JPH05319910A - Ceramic composite material and its production - Google Patents

Ceramic composite material and its production

Info

Publication number
JPH05319910A
JPH05319910A JP4151176A JP15117692A JPH05319910A JP H05319910 A JPH05319910 A JP H05319910A JP 4151176 A JP4151176 A JP 4151176A JP 15117692 A JP15117692 A JP 15117692A JP H05319910 A JPH05319910 A JP H05319910A
Authority
JP
Japan
Prior art keywords
average particle
tic
composite material
zro
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4151176A
Other languages
Japanese (ja)
Inventor
Ryuichi Matsuki
竜一 松木
Takeyoshi Takenouchi
武義 竹之内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP4151176A priority Critical patent/JPH05319910A/en
Publication of JPH05319910A publication Critical patent/JPH05319910A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high-toughness and high strength composite ceramic material having heat shock resistance without damage to the characteristics of Al2O3/TiC composite material by dispersing fine particles of ZrO2 having a specific particle size in a Al2O3/TiC composite material. CONSTITUTION:A mixture comprising 10 to 30v/v% of ZrO2 of less than 2mum average particle sizes, 1 to 8v/v% of TiC and the rest of Al2O3 of less than 5mum average particle sizes is compacted and sintered in an inert atmosphere over 1400 deg.C to give a composite material where fine particles of ZrO2 of less than 2mum average particle sizes are dispersed in a ceramic where 1 to 8v/v% of TiC fine particles of less than 2mum average particle sizes are dispersed in the crystalline particles of Al2O3 matrix of 0.2 to 10mum average particle sizes. The composite material can be produced by low-temperature sintering and has excellent heat shock resistance in addition to excellent abrasion resistance and heat resistance of Al2O3/TiC composite material which shows high strength not only at room temperature but also at elevated temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特殊構造を有するセラ
ミックス複合材料及びその製造方法に関する。さらに、
詳しくは耐熱性、耐摩耗性、耐熱衝撃性を有する高靱
性、高強度複合セラミックス材料及びその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic composite material having a special structure and a method for producing the same. further,
More specifically, it relates to a high toughness, high strength composite ceramic material having heat resistance, wear resistance, and thermal shock resistance, and a method for producing the same.

【0002】[0002]

【従来の技術】Al2 3 は、易焼結性で耐熱性、耐蝕
性、電気絶縁性等に優れた特性を有しているため、古く
から工業材料として広範な用途に利用されてきたが、強
度、破壊靱性、耐熱衝撃性が低いという欠点を持ってい
る。そのために、これらの欠点を複合化、例えばAl2
3 粒子中に第2相として、SiC、Si3 4 等を分
散することにより改善しようとする試みがなされてきた
が、それらの材料開発の大多数は、第2相としてSi
C、Si3 4 等の粒子、ウィスカーを分散したミクロ
ンレベルの複合化が中心であり、その特性改善には限界
があった。
2. Description of the Related Art Al 2 O 3 has been widely used as an industrial material for a long time since it is easy to sinter and has excellent heat resistance, corrosion resistance and electric insulation. However, it has the drawback of low strength, fracture toughness, and thermal shock resistance. To that end, these disadvantages are compounded, for example Al 2
Attempts have been made to improve by dispersing SiC, Si 3 N 4, etc. as a second phase in O 3 particles, but most of the material developments of these have been made as Si as a second phase.
Mostly, the composite of C, Si 3 N 4, etc. particles and whiskers is dispersed at the micron level, and there has been a limit to improving the characteristics.

【0003】これらの分散粒子、ウィスカーの複合化に
より破壊靱性は、分散粒子がAl23 の粒界に偏在す
るために生じるクラック偏向、あるいはウィスカーの引
き抜き等により改善されている。
Fracture toughness is improved by compounding these dispersed particles and whiskers by crack deflection caused by uneven distribution of dispersed particles at the grain boundaries of Al 2 O 3 , or by pulling out whiskers.

【0004】[0004]

【発明が解決しようとする課題】しかし、このようなク
ラック偏向、あるいはウィスカーの引き抜き等により破
壊靱性を改善するという考えでは、破壊の発生源である
粒界の欠陥には変化がなく、したがって粒界の欠陥は残
存しているため、大幅な強度向上は望めなかった。ま
た、Al2 3 のようなセラミックス焼結体は、異方性
粒子でマトリックスが形成されており、粒子境界で隣接
粒子の熱膨張差により歪が発生し、このために、粒界が
破壊源となり、強度低下になるという欠点を有する。
However, in the idea of improving the fracture toughness by such crack deflection or whisker pulling out, there is no change in the defect of the grain boundary, which is the source of the fracture, and therefore the grain boundary is not changed. Since the defects of the field remain, it was not possible to expect a significant improvement in strength. Further, a ceramic sintered body such as Al 2 O 3 has a matrix formed of anisotropic particles, and strain is generated at the grain boundaries due to the difference in thermal expansion between adjacent particles, which causes the grain boundaries to break. It has a drawback that it becomes a source and the strength is reduced.

【0005】そこで、本発明者等は、上記のような欠点
を改善する目的で、先にAl2 3の結晶粒内にTiC
を分散したAl2 3 /TiC複合材料(特開平2−2
29757号公報参照)を提案した。このセラミックス
複合材料は、TiC粒子がAl2 3 の結晶粒内に分散
した複合化組織を有している点で、室温及び高温でも高
強度を示し、したがって耐磨耗部材、耐熱材料、切削工
具材料等の工業材料に十分に利用し得るものであるが、
更にAl2 3 /TiC複合材料にZrO2 微粒子を分
散することにより、Al2 3 /TiC複合材料の優れ
た特性を損なわず、その上耐熱衝撃性のある高靱性、高
強度のセラミックス複合材料が得られ、また更に低温焼
結が可能であるセラミックス複合材料の製造方法を見出
し、ここに本発明を完成した。
Therefore, the inventors of the present invention first aimed to improve the above-mentioned drawbacks by first forming TiC in the Al 2 O 3 crystal grains.
Al 2 O 3 / TiC composite material having dispersed therein (Japanese Patent Laid-Open No. 2-2
No. 29757). This ceramic composite material exhibits high strength even at room temperature and high temperature in that it has a composite structure in which TiC particles are dispersed in Al 2 O 3 crystal grains, and therefore, it has wear resistance members, heat resistant materials, and cutting materials. Although it can be sufficiently used for industrial materials such as tool materials,
By further dispersing ZrO 2 fine particles in the Al 2 O 3 / TiC composite, without compromising the excellent properties of Al 2 O 3 / TiC composite, high toughness thereon a thermal shock resistance, high strength ceramic composite The present invention has been completed by finding a method for producing a ceramic composite material that can obtain a material and can be further sintered at a low temperature.

【0006】したがって、本発明の目的は、Al2 3
/TiC複合材料の有する特性を損なわず、更に耐熱衝
撃性のある高靱性、高強度のセラミックス複合材料を提
供することにある。
Therefore, the object of the present invention is to provide Al 2 O 3
Another object of the present invention is to provide a ceramic composite material having high toughness and high strength, which is resistant to thermal shock and does not impair the properties of the / TiC composite material.

【0007】更に本発明のもう一つの目的は、焼結過程
で緻密に焼結され、かつ低温焼結されて上記特性が得ら
れるセラミックス複合材料の製造方法を提供することに
ある。
Still another object of the present invention is to provide a method for producing a ceramic composite material which is densely sintered in a sintering process and is sintered at a low temperature to obtain the above characteristics.

【0008】[0008]

【課題を解決するための手段】本発明の上記各目的は、
以下の構成要件からなる各発明によってそれぞれ達成さ
れる。 (1)平均粒子径0.2μm〜10μmの結晶粒子を有
するAl2 3 マトリックスの結晶粒内に平均粒子径2
μm以下のTiC微粒子を1〜8体積%分散させたセラ
ミックス中に、平均粒子径2μm以下のZrO2 微粒子
を分散させたことを特徴とするセラミックス複合材料。
The respective objects of the present invention are as follows.
The invention is achieved by each invention having the following constituent features. (1) Average particle size 2 within the crystal grains of an Al 2 O 3 matrix having crystal grains with an average particle size of 0.2 μm to 10 μm.
A ceramic composite material, wherein ZrO 2 fine particles having an average particle diameter of 2 μm or less are dispersed in a ceramic in which 1 to 8% by volume of TiC fine particles having an average particle diameter of 2 μm or less are dispersed.

【0009】(2)安定化剤としてY2 3 を1〜3m
ol%含有するZrO2 10〜50体積%、TiC 1
〜8体積%、残部は平均粒子径5μm以下のAl2 3
よりなる配合組成を有することを特徴とする前記第1項
記載のセラミックス複合材料。
(2) 1 to 3 m of Y 2 O 3 as a stabilizer
ZrO 2 10 to 50% by volume containing ol%, TiC 1
˜8% by volume, the balance being Al 2 O 3 having an average particle size of 5 μm or less
The ceramic composite material according to the above item 1, wherein the composite material has the following composition.

【0010】(3)未安定化ZrO2 10〜30体積
%、TiC 1〜8体積%、残部は平均粒子径5μm以
下のAl2 3 よりなる配合組成を有することを特徴と
する前記第1項記載のセラミックス複合材料。
(3) Unstabilized ZrO 2 of 10 to 30% by volume, TiC of 1 to 8% by volume, and the balance of Al 2 O 3 having an average particle size of 5 μm or less. The ceramic composite material according to the item.

【0011】(4)平均粒子径5μm以下のAl2 3
と平均粒子径2μm以下のTiC及び平均粒子径2μm
以下のZrO2 を前記第2項又は前記第3項記載の配合
組成で混合し、得られた混合物を成形した後、該成形体
を不活性雰囲気で、1400℃以上の温度で焼結するこ
とを特徴とするセラミックス複合材料の製造方法。
(4) Al 2 O 3 having an average particle size of 5 μm or less
And TiC having an average particle size of 2 μm or less and an average particle size of 2 μm
The following ZrO 2 is mixed with the compounding composition described in the above item 2 or 3, the resulting mixture is molded, and then the molded product is sintered in an inert atmosphere at a temperature of 1400 ° C. or higher. A method for producing a ceramics composite material, comprising:

【0012】以下、本発明を更に詳しく説明する。本発
明は、平均粒子径0.2μm〜10μmの結晶粒子を有
するAl2 3 マトリックスの結晶粒内に平均粒子径2
μm以下のTiC微粒子を1〜8体積%分散させたセラ
ミックス中に、平均粒子径2μm以下のZrO2 微粒子
を分散させたことを特徴とするもので、このセラミック
ス複合材料の微細組織構造は、Al2 3 結晶粒内にZ
rO2 が分散した組織、Al2 3 結晶粒内にTiC、
ZrO2 の両者が分散した組織、ZrO2 結晶粒内にT
iCが分散した組織等を含む複合化組織を有するもので
ある。そしてこれによりAl2 3 /TiC複合材料の
有する特性を損なわず、更に耐熱衝撃性のある高靱性、
高強度のセラミックス複合材料が得られる。
The present invention will be described in more detail below. The present invention has an average particle size of 2 in the crystal grains of an Al 2 O 3 matrix having crystal grains with an average grain size of 0.2 μm to 10 μm.
ZrO 2 fine particles having an average particle diameter of 2 μm or less are dispersed in a ceramic in which 1 to 8% by volume of TiC fine particles of μm or less are dispersed. The fine structure structure of this ceramic composite material is Al. Z in the 2 O 3 crystal grains
A structure in which rO 2 is dispersed, TiC in Al 2 O 3 crystal grains,
A structure in which both ZrO 2 are dispersed, T in the ZrO 2 crystal grains
It has a composite structure including a structure in which iC is dispersed. As a result, the characteristics of the Al 2 O 3 / TiC composite material are not impaired, and the high toughness with thermal shock resistance,
A high-strength ceramic composite material can be obtained.

【0013】また本発明の製造方法は、平均粒子径5μ
m以下のAl2 3 と平均粒子径2μm以下のTiC及
び平均粒子径2μm以下のZrO2 を所定の割合で混合
し、成形した後、焼結することにより緻密で特殊な組織
構造のものが得られ、しかも低温焼結されて上記特性が
得られるセラミックス複合材料が得られる。
The manufacturing method of the present invention has an average particle size of 5 μm.
Al 2 O 3 having an average particle diameter of 2 m or less, TiC having an average particle diameter of 2 µm or less and ZrO 2 having an average particle diameter of 2 µm or less are mixed at a predetermined ratio, and the mixture is molded and sintered to obtain a dense and special structure. A ceramics composite material which is obtained and is sintered at a low temperature to obtain the above characteristics can be obtained.

【0014】本発明によるセラミックス複合材料は、A
2 3 結晶粒内にTiC微粒子を分散し、ナノオーダ
ーの複合化を行ったセラミックス中に、更にZrO2
粒子を分散して複合化組織を形成することにより、Ti
Cの添加による高靱性化とZrO2 の添加による相変態
に起因する高靱性化とが互いに阻害することなく作用し
て破壊靱性が向上し、またAl2 3 結晶粒内へのTi
C微粒子、ZrO2 微粒子の分散により、組織の微細化
と破壊源寸法の減少及びTiC粒子、ZrO2粒子によ
る高靱性化により曲げ強度も改善される。
The ceramic composite material according to the present invention is
The TiC fine particles are dispersed in the l 2 O 3 crystal grains, and the ZrO 2 fine particles are further dispersed in the nano-ordered composite ceramics to form a composite structure.
The increase in toughness due to the addition of C and the increase in toughness due to the phase transformation due to the addition of ZrO 2 act without interfering with each other to improve the fracture toughness, and Ti in the Al 2 O 3 crystal grains is improved.
The dispersion of C fine particles and ZrO 2 fine particles also improves the bending strength by making the structure finer and reducing the size of the fracture source, and increasing the toughness by TiC particles and ZrO 2 particles.

【0015】本発明は、マトリックスとしてAl
2 3 、分散粒子としてTiC、ZrO2の2成分を用
いることが特徴である。そして、この複合焼結体のAl
2 3 結晶粒径は、0.2〜10μmであり、TiC粒
子及びZrO2 粒子のそれぞれの平均粒径は2μm以下
で、好ましくはAl2 3 マトリックス中にTiC粒子
とZrO2 粒子を均一に分散させた構造のものである。
複合焼結体中のAl2 3 マトリックス粒子径を0.2
〜10μmとする理由は、強度が大幅に高くなる範囲で
あるためである。
The present invention uses Al as a matrix.
The feature is that 2 O 3 and two components of TiC and ZrO 2 are used as dispersed particles. And the Al of this composite sintered body
The 2 O 3 crystal grain size is 0.2 to 10 μm, the average grain size of each of the TiC particles and ZrO 2 particles is 2 μm or less, and preferably the TiC particles and the ZrO 2 particles are uniformly dispersed in the Al 2 O 3 matrix. The structure is dispersed in.
The Al 2 O 3 matrix particle size in the composite sintered body was 0.2
The reason for setting the thickness to 10 μm is that the strength is in a range in which the strength is significantly increased.

【0016】また焼結前のAl2 3 粉末原料として
は、5μm以下のAl2 3 粒子が好ましく用いられ
が、この理由は、焼結し易いためである。またそれぞれ
の平均粒径が2μm以下のTiC粒子及びZrO2 粒子
を用いる理由は、Al2 3 マトリックス結晶粒内に取
り込まれ易いこと、そして、材料欠陥となるほどのマイ
クロクラックが発生しない範囲であること等による。ま
た分散粒子であるTiCの添加量を1〜8体積%とする
理由は、複合焼結体の破断時にZrO2 の相変態が十分
に発現できる組成範囲であることによる。
As the Al 2 O 3 powder raw material before sintering, Al 2 O 3 particles having a particle size of 5 μm or less are preferably used, because the reason is that sintering is easy. The reason for using TiC particles and ZrO 2 particles each having an average particle diameter of 2 μm or less is that they are easily incorporated into Al 2 O 3 matrix crystal grains and that microcracks to the extent of material defects are not generated. It depends. Further, the reason why the addition amount of the dispersed particles of TiC is set to 1 to 8% by volume is that the composition range is such that the phase transformation of ZrO 2 can be sufficiently exhibited when the composite sintered body is broken.

【0017】未安定ZrO2 の添加量が10体積%未満
では、本発明の効果が得られず、また30体積%を越え
ると、ZrO2 粒子周辺にマイクロクラックが存在する
ようになり、見掛け上高靱性を示すが、これは材質的な
ものではなく、構造的に靱性に寄与しているに過ぎない
のに対して、未安定ZrO2 粒子10〜30体量%添加
の焼結体の研磨面には、単斜相は含まれず、破断時に正
方晶の応力誘起変態の割合が高いものが得られる。
If the amount of the unstable ZrO 2 added is less than 10% by volume, the effect of the present invention cannot be obtained, and if it exceeds 30% by volume, microcracks are present around the ZrO 2 particles, apparently. It shows high toughness, but this is not a material but merely contributes to the toughness structurally. On the other hand, polishing of a sintered body containing 10 to 30% by mass of unstable ZrO 2 particles is performed. The surface does not contain a monoclinic phase and a high proportion of tetragonal stress-induced transformation is obtained at break.

【0018】更に安定化剤としてY2 3 を1〜3mo
l%含有することにより部分安定化したZrO2 の添加
量を10〜50容積%とする理由は、この配合組成では
ZrO2 の応力誘起変態を発現でき、曲げ強度、破壊靱
性を高くすることができるためである。
Further, Y 2 O 3 as a stabilizer is added in an amount of 1 to 3 mo.
The reason why the addition amount of partially stabilized ZrO 2 by containing 1% is 10 to 50% by volume is that the composition can express the stress-induced transformation of ZrO 2 and increase the bending strength and fracture toughness. This is because it can be done.

【0019】またY2 3 を1〜3mol%と限定した
理由は、3mol%を越えると、準安定状態ではなくな
り、有効な応力誘起変態が得られないためである。本発
明によるマトリックスとしてのAl2 3 は、焼結過程
で緻密に焼結され、この粒子内に分散相のTiC粒子と
ZrO2 粒子を均一に取り込むことができる。
The reason why Y 2 O 3 is limited to 1 to 3 mol% is that if it exceeds 3 mol%, the metastable state is lost and effective stress-induced transformation cannot be obtained. Al 2 O 3 as the matrix according to the present invention is densely sintered in the sintering process, and TiC particles and ZrO 2 particles in the dispersed phase can be uniformly incorporated into the particles.

【0020】焼結は、不活性雰囲気又は水素雰囲気中で
ホットプレス焼結、常圧焼結あるいは、常圧焼結・HI
P(熱間等方圧プレス)により焼結するものである。特
に常圧焼結・HIP(熱間等方圧プレス)は、複雑な形
状品を多量に製造できるので好ましい。HIP(熱間等
方圧プレス)を用いる時のガス圧は、広範囲に用いられ
るが、特に1000kg/cm2 〜2000kg/cm
2 が好ましい。
Sintering is carried out by hot press sintering, atmospheric pressure sintering or atmospheric pressure sintering / HI in an inert atmosphere or a hydrogen atmosphere.
It is sintered by P (hot isostatic pressing). In particular, normal pressure sintering and HIP (hot isostatic pressing) are preferable because a large number of complicated shaped products can be manufactured. The gas pressure when using HIP (hot isostatic press) is widely used, but especially 1000 kg / cm 2 to 2000 kg / cm.
2 is preferred.

【0021】焼結温度は1400℃以上が望ましく、更
に望ましくは1400℃から1600℃である。不活性
雰囲気としては、ヘリウム、アルゴン、窒素等が用いら
れ、好ましくはアルゴンである。本発明により得られる
セラミックス複合材料は耐熱材料として、切削工具、耐
摩耗部材、耐熱衝撃性を有する構造材料として、特に好
適である。
The sintering temperature is preferably 1400 ° C. or higher, more preferably 1400 ° C. to 1600 ° C. As the inert atmosphere, helium, argon, nitrogen or the like is used, preferably argon. The ceramic composite material obtained by the present invention is particularly suitable as a heat resistant material, as a cutting tool, a wear resistant member, and a structural material having thermal shock resistance.

【0022】[0022]

【作用】本発明によるセラミックス複合材料は、Al2
3 結晶粒内にTiC微粒子を分散することで、Al2
3 とTiCの熱膨張係数の差により、残留応力が発生
し、これがTiC微粒子周囲のAl2 3 中に引張応力
場を、また隣接するAl2 3 同士の粒界に圧縮応力場
を生じさせる。
The ceramic composite material according to the present invention is made of Al 2
By dispersing TiC fine particles in O 3 crystal grains, Al 2
Residual stress occurs due to the difference in thermal expansion coefficient between O 3 and TiC, which creates a tensile stress field in Al 2 O 3 around TiC particles and a compressive stress field in the grain boundary between adjacent Al 2 O 3 particles. Give rise to.

【0023】この応力場及びTiC微粒子自身によりク
ラックは偏向し、更にAl2 3 にZrO2 が拘束され
ることで、準安定な正方晶を保持したZrO2 が、クラ
ック先端近傍のプロセスゾーンで相変態、マイクロクラ
ックを生じ、クラック先端の応力集中を緩和させ、また
発生した圧縮応力でクラックの進展を抑制することで、
破壊靱性を向上させようとするものである。
The cracks were deflected by the stress field and TiC particles themselves, that ZrO 2 is restrained further Al 2 O 3, ZrO 2 is holding the metastable tetragonal, in the process zone of the crack tip vicinity Phase transformation, micro cracks are generated, stress concentration at the tip of the crack is relaxed, and the compression stress generated suppresses crack development,
It is intended to improve fracture toughness.

【0024】[0024]

【実施例】以下に本発明を実施例を挙げて更に詳しく説
明するが、本発明は、この実施例に限定されるものでは
ない。
EXAMPLES The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0025】実施例 Al2 3 には、住友化学社製α−Al2 3 (AKP
−53、平均粒径0.2μm)、TiC粉末には、白水
化学社製TiC(平均粒径0.2μm)、ZrO2 粉末
には、第一希元素社製未安定ZrO2 (平均粒径0.4
μm)及び東ソー社製部分安定化ZrO2 (平均粒径
0.3μm)を使用した。
Example As Al 2 O 3 , α-Al 2 O 3 (AKP manufactured by Sumitomo Chemical Co., Ltd. was used.
-53, average particle size 0.2 μm), TiC powder has TiC (average particle size 0.2 μm) manufactured by Shiramizu Chemical Co., Ltd., and ZrO 2 powder has unstable ZrO 2 (average particle size 0 .4
μm) and partially stabilized ZrO 2 (average particle size 0.3 μm) manufactured by Tosoh Corporation.

【0026】Al2 3 対して、TiCを5体積%、未
安定ZrO2 、又は2mol%のY2 3 で部分安定化
したZrO2 を表1に示される割合で添加し、エタノー
ルを分散媒として湿式ボールミルで24時間混合を行っ
た。これを十分に乾燥した後、乾式ボールミルで解砕混
合を12時間行って、原料粉末とした。
[0026] In contrast Al 2 O 3, the TiC 5% by volume, was added unstabilized ZrO 2, or 2 mol% of Y 2 O 3 partially stabilized the ZrO 2 in the proportions shown in Table 1, dispersed in ethanol Mixing was performed for 24 hours with a wet ball mill as a medium. After it was sufficiently dried, it was crushed and mixed by a dry ball mill for 12 hours to obtain a raw material powder.

【0027】この原料粉末50grを黒鉛ダイスに充填
し、ホットプレス装置(富士電波工業社製)で焼結し
た。ホットプレス条件は、表1に記載の焼結温度まで昇
温させた後、1時間保持した。またプレス圧は30MP
a、雰囲気ガスにはアルゴンガスを用いた。得られた各
種の焼結体は研削加工してJlS R1601に準じた
3×4×40mmの3点曲げ試験片の大きさとした。
50 gr of this raw material powder was filled in a graphite die and sintered with a hot press machine (Fuji Denpa Kogyo KK). The hot press conditions were such that the temperature was raised to the sintering temperature shown in Table 1 and maintained for 1 hour. The pressing pressure is 30MP
a, Argon gas was used as the atmosphere gas. The various sintered bodies thus obtained were ground into a size of 3 × 4 × 40 mm three-point bending test piece in accordance with JLSR1601.

【0028】曲げ強度は、3点曲げ試験法により、荷重
速度0.5mm/min、スパン長さ30mm、室温で
強度を測定した。破壊靱性は荷重5Kg重、保持時間1
0秒で、IF法により測定した。
The bending strength was measured by a three-point bending test method at a load rate of 0.5 mm / min, a span length of 30 mm, and room temperature. Fracture toughness is 5 kg load and 1 holding time
It was measured by the IF method at 0 seconds.

【0029】表1にAl2 3 とTiC、ZrO2 の組
成配合による曲げ強度、破壊靱性等の特性の変化を示
す。比較のために、Al2 3 単相、Al2 3 /Ti
C複合材料、Al2 3 /TiC/ZrO2 複合材料の
本発明外のものの特性も示す。
Table 1 shows changes in characteristics such as bending strength and fracture toughness due to the composition of Al 2 O 3 , TiC and ZrO 2 . For comparison, Al 2 O 3 single phase, Al 2 O 3 / Ti
The properties of C composite materials, Al 2 O 3 / TiC / ZrO 2 composite materials other than the present invention are also shown.

【0030】[0030]

【表1】 [Table 1]

【0031】表1から明らかなように、比較であるAl
2 3 /TiC複合材料は、破壊強度はAl2 3 単相
よりも大幅に向上するが、破壊靱性の改善は、わずかで
ある。これに対して、Al2 3 /TiC/ZrO2
合材料において、2成分系に未安定化ZrO2 を添加し
た本発明の系では、ZrO2 10〜30体量%組成の複
合焼結体において曲げ強度、破壊靱性が大幅に改善され
ていることがわかる。また部分安定化ZrO2 を10〜
50体積%添加した本発明の系では、曲げ強度、破壊靱
性は大幅に改善されていることがわかる。
As is clear from Table 1, the comparative Al
The 2 O 3 / TiC composite material has a significantly higher fracture strength than the Al 2 O 3 single phase, but the fracture toughness is slightly improved. On the other hand, in the Al 2 O 3 / TiC / ZrO 2 composite material, in the system of the present invention in which the unstabilized ZrO 2 is added to the two-component system, the composite sintered body having a ZrO 2 content of 10 to 30 mass% It can be seen that the flexural strength and fracture toughness are significantly improved. In addition, partially stabilized ZrO 2 is added to 10
It can be seen that the bending strength and fracture toughness are greatly improved in the system of the present invention in which 50% by volume is added.

【0032】なお、X線回折により、未安定化ZrO2
を10〜30体積%添加した焼結体の研磨面のZrO2
は殆ど正方晶で存在し、破断時には、正方晶から単斜相
への応力誘起変態の割合が高い。未安定化ZrO2 5体
積%では、応力誘起変態の割合が少なく、したがって破
壊靱性は低く、また未安定化ZrO2 40体積%では、
焼結体中のZrO2 の約80%は単斜相で存在してお
り、したがって曲げ強度は低い。
By X-ray diffraction, unstabilized ZrO 2
Of ZrO 2 on the polished surface of the sintered body containing 10 to 30% by volume of
Exists in a tetragonal system and has a high rate of stress-induced transformation from the tetragonal system to the monoclinic phase at break. With 5% by volume unstabilized ZrO 2, the proportion of stress-induced transformation is low and therefore the fracture toughness is low, and with 40% by volume unstabilized ZrO 2 ,
About 80% of ZrO 2 in the sintered body exists in a monoclinic phase, and therefore the bending strength is low.

【0033】部分安定化ZrO2 を10〜50体積%添
加して造られた焼結体の研磨面のZrO2 は殆ど正方晶
で存在しているが、部分安定化ZrO2 5体積%添加し
た焼結体では、破断時の応力誘起変態の割合が少なく、
したがって破壊靱性はあまり改善されないことがわか
る。
ZrO 2 on the polished surface of the sintered body prepared by adding 10 to 50% by volume of partially stabilized ZrO 2 is present in almost tetragonal structure, but 5% by volume of partially stabilized ZrO 2 was added. In the sintered body, the ratio of stress-induced transformation at break is small,
Therefore, it is understood that the fracture toughness is not improved so much.

【0034】[0034]

【発明の効果】以上説明したように本発明のセラミック
ス複合材料は、Al2 3 マトリックス中にTiC及び
ZrO2 の2成分を分散していることを特徴とすること
により、Al2 3 単相、Al2 3 /TiC複合材料
の特性を損ねることなく、耐熱衝撃性のある高靱性、高
強度の特性を有し、構造用材料にも応用可能な材料が得
られる。
As described above, the ceramic composite material of the present invention is characterized in that two components of TiC and ZrO 2 are dispersed in the Al 2 O 3 matrix, and thus the Al 2 O 3 simple substance is obtained. Phase, the properties of Al 2 O 3 / TiC composite material are not impaired, and the material has high toughness and high strength with thermal shock resistance and is applicable to structural materials.

【0035】更に従来の複合化セラミックスの焼結温度
は、高温であるのに比較し、本発明の製造方法では、得
られた複合材料は低温焼結で緻密で特殊な組織構造を有
するものが得られ、その結果曲げ強度、破壊靱性等の機
械的特性が大幅に改善される。
Further, in comparison with the sintering temperature of the conventional composite ceramics, which is high, in comparison with the manufacturing method of the present invention, the composite material obtained by low temperature sintering has a dense and special microstructure. As a result, mechanical properties such as bending strength and fracture toughness are significantly improved.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 平均粒子径0.2μm〜10μmの結晶
粒子を有するAl23 マトリックスの結晶粒内に平均
粒子径2μm以下のTiC微粒子を1〜8体積%分散さ
せたセラミックス中に、平均粒子径2μm以下のZrO
2 微粒子を分散させたことを特徴とするセラミックス複
合材料。
1. A ceramic in which 1 to 8% by volume of TiC fine particles having an average particle diameter of 2 μm or less are dispersed in the crystal grains of an Al 2 O 3 matrix having crystal particles having an average particle diameter of 0.2 μm to 10 μm. ZrO with a particle size of 2 μm or less
Ceramic composite material characterized by containing dispersed 2 particles.
【請求項2】 安定化剤としてY2 3 を1〜3mol
%含有するZrO210〜50体積%、TiC 1〜8
体積%、残部は平均粒子径5μm以下のAl2 3 より
なる配合組成を有することを特徴とする請求項1記載の
セラミックス複合材料。
2. A stabilizer containing 1 to 3 mol of Y 2 O 3
% ZrO 2 10-50% by volume, TiC 1-8
The ceramic composite material according to claim 1, wherein the volume% and the balance have a compounding composition of Al 2 O 3 having an average particle diameter of 5 μm or less.
【請求項3】 未安定化ZrO2 10〜30体積%、T
iC 1〜8体積%、残部は平均粒子径5μm以下のA
2 3 よりなる配合組成を有することを特徴とする請
求項1記載のセラミックス複合材料。
3. Unstabilized ZrO 2 10-30% by volume, T
iC 1 to 8% by volume, the balance A having an average particle size of 5 μm or less
The ceramic composite material according to claim 1, which has a compounding composition of 1 2 O 3 .
【請求項4】 平均粒子径5μm以下のAl2 3 と平
均粒子径2μm以下のTiC及び平均粒子径2μm以下
のZrO2 を請求項2又は請求項3記載の配合組成で混
合し、得られた混合物を成形した後、該成形体を不活性
雰囲気で、1400℃以上の温度で焼結することを特徴
とするセラミックス複合材料の製造方法。
4. An Al 2 O 3 having an average particle diameter of 5 μm or less, a TiC having an average particle diameter of 2 μm or less and a ZrO 2 having an average particle diameter of 2 μm or less are mixed with the compounding composition according to claim 2 or 3, and thus obtained. A method for producing a ceramic composite material, comprising: molding the mixture, and then sintering the molded body in an inert atmosphere at a temperature of 1400 ° C. or higher.
JP4151176A 1992-05-20 1992-05-20 Ceramic composite material and its production Pending JPH05319910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4151176A JPH05319910A (en) 1992-05-20 1992-05-20 Ceramic composite material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4151176A JPH05319910A (en) 1992-05-20 1992-05-20 Ceramic composite material and its production

Publications (1)

Publication Number Publication Date
JPH05319910A true JPH05319910A (en) 1993-12-03

Family

ID=15512969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4151176A Pending JPH05319910A (en) 1992-05-20 1992-05-20 Ceramic composite material and its production

Country Status (1)

Country Link
JP (1) JPH05319910A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008087986A (en) * 2006-09-29 2008-04-17 Nippon Tungsten Co Ltd Composite ceramic
KR20150027739A (en) * 2013-08-08 2015-03-12 니뽄 도쿠슈 도교 가부시키가이샤 Ceramic composition and cutting tool
US20180170811A1 (en) * 2015-06-17 2018-06-21 National Institute For Materials Science Oxidation-induced self-healing ceramic composition containing healing activator, method for producing same, use of same, and method for enhancing functionality of oxidation-induced self-healing ceramic composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008087986A (en) * 2006-09-29 2008-04-17 Nippon Tungsten Co Ltd Composite ceramic
KR20150027739A (en) * 2013-08-08 2015-03-12 니뽄 도쿠슈 도교 가부시키가이샤 Ceramic composition and cutting tool
US9550699B2 (en) 2013-08-08 2017-01-24 Ngk Spark Plug Co., Ltd. Ceramic composition and cutting tool
US20180170811A1 (en) * 2015-06-17 2018-06-21 National Institute For Materials Science Oxidation-induced self-healing ceramic composition containing healing activator, method for producing same, use of same, and method for enhancing functionality of oxidation-induced self-healing ceramic composition
US10822277B2 (en) * 2015-06-17 2020-11-03 National Institute For Materials Science Oxidation-induced self-healing ceramic composition containing healing activator, method for producing same, use of same, and method for enhancing functionality of oxidation-induced self-healing ceramic compositions

Similar Documents

Publication Publication Date Title
JP2671945B2 (en) Superplastic silicon carbide sintered body and method for producing the same
KR910005053B1 (en) High toughness zro2 sintered body and method of producing the same
JPH04130049A (en) Ceramic composite material and its production
US5401450A (en) β-silicon nitride sintered body and method of producing same
JPH03218967A (en) High-strength alumina-zirconia-based ceramics sintered body
JPH05319910A (en) Ceramic composite material and its production
US6136738A (en) Silicon nitride sintered body with region varying microstructure and method for manufacture thereof
JP2773976B2 (en) Super tough monolithic silicon nitride
US5324693A (en) Ceramic composites and process for manufacturing the same
JP2985519B2 (en) Particle-dispersed ZrO2-based ceramic material and method for producing the same
JPH07157362A (en) Aluminum oxide-based ceramic having high strength and high toughness
JP3137405B2 (en) Manufacturing method of silicon nitride based ceramics
US5672553A (en) Superplastic silicon nitride sintered body
JPH05194022A (en) Ceramic composite material and its production
JP2650049B2 (en) Ceramic cutting tool and its manufacturing method
JP2979703B2 (en) Composite ceramic material and method for producing the same
JP2976534B2 (en) Silicon nitride sintered body and method for producing the same
JP2854340B2 (en) Ceramic composite sintered body and method of manufacturing the same
JP2581936B2 (en) Alumina sintered body and method for producing the same
JP2925089B2 (en) Ceramic composite sintered body and method of manufacturing the same
JP2985512B2 (en) Particle-dispersed ZrO2-based ceramic material and method for producing the same
JPH05330905A (en) Ceramic composite material and its production
JPS60108367A (en) Zirconia sintered body
JPH06206762A (en) Composite material of ceramics and its production
JPH09295869A (en) Sialon ceramic excellent in impact resistance and its production

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20001010