference to the accompanying drawings.

本発明による焼結体は、母材としてY2O3、Er2O3、Tm2
O3、Yb2O3、Lu2O3のうち、いずれか2種以上、あるいは
希土類、MgO、ZrO2を含む窒化珪素と、強化材としての
炭化珪素粒子とを成分として構成される。この場合、原
料中に不純物として含まれる少量の他の成分が存在して
も構わない。成形方法としては、プレス成形、泥漿鋳込
み成形、射出成形、押出成形等の通常の全ての成形方法
が適用出来る。焼結は、ホットプレス(HP)を使用し、
真空または非酸化性雰囲気中で行ったが、常圧焼結、予
備焼成HIP(sinter−HIP)やカプセルHIP(カプセル中
に封入)でも同様の効果が得られる。
Sintered body according to the present invention, Y 2 O 3 as the base material, Er 2 O 3, Tm 2
It is composed of at least two of O 3 , Yb 2 O 3 , and Lu 2 O 3 , or silicon nitride containing rare earth, MgO, and ZrO 2 , and silicon carbide particles as a reinforcing material. In this case, a small amount of other components contained as impurities in the raw material may be present. As the molding method, all ordinary molding methods such as press molding, slip casting, injection molding, and extrusion molding can be applied. For sintering, use a hot press (HP)
Although performed in a vacuum or non-oxidizing atmosphere, the same effect can be obtained by normal pressure sintering, pre-baked HIP (sinter-HIP) or capsule HIP (encapsulated in capsule).

焼結温度は、1500〜2000℃の範囲とした。窒化珪素の
場合、焼結温度が1700℃以上になると当該窒化珪素の分
解が激しくなるので、窒素雰囲気の圧力を高くし、通常
は9〜9.9kg・f/cm2で行った。焼結温度が上記範囲より
低温になると、得られる焼結体の密度が低くなり、逆に
それより高温になると上記のように母材の分解等が生じ
るため、緻密な焼結体が得られなかった。この場合の最
適焼結温度は、常圧焼結、ホットプレス、シンターHI
P、カプセルHIPの条件、および強化材の炭化珪素粒子の
大きさと量に依存して変化した。また、炭化珪素の添加
量が容積比で3%より少ないと破壊靱性向上の効果が認
められず、50%より多いと、得られたセラミックス複合
焼結体の密度が低く、緻密化は達成されなかった。さら
に、炭化珪素粒子の大きさが5μmより小さいと破壊靱
性の効果が認められず、20μmより大きいと得られたセ
ラミックス複合焼結体の密度は低く緻密化は達成されな
かった。破壊靱性は、SEPB法(Single Edge Pre−crack
ed Beam法)により測定した。すなわち、JIS R1601に準
拠した試料を用意し、ビッカース圧子圧入により圧痕を
つけた後、予亀裂を入れるため荷重を加え、イヤホンで
ポップ・イン(Pop−In)を検知した。続いて、予亀裂
長さを測定するため着色を行い、曲げ試験を行った後、
破断荷重を測定した。破断試料の予亀裂長さを測定した
後、破壊靱性の算出式により破壊靱性値を求めた。
The sintering temperature was in the range of 1500 to 2000 ° C. In the case of silicon nitride, when the sintering temperature is 1700 ° C. or higher, the decomposition of the silicon nitride becomes severe. Therefore, the pressure in the nitrogen atmosphere is increased, and the operation is usually performed at 9 to 9.9 kg · f / cm 2 . When the sintering temperature is lower than the above range, the density of the obtained sintered body is lowered, and when the temperature is higher than that, decomposition of the base material occurs as described above, so that a dense sintered body is obtained. Did not. The optimum sintering temperature in this case is normal pressure sintering, hot pressing, sinter HI
P, the condition of the capsule HIP, and the size and amount of the silicon carbide particles of the reinforcement varied. If the amount of silicon carbide is less than 3% by volume, the effect of improving fracture toughness is not recognized. If the amount is more than 50%, the density of the obtained ceramic composite sintered body is low, and densification is achieved. Did not. Furthermore, if the size of the silicon carbide particles is smaller than 5 μm, the effect of fracture toughness is not recognized, and if it is larger than 20 μm, the density of the obtained ceramic composite sintered body is low and densification is not achieved. Fracture toughness was measured by the SEPB method (Single Edge Pre-crack).
(ed Beam method). That is, a sample compliant with JIS R1601 was prepared, and after indentation was made by Vickers indentation, a load was applied to form a pre-crack, and pop-in (Pop-In) was detected with an earphone. Subsequently, after performing coloring to measure the pre-crack length and performing a bending test,
The breaking load was measured. After measuring the pre-crack length of the fractured sample, the fracture toughness value was determined by the fracture toughness calculation formula.

次に、具体的実施例について説明する。 Next, specific examples will be described.

第1図は本発明の方法を示す説明図である。先ず、母
材および強化材をポットミルに入れ、水またはエタノー
ル中で24時間混合し混合物を形成する。強化材は、既に
説明したように、容積比で3〜50%含まれ、粒径が5〜
20μmのもの、または最大径が5〜50μmで、厚さが最
大径の1/3以下の板状をなすものとを使用した。
FIG. 1 is an explanatory view showing the method of the present invention. First, the matrix and reinforcement are placed in a pot mill and mixed in water or ethanol for 24 hours to form a mixture. As described above, the reinforcing material contains 3 to 50% by volume and has a particle size of 5 to 5.
A plate having a thickness of 20 μm or a plate having a maximum diameter of 5 to 50 μm and a thickness of 1/3 or less of the maximum diameter was used.

第2図は本発明における炭化珪素粒子の定義を示す説
明図である。炭化粒子珪素は、第2図(a)に示すよう
に、短軸径(2本の平行線で挟み最小間隔となるときの
間隔)が5〜20μmのものとして定義される。また、板
状炭化珪素粒子は、本発明において好ましいものであ
り、第2図(b)に定義を示す。すなわち、板状粒子は
最大径が5〜50μmで厚さが最大径の1/3以下のものと
して定義される。
FIG. 2 is an explanatory diagram showing the definition of silicon carbide particles in the present invention. As shown in FIG. 2 (a), the silicon carbide particles are defined as those having a minor axis diameter (interval at a minimum interval between two parallel lines) of 5 to 20 μm. Further, plate-like silicon carbide particles are preferable in the present invention, and the definition is shown in FIG. 2 (b). That is, the plate-like particles are defined as having a maximum diameter of 5 to 50 μm and a thickness of 1/3 or less of the maximum diameter.

次に、得られた混合物を120℃で24時間乾燥させ、メ
ッシュが149μmの大きさの篩にかけ、成形用粉体とし
た。次に圧力200kg/cm2でプレス成形、場合によっては
圧力7ton/cm2でラバープレス成形後、焼成する。この場
合、加圧焼成が施されるが、HP温度は1atmのN2雰囲気で
1500〜2000℃とした。また、HP圧力は300kg/cm2であっ
た。なお、非酸化物セラミックスの場合は1700℃以上の
温度では既に説明した理由から、N2圧は9.5atmとした。
Next, the obtained mixture was dried at 120 ° C. for 24 hours, and passed through a sieve having a mesh size of 149 μm to obtain a molding powder. Next, press molding is performed at a pressure of 200 kg / cm 2 , and in some cases, rubber press molding is performed at a pressure of 7 ton / cm 2 , followed by firing. In this case, the pressurizing pressure firing is performed, HP temperature in N 2 atmosphere at 1atm
1500-2000 ° C. Also, the HP pressure was 300 kg / cm 2 . In the case of non-oxide ceramics, at a temperature of 1700 ° C. or higher, the N 2 pressure was set to 9.5 atm for the reason already described.

表1は、このようにして得られた高靱化の結果を示し
たものである。
Table 1 shows the results of toughening obtained in this way.

[発明の効果] 本発明に係るセラミックス複合焼結体は、窒化珪素の
母材に適切な大きさと形態の炭化珪素粒子を適切な容積
比で分散付加することにより、高靱性を呈するセラミッ
クスを得ることが出来る効果がある。また、特殊な設備
は特に必要とせず、通常のセラミックス製造設備を使用
するだけで済むので、製造原価を低減出来る効果があ
る。
[Effect of the Invention] The ceramic composite sintered body according to the present invention obtains ceramics exhibiting high toughness by dispersing and adding silicon carbide particles having an appropriate size and shape at an appropriate volume ratio to a silicon nitride base material. There is an effect that can be. In addition, special equipment is not particularly required, and only ordinary ceramic manufacturing equipment is used, so that the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明によるセラミックス複合焼結体を製造す
る方法の一実施例を示す説明図、 第2図は強化材の炭化珪素粒子の寸法を定義する説明図
である。
FIG. 1 is an explanatory view showing one embodiment of a method for producing a ceramic composite sintered body according to the present invention, and FIG. 2 is an explanatory view defining dimensions of silicon carbide particles of a reinforcing material.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭64−9872(JP,A) 特開 昭64−28283(JP,A) (58)調査した分野(Int.Cl.6,DB名) C04B 35/584 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-64-9872 (JP, A) JP-A-64-28283 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C04B 35/584

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】焼結助剤としてY2O3、Er2O3、Tm2O3、Yb2O
3、Lu2O3のうち、いずれか2種以上、あるいは希土類、
MgO、ZrO2を含む窒化珪素を母材とし、強化材として、
大きさが5〜20μmの炭化珪素粒子を含むことを特徴と
するセラミックス複合焼結体。
1. A Y 2 O 3 as a sintering aid, Er 2 O 3, Tm 2 O 3, Yb 2 O
3 , two or more of Lu 2 O 3 or rare earths,
Using silicon nitride containing MgO and ZrO 2 as a base material, as a reinforcing material,
A ceramic composite sintered body comprising silicon carbide particles having a size of 5 to 20 μm.
【請求項2】請求項1記載の焼結体において、炭化珪素
粒子を容積比で3〜50%含むことを特徴とするセラミッ
クス複合焼結体。
2. A ceramic composite sintered body according to claim 1, wherein said sintered body contains silicon carbide particles in a volume ratio of 3 to 50%.
【請求項3】大きさが5〜20μmの炭化珪素粒子を母材
に対して容積比で3〜50%含み、残部が実質的にY2O3
Er2O3、Tm2O3、Yb2O3、Lu2O3のうち、いずれか2種以
上、あるいは希土類、MgO、ZrO2を含む窒化珪素からな
る混合粉体を形成し、前記混合粉体から得られた成形体
を1500〜2000℃の範囲の温度で焼結することを特徴とす
るセラミックス複合焼結体の製造方法。
3. A silicon carbide particle having a size of 5 to 20 μm is contained in a volume ratio of 3 to 50% with respect to a base material, and the balance is substantially Y 2 O 3 ,
Forming a mixed powder of at least two of Er 2 O 3 , Tm 2 O 3 , Yb 2 O 3 , and Lu 2 O 3 , or a rare earth, MgO, and silicon nitride containing ZrO 2 , A method for producing a ceramic composite sintered body, comprising sintering a compact obtained from a powder at a temperature in the range of 1500 to 2000 ° C.
【請求項4】焼結助剤としてY2O3、Er2O3、Tm2O3、Yb2O
3、Lu2O3のうち、いずれか2種以上、あるいは希土類、
MgO、ZrO2を含む窒化珪素を母材とし、強化材として、
最大径が5〜50μm、厚さが最大径の1/3以下の板状炭
化珪素粒子を含むことを特徴とするセラミックス複合焼
結体。
Wherein Y 2 O 3 as a sintering aid, Er 2 O 3, Tm 2 O 3, Yb 2 O
3 , two or more of Lu 2 O 3 or rare earths,
Using silicon nitride containing MgO and ZrO 2 as a base material, as a reinforcing material,
A ceramic composite sintered body characterized by containing plate-like silicon carbide particles having a maximum diameter of 5 to 50 μm and a thickness of 1/3 or less of the maximum diameter.
【請求項5】請求項4記載の焼結体において、板状炭化
珪素粒子を容積比で3〜50%含むことを特徴とするセラ
ミックス複合焼結体。
5. The ceramic composite sintered body according to claim 4, wherein the sintered body contains plate-like silicon carbide particles in a volume ratio of 3 to 50%.
【請求項6】最大径が5〜50μm、厚さが最大径の1/3
以下の板状炭化珪素粒子を容積比で3〜50%含み、残部
が実質的にY2O3、Er2O3、Tm2O3、Yb2O3、Lu2O3のうち、
いずれか2種以上、あるいは希土類、MgO、ZrO2を含む
窒化珪素からなる混合粉体を形成し、前記混合粉体から
得られた成形体を1500〜2000℃の範囲の温度で焼結する
ことを特徴とするセラミックス複合焼結体の製造方法。
6. The maximum diameter is 5 to 50 μm and the thickness is 1/3 of the maximum diameter.
The following plate-like silicon carbide particles are contained in a volume ratio of 3 to 50%, and the balance is substantially Y 2 O 3 , Er 2 O 3 , Tm 2 O 3 , Yb 2 O 3 , Lu 2 O 3 ,
Any two or more, or rare earth, MgO, to form a mixed powder consisting of silicon nitride containing ZrO 2, sintered at a temperature in the range of 1500 to 2000 ° C. The resultant green body from the powder mixture A method for producing a ceramic composite sintered body, comprising:
JP1243133A 1989-09-18 1989-09-18 Ceramic composite sintered body and method of manufacturing the same Expired - Fee Related JP2925089B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1243133A JP2925089B2 (en) 1989-09-18 1989-09-18 Ceramic composite sintered body and method of manufacturing the same
US07/582,462 US5217932A (en) 1989-09-18 1990-09-14 Sintered ceramic composite body and method of manufacturing same
DE69014793T DE69014793T2 (en) 1989-09-18 1990-09-14 Sintered ceramic composite body and process for its production.
CA002025426A CA2025426C (en) 1989-09-18 1990-09-14 Sintered ceramic composite body and method of manufacturing same
EP90310090A EP0419150B1 (en) 1989-09-18 1990-09-14 Sintered ceramic composite body and method of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1243133A JP2925089B2 (en) 1989-09-18 1989-09-18 Ceramic composite sintered body and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH03103360A JPH03103360A (en) 1991-04-30
JP2925089B2 true JP2925089B2 (en) 1999-07-26

Family

ID=17099289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1243133A Expired - Fee Related JP2925089B2 (en) 1989-09-18 1989-09-18 Ceramic composite sintered body and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2925089B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2974473B2 (en) * 1991-10-30 1999-11-10 日本碍子株式会社 Composite ceramics and manufacturing method thereof
JP4869171B2 (en) * 2007-07-13 2012-02-08 株式会社東芝 Method for producing wear-resistant member made of silicon nitride

Also Published As

Publication number Publication date
JPH03103360A (en) 1991-04-30

Similar Documents

Publication Publication Date Title
KR910005053B1 (en) High toughness zro2 sintered body and method of producing the same
EP0370176B1 (en) Ceramic composit material and process of manufacturing thereof
JP2507479B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
US5196386A (en) Sintered ceramic composite body and method of manufacturing same
EP0419150B1 (en) Sintered ceramic composite body and method of manufacturing same
JP2925089B2 (en) Ceramic composite sintered body and method of manufacturing the same
JP2854340B2 (en) Ceramic composite sintered body and method of manufacturing the same
JP3091085B2 (en) Rare earth silicate based sintered body and method for producing the same
JP3009046B2 (en) Ceramic composite sintered body and method of manufacturing the same
JP2858811B2 (en) Ceramic composite sintered body and method of manufacturing the same
JPH08208317A (en) Alumina sintered body and production thereof
JP3148559B2 (en) Ceramic fiber reinforced turbine blade and method of manufacturing the same
JPS6246959A (en) Heat-stability-resistant high toughness ceramic sintered body and manufacture
JP3044290B2 (en) Method for producing particle-dispersed composite ceramics
JP3359443B2 (en) Alumina sintered body and method for producing the same
JP2955917B2 (en) Silicon nitride sintered body having high fracture toughness by addition of foreign particles and method for producing the same
JP3837516B2 (en) Zirconia-based superplastic ceramics
JP2985519B2 (en) Particle-dispersed ZrO2-based ceramic material and method for producing the same
JP2581128B2 (en) Alumina-sialon composite sintered body
JPH0813702B2 (en) Composite ceramics
JPS63162583A (en) Manufacture of fiber reinforced ceramics
JPH09278521A (en) Ceramic composite
JPH05319910A (en) Ceramic composite material and its production
JP2001080961A (en) High strength zirconia-base ceramic sintered compact and its production
KR0140267B1 (en) Method for manufacturing sintered silicon-nitrid

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees