JPH08157188A - Deflection detecting method of boom in crane and operation radius calculating method and operation radius calculating device - Google Patents

Deflection detecting method of boom in crane and operation radius calculating method and operation radius calculating device

Info

Publication number
JPH08157188A
JPH08157188A JP30486494A JP30486494A JPH08157188A JP H08157188 A JPH08157188 A JP H08157188A JP 30486494 A JP30486494 A JP 30486494A JP 30486494 A JP30486494 A JP 30486494A JP H08157188 A JPH08157188 A JP H08157188A
Authority
JP
Japan
Prior art keywords
boom
light receiving
light
deflection
crane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30486494A
Other languages
Japanese (ja)
Inventor
Masato Oshima
真人 大嶋
Yoshihiro Hamazaki
義弘 浜崎
Koichi Honke
浩一 本家
Shoji Kawabata
將司 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP30486494A priority Critical patent/JPH08157188A/en
Publication of JPH08157188A publication Critical patent/JPH08157188A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control And Safety Of Cranes (AREA)
  • Jib Cranes (AREA)

Abstract

PURPOSE: To accurately calculate an operation radius by improving detecting accuracy of deflection of a boom. CONSTITUTION: A light emitting body 10 and a light receiving body 11 of a laser displacement gauge are arranged on a boom 1 in a condition where an emitting receiving action of a laser beam between these is performed between a base end part of the boom 1 and a boom head 1a and a receiving point of the light receiving body 11 chancres by deflection of the boom 1, and a deflection quantity of the boom 1 is directly detected by a change in a distance between the light receiving point and a reference point preset on the boom. An operation radius is calculated on the basis of the deflection quantity found in this way.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はクレーン作業時のブーム
のたわみを検出する方法、およびこのブームのたわみに
よる作業半径の増加分を加えて実際の作業半径を求める
作業半径検出方法並びに同装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting the deflection of a boom during crane work, a method for detecting the actual radius of operation by adding the increase in the radius of operation due to the deflection of the boom, and a device therefor. It is a thing.

【0002】[0002]

【従来の技術】クレーンの作業半径Rは、そのときのブ
ーム長さLとブーム起伏角θとから、R=Lcosθに
よって求めることができる。
2. Description of the Related Art The working radius R of a crane can be obtained by R = Lcos θ from the boom length L and the boom hoisting angle θ at that time.

【0003】しかし、実際には、吊り荷重およびブーム
の自重によるブームのたわみ(伸縮ブームにあっては、
加えて各段ブーム間の嵌合隙間によるたわみ)が発生す
るため、実際の作業半径が増加する。
However, in reality, the flexure of the boom due to the suspension load and the weight of the boom (in the telescopic boom,
In addition, since the bending due to the fitting gap between each stage boom occurs, the actual working radius increases.

【0004】これは長尺ブームを備えた大形クレーンに
とくに顕著となり、上記単純式で求めた作業半径をもと
に、過負荷防止装置の定格吊り荷重を設定すると、安全
上問題がある。
This is particularly noticeable in a large crane equipped with a long boom, and there is a safety problem if the rated suspension load of the overload prevention device is set based on the working radius obtained by the above simple formula.

【0005】このため、従来、 特公昭61−24313号に示されているように、
ブームの長さと起伏角とによって決まる各ブーム状態に
おいて、吊り荷重とブームのたわみ量とが近似的に比例
することに鑑み、予め複数のブーム状態ごとに基準吊り
荷重とブームのたわみによる作業半径の増加量の関係を
求めておき、検出した実際の吊り荷重から実際の作業半
径増加量を演算する方法、 特公昭62−15475号に示されているように、
ブームの基端部と先端部の双方にブーム起伏角検出器を
設け、この両検出器の出力の平均値をブーム全体の起伏
角として作業半径を算出する方法 が提案された。
Therefore, as disclosed in Japanese Patent Publication No. 61-24313,
Considering that the suspension load and the amount of flexure of the boom are approximately proportional to each other in each boom state determined by the boom length and the hoisting angle, the reference suspension load and the work radius due to the flexure of the boom are preliminarily determined for each boom state. A method of calculating the relationship between the increasing amounts and calculating the actual increasing amount of the working radius from the detected actual suspension load, as shown in Japanese Patent Publication No. 62-15475.
A method has been proposed in which boom undulation angle detectors are provided at both the base end and the tip of the boom, and the working radius is calculated using the average value of the outputs of both detectors as the levitation angle of the entire boom.

【0006】[0006]

【発明が解決しようとする課題】ところが、上記の吊
り荷重をもとにして作業半径の増加量を算出する方法に
よると、吊り荷重の検出そのものに問題がある。
However, according to the method of calculating the increase amount of the working radius based on the above suspension load, there is a problem in detecting the suspension load itself.

【0007】すなわち、吊り荷重は、ブーム起伏シリン
ダの負荷圧を検出する方法等によって検出されるが、作
業中、吊り荷重が一時的に変動すると検出値が実際値よ
りも大幅に大きくなるため、これをもとに算出される作
業半径が実際値よりも大きくなり、定格荷重まで余裕が
あるにもかかわらずクレーン動作が無駄に停止してしま
う。
That is, although the suspension load is detected by a method of detecting the load pressure of the boom hoisting cylinder, etc., if the suspension load fluctuates temporarily during the work, the detected value becomes significantly larger than the actual value. The working radius calculated based on this becomes larger than the actual value, and the crane operation stops unnecessarily even though there is a margin up to the rated load.

【0008】一方、上記のブーム起伏角の平均値をと
る方法においては、とくにブーム先端部に設けられた検
出器の重錘振り子が、クレーン作業中に、ブーム起伏動
作による水平方向の加速度によって鉛直線に対して傾く
等の理由により、ブーム起伏角の検出が不正確になり易
いため、の方法と同様に、作業半径の算出精度が悪く
なる。
On the other hand, in the above method of obtaining the average value of the boom hoisting angle, the weight pendulum of the detector provided especially at the boom tip is vertically moved by the horizontal acceleration due to the boom hoisting operation during the crane operation. Since the boom hoisting angle is liable to be inaccurately detected due to the inclination to the line or the like, the work radius calculation accuracy is deteriorated as in the method.

【0009】そこで本発明は、ブームのたわみを、従来
技術のように吊り荷重やブーム起伏角から間接的に求め
るのではなく、直接検出することにより、たわみの検出
精度を向上させ、作業半径を正確に算出することができ
るクレーンにおけるブームのたわみ検出方法及び作業半
径算出方法並びに作業半径算出装置を提供するものであ
る。
Therefore, according to the present invention, the deflection of the boom is not directly obtained from the suspension load and the boom hoisting angle as in the prior art, but is directly detected, thereby improving the deflection detection accuracy and increasing the working radius. Provided are a boom deflection detection method, a work radius calculation method, and a work radius calculation device for a crane that can be accurately calculated.

【0010】[0010]

【課題を解決するための手段】請求項1の発明(ブーム
のたわみ検出方法)は、発光体と受光体によるレーザー
光の発受作用を行うレーザー変位計を、上記レーザー光
の発受作用がブームの基端部と先端部との間で行われ、
かつ、ブームのたわみによって受光体の受光点が変化す
る状態でブームに設け、ブームのたわみ量を、上記レー
ザー変位計における受光体の受光点とブーム上に予め設
定された基準点との距離の変化によって検出するもので
ある。
According to a first aspect of the present invention (boom flexure detecting method), a laser displacement meter for emitting and receiving laser light by a light emitter and a light receiver is provided. Between the base and tip of the boom,
Also, the boom is provided in a state where the light receiving point of the photoreceptor changes due to the deflection of the boom, and the amount of deflection of the boom is set to the distance between the light receiving point of the photoreceptor in the laser displacement meter and the reference point preset on the boom. It is detected by a change.

【0011】請求項2の発明(作業半径算出方法)は、
請求項1記載のブームのたわみ検出方法によって検出さ
れたブームのたわみ量δと、ブーム長さLと、ブームの
起伏角θとにより、そのときのブームのたわみを加味し
た作業半径Rを R=Lcosθ+δsinθ の式によって求めるものである。
According to the invention of claim 2 (working radius calculation method),
According to the flexure amount δ of the boom detected by the boom flexure detection method according to claim 1, the boom length L, and the boom hoisting angle θ, the working radius R in consideration of the flexure of the boom at that time is R = It is obtained by the equation of L cos θ + δ sin θ.

【0012】請求項3の発明(作業半径算出装置)は、
伸縮自在なブームを備えたクレーンにおいて、(i)ブ
ーム長さを検出するブーム長さ検出手段と、(ii)ブー
ムの起伏角を検出するブーム起伏角検出手段と、(ii
i)発光体と受光体によるレーザー光の発受作用がブー
ムの基端部と先端部との間で行われ、かつ、ブームのた
わみによって受光体の受光点が変化する状態でブームに
設けられたレーザー変位計と、(iv)上記レーザー変
位計からの信号に基づき受光体の受光点とブーム上に予
め設定された基準点との距離の変化によってブームのた
わみ量δを求め、このブームたわみ量δと、上記ブーム
長さ検出手段によって検出されたブーム長さLと、上記
ブーム起伏角検出手段によって検出されたブームの起伏
角θとにより、そのときのブームのたわみを加味した作
業半径Rを R=Lcosθ+δsinθ の式によって求めるように構成された演算器とを具備し
てなるものである。
The invention of claim 3 (working radius calculation device),
In a crane having a telescopic boom, (i) boom length detecting means for detecting boom length, (ii) boom hoisting angle detecting means for detecting hoisting angle of the boom, and (ii)
i) The light-emitting body and the light-receiving body are provided on the boom in a state where the laser light is transmitted and received between the base end portion and the tip end portion of the boom, and the light-receiving point of the light-receiving body changes due to the deflection of the boom. Laser displacement meter, and (iv) based on the signal from the laser displacement meter, the amount of flexure δ of the boom is determined by the change in the distance between the light receiving point of the light receiver and the reference point preset on the boom. The working radius R in consideration of the bending of the boom at that time is calculated by the amount δ, the boom length L detected by the boom length detecting means, and the boom hoisting angle θ detected by the boom hoisting angle detecting means. And an arithmetic unit configured to obtain R by the equation of R = L cos θ + δ sin θ.

【0013】[0013]

【作用】上記構成によると、レーザー変位計によるレー
ザー光の発受作用がブームの基端部と先端部との間で行
われ、ブームがたわむことによってレーザー変位計の受
光点が変化するため、この受光点と、予めブーム上に設
定された基準点との距離(以下、二点間距離という)δ
´が変化する。
According to the above construction, the laser displacement meter emits / receives the laser beam between the base end portion and the tip end portion of the boom, and the deflection of the boom changes the light receiving point of the laser displacement meter. The distance between this light receiving point and the reference point preset on the boom (hereinafter referred to as the distance between two points) δ
´ changes.

【0014】そして、この二点間距離δ´から、実際の
ブームのたわみ量(レーザー光軸と直角方向の受光点の
変位量)δとたわみ角αとが求められる。
From the distance δ'between the two points, the actual flexure amount of the boom (displacement amount of the light receiving point in the direction perpendicular to the laser optical axis) δ and the flexure angle α are obtained.

【0015】このたわみ角αは、ブームの線形弾性方程
式により、二点間距離δ´を用いて求めることができ
る。また、伸縮ブームにおいては、ブームの長さおよび
起伏角とたわみ角αの関係を予め実測で求め、補間式で
たわみ角αを求めることもできる。
This deflection angle α can be obtained from the linear elasticity equation of the boom by using the distance δ ′ between the two points. Further, in the telescopic boom, the relationship between the boom length and the undulation angle and the deflection angle α can be obtained in advance by actual measurement, and the deflection angle α can be obtained by an interpolation formula.

【0016】こうして、ブームのたわみを、従来のよう
に吊り荷重やブーム起伏角を介して間接的に求めるでは
なく、レーザー変位計によって直接検出することができ
るため、たわみの検出精度が向上し、これをもとにブー
ムのたわみを加味した作業半径を正確に算出することが
できる。
In this way, the deflection of the boom can be directly detected by a laser displacement meter, rather than being indirectly obtained through the suspension load and the boom hoisting angle as in the prior art, so that the deflection detection accuracy is improved, Based on this, it is possible to accurately calculate the working radius in consideration of the flexure of the boom.

【0017】[0017]

【実施例】本発明の実施例を図によって説明する。Embodiments of the present invention will be described with reference to the drawings.

【0018】図1〜図3において、1は複数段のブーム
筒によって伸縮自在に構成されたブーム、2はこのブー
ム1を起伏させるブーム起伏シリンダ、3はこのブーム
1の起伏支点となるブームフットピンである。
In FIGS. 1 to 3, 1 is a boom configured to extend and retract by a plurality of stages of boom cylinders, 2 is a boom hoisting cylinder for hoisting the boom 1, and 3 is a boom foot serving as a hoisting fulcrum of the boom 1. It's a pin.

【0019】ブーム1の先端部(ブームヘッド)1aに
は、ブームポイントアイドラ、メイン両シーブ4,5が
設けられ、図示しないウィンチから引出されてこの両シ
ーブ4,5に通された吊りロープ6、および吊りロープ
6に吊持されたフック7によって吊荷Wが上げ下げされ
る。
A boom point idler and main sheaves 4 and 5 are provided at a tip end portion (boom head) 1a of the boom 1, and a suspension rope 6 is drawn out from a winch (not shown) and passed through the sheaves 4 and 5. , And the hook 7 suspended by the suspension rope 6 raises and lowers the suspended load W.

【0020】また、Lはブームフットピン3と両シーブ
4,5の軸心との距離、すなわちブーム長さ、θはブー
ム起伏角で、ブーム長さLはコードリール式のブーム長
さ検出器8によって、またブーム起伏角θはブーム基端
部に設けられたブーム起伏角検出器9によってそれぞれ
検出される。
Further, L is the distance between the boom foot pin 3 and the shaft centers of the sheaves 4 and 5, that is, the boom length, θ is the boom hoisting angle, and the boom length L is a cord reel type boom length detector. 8 and the boom hoisting angle θ are detected by a boom hoisting angle detector 9 provided at the boom base end.

【0021】ブーム1にはレーザー変位計が設けられて
いる。このレーザー変位計は、ブーム1のたわみがない
状態でのブーム軸線に沿ってレーザー光を発射する発光
体10と、この発光体10からのレーザー光を受けて信
号を発する受光体11とから成り、発光体10がブーム
1の基端部に、受光体11がブームヘッド1aにそれぞ
れ上方(ブーム倒伏状態での上方)に突出して設けられ
ている。図1〜図3中、βはレーザー光線の光軸を示
す。
The boom 1 is provided with a laser displacement meter. This laser displacement meter is composed of a light emitter 10 that emits laser light along the boom axis when the boom 1 is not deflected, and a light receiver 11 that receives a laser light from the light emitter 10 and emits a signal. The light-emitting body 10 is provided at the base end portion of the boom 1, and the light-receiving body 11 is provided above the boom head 1a so as to project upward (upward in the boom lying state). 1 to 3, β indicates the optical axis of the laser beam.

【0022】受光体11は、図2に示すように複数の受
光部11a…が竪方向、すなわちブーム軸線と直角方向
に並べられてラインセンサとして構成され、ブーム1の
たわみにより、レーザー光を受ける受光部11a(受光
点)が変化する。
As shown in FIG. 2, the light receiving body 11 is formed as a line sensor by arranging a plurality of light receiving portions 11a in a vertical direction, that is, a direction perpendicular to the boom axis, and receives a laser beam due to the bending of the boom 1. The light receiving portion 11a (light receiving point) changes.

【0023】この受光体11からの受光点の位置信号
は、ブーム長さ検出器8からのブーム長さ信号およびブ
ーム起伏角検出器9からのブーム起伏角信号とともに図
4に示す演算器12に入力され、この演算器12におい
て各信号をもとにブーム1のたわみ量δが演算される。
The position signal of the light receiving point from the light receiver 11 is sent to the calculator 12 shown in FIG. 4 together with the boom length signal from the boom length detector 8 and the boom hoisting angle signal from the boom hoisting angle detector 9. The deflection amount δ of the boom 1 is calculated on the basis of each signal input by the calculator 12.

【0024】すなわち、ブームヘッド1aには、予め、
ブーム1のたわみがない状態での受光点の位置Qが基準
点として設定され、ブーム1のたわみが生じることによ
り、受光点が移動して(Pはこの移動後の受光点を示
す)、この基準点Qと受光点Pの距離(二点間距離)δ
´が変化する。
That is, the boom head 1a is previously provided with
The position Q of the light receiving point when the boom 1 is not deflected is set as a reference point, and the deflection of the boom 1 causes the light receiving point to move (P indicates the light receiving point after this movement). Distance between reference point Q and light receiving point P (distance between two points) δ
´ changes.

【0025】ただし、受光体11はブーム軸線に対して
直角に設けられているため、基準点Qからレーザー光軸
Lに下した垂線の長さδ(Oはこの垂線とレーザー光軸
Lの交点)がブーム1のたわみ量δとなり、∠PQO=
αがブーム1のたわみ角となる。
However, since the photoreceptor 11 is provided at right angles to the boom axis, the length δ of the perpendicular line from the reference point Q to the laser optical axis L (O is the intersection of this perpendicular line and the laser optical axis L). ) Is the deflection amount δ of boom 1, and ∠PQO =
α is the bending angle of the boom 1.

【0026】すなわち、 δ=δ´cosα となる。That is, δ = δ'cosα.

【0027】ここで、たわみ角αは二点間距離δ´に対
応して変化し、はりの線形弾性方程式によって求めるこ
とができる。
Here, the deflection angle α changes depending on the distance δ'between the two points, and can be obtained by the linear elasticity equation of the beam.

【0028】あるいは、この実施例で示した複数段のブ
ーム筒から成る伸縮式のブーム1の場合は、予め二点間
距離δ´とたわみ角αの関係を複数通り、実測で求めて
演算器12に記憶させておき、測定される二点間距離δ
´から補間演算によってたわみ角αを求めてもよい。
Alternatively, in the case of the telescopic boom 1 composed of a plurality of stages of boom cylinders shown in this embodiment, a plurality of relations between the two-point distance δ'and the deflection angle α are previously obtained by actual measurement to obtain a computing unit. The distance between two points δ, which is measured and stored in 12
The deflection angle α may be obtained from ′ by interpolation calculation.

【0029】また、一般に、伸縮ブームの弾性特性とし
て、圧縮変形はたわみ(曲げ)変形に比べて無視できる
程度に小さいため、ブーム長さ検出器8によって検出さ
れるブーム長さLは、ブームフットピン3−交点O間の
距離L´とほぼ同じと考えて差し支えない。
Further, generally, as elastic characteristics of the telescopic boom, since the compression deformation is so small that it can be ignored as compared with the bending (bending) deformation, the boom length L detected by the boom length detector 8 is equal to the boom foot. It can be considered that the distance L ′ between the pin 3 and the intersection O is almost the same.

【0030】つまり、作業半径Rは、 R=Lcosθ+δsinθ によって求められる。That is, the working radius R is obtained by R = Lcosθ + δsinθ.

【0031】こうして求められた作業半径Rは、図4に
示すように過負荷防止装置13に入力され、過負荷防止
のためのパラメータとして用いられる。
The work radius R thus obtained is input to the overload preventing device 13 as shown in FIG. 4 and used as a parameter for preventing overload.

【0032】ところで、上記実施例では、ブーム基端部
に発光体10、先端部に受光体11を設けたが、逆に、
ブーム基端部に受光体11、先端部に発光体10を設け
てもよい。
By the way, in the above-mentioned embodiment, the light emitter 10 is provided at the boom base end and the light receiver 11 is provided at the tip end.
The light receiving body 11 may be provided at the base end of the boom and the light emitting body 10 may be provided at the front end.

【0033】また、本発明は上記実施例で挙げたブーム
伸縮式のクレーンに限らず、ブーム非伸縮式のクレーン
にも適用することができる。この場合、ブーム長さは既
知であるため、ブーム長さ検出器は不要となる。
Further, the present invention is not limited to the boom telescopic type crane described in the above embodiment, but can be applied to a boom non-extensible type crane. In this case, since the boom length is known, the boom length detector is unnecessary.

【0034】[0034]

【発明の効果】上記のように本発明によるときは、レー
ザー変位計の発光体と受光体を、これらによるレーザー
光の発受作用がブームの基端部と先端部との間で行わ
れ、かつ、ブームのたわみによって受光体の受光点が変
化する状態でブームに設け、ブームのたわみ量を、上記
受光点とブーム上に予め設定された基準点との距離の変
化によって直接、検出するようにしたから、従来のよう
に吊り荷重やブーム起伏角を介してブームのたわみを間
接的に求める方式と比較して、たわみの検出精度が大幅
に向上する。
As described above, according to the present invention, the emitter and the receiver of the laser displacement meter are made to emit and receive the laser light between the base end portion and the tip end portion of the boom, In addition, it is provided on the boom in a state where the light receiving point of the light receiver changes due to the bending of the boom, and the amount of bending of the boom is directly detected by the change in the distance between the light receiving point and a preset reference point on the boom. Therefore, as compared with the conventional method of indirectly obtaining the deflection of the boom via the suspension load and the boom hoisting angle, the deflection detection accuracy is significantly improved.

【0035】また、請求項2,3の発明によると、こう
して検出されたブームのたわみをもとに作業半径を算出
するため、ブームのたわみを加味した正確な作業半径を
求め、過負荷防止制御等に正確に反映させることができ
る。
Further, according to the inventions of claims 2 and 3, since the working radius is calculated based on the deflection of the boom thus detected, an accurate working radius in consideration of the deflection of the boom is obtained, and the overload prevention control is performed. Etc. can be reflected accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す概略側面図である。FIG. 1 is a schematic side view showing an embodiment of the present invention.

【図2】図1の一部拡大図である。FIG. 2 is a partially enlarged view of FIG.

【図3】同実施例におけるブームのたわみ状況とたわみ
量検出方法を説明するための模式図である。
FIG. 3 is a schematic diagram for explaining a flexure state of a boom and a flexure amount detection method in the embodiment.

【図4】同実施例における検出器および演算器のブロッ
ク構成図である。
FIG. 4 is a block configuration diagram of a detector and an arithmetic unit in the embodiment.

【符号の説明】[Explanation of symbols]

1 ブーム 1a ブームヘッド 8 ブーム長さ検出器 9 ブーム起伏角検出器 10 レーザー変位計の発光体 11 同受光体 11a 受光体の複数の受光部 P 受光点 Q 基準点 δ´ 受光点と基準点の距離 12 演算器 1 Boom 1a Boom head 8 Boom length detector 9 Boom hoisting angle detector 10 Laser displacement meter light emitter 11 Same light receiver 11a Multiple light receiving parts of light receiver P Light receiving point Q Reference point δ 'Light receiving point and reference point Distance 12 calculator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川端 將司 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所神戸総合技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Masashi Kawabata 1-5-5 Takatsukadai, Nishi-ku, Kobe City Kobe Steel Research Institute, Kobe Steel Research Institute

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 発光体と受光体によるレーザー光の発受
作用を行うレーザー変位計を、上記レーザー光の発受作
用がブームの基端部と先端部との間で行われ、かつ、ブ
ームのたわみによって受光体の受光点が変化する状態で
ブームに設け、ブームのたわみ量を、上記レーザー変位
計における受光体の受光点とブーム上に予め設定された
基準点との距離の変化によって検出することを特徴とす
るクレーンにおけるブームのたわみ検出方法。
1. A laser displacement meter for transmitting and receiving laser light by a light emitter and a light receiver, wherein the laser light is transmitted and received between a base end portion and a tip end portion of a boom, and a boom is provided. It is provided on the boom in a state where the light receiving point of the light receiving body changes due to the deflection of the light, and the amount of bending of the boom is detected by the change in the distance between the light receiving point of the light receiving body of the laser displacement meter and the preset reference point on the boom. A method for detecting the deflection of a boom in a crane, characterized by:
【請求項2】 請求項1記載のブームのたわみ検出方法
によって検出されたブームのたわみ量δと、ブーム長さ
Lと、ブームの起伏角θとにより、そのときのブームの
たわみを加味した作業半径Rを R=Lcosθ+δsinθ の式によって求めることを特徴とするクレーンにおける
作業半径算出方法。
2. A work in which the flexure of the boom at that time is taken into consideration by the flexure amount δ of the boom detected by the boom flexure detection method according to claim 1, the boom length L, and the hoisting angle θ of the boom. A method for calculating a working radius in a crane, characterized in that the radius R is calculated by the equation R = Lcos θ + δ sin θ.
【請求項3】 伸縮自在なブームを備えたクレーンにお
いて、 (i)ブーム長さを検出するブーム長さ検出手段と、 (ii)ブームの起伏角を検出するブーム起伏角検出手段
と、 (iii)発光体と受光体によるレーザー光の発受作用が
ブームの基端部と先端部との間で行われ、かつ、ブーム
のたわみによって受光体の受光点が変化する状態でブー
ムに設けられたレーザー変位計と、 (iv)上記レーザー変位計からの信号に基づき受光体
の受光点とブーム上に予め設定された基準点との距離の
変化によってブームのたわみ量δを求め、このブームた
わみ量δと、上記ブーム長さ検出手段によって検出され
たブーム長さLと、上記ブーム起伏角検出手段によって
検出されたブームの起伏角θとにより、そのときのブー
ムのたわみを加味した作業半径Rを R=Lcosθ+δsinθ の式によって求めるように構成された演算器とを具備し
てなることを特徴とするクレーンにおける作業半径算出
装置。
3. A crane having a telescopic boom, wherein (i) boom length detecting means for detecting boom length, (ii) boom hoisting angle detecting means for detecting hoisting angle of the boom, and (iii) ) A laser beam is emitted and received by the light emitting body and the light receiving body between the base end portion and the tip end portion of the boom, and the light receiving point of the light receiving body is changed by the deflection of the boom. Laser displacement meter, and (iv) Based on the signal from the laser displacement meter, the boom deflection amount δ is obtained by the change in the distance between the light receiving point of the photoreceptor and the preset reference point on the boom. δ, the boom length L detected by the boom length detecting means, and the boom hoisting angle θ detected by the boom hoisting angle detecting means, thereby determining a working radius R in consideration of the bending of the boom at that time. A working radius calculation device for a crane, comprising: a computing unit configured to obtain the equation R = Lcos θ + δsin θ.
JP30486494A 1994-12-08 1994-12-08 Deflection detecting method of boom in crane and operation radius calculating method and operation radius calculating device Pending JPH08157188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30486494A JPH08157188A (en) 1994-12-08 1994-12-08 Deflection detecting method of boom in crane and operation radius calculating method and operation radius calculating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30486494A JPH08157188A (en) 1994-12-08 1994-12-08 Deflection detecting method of boom in crane and operation radius calculating method and operation radius calculating device

Publications (1)

Publication Number Publication Date
JPH08157188A true JPH08157188A (en) 1996-06-18

Family

ID=17938202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30486494A Pending JPH08157188A (en) 1994-12-08 1994-12-08 Deflection detecting method of boom in crane and operation radius calculating method and operation radius calculating device

Country Status (1)

Country Link
JP (1) JPH08157188A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007276996A (en) * 2006-04-12 2007-10-25 Ohbayashi Corp Jib operation monitoring device of construction machine, jib operation monitoring method of construction machine and operation monitoring system of construction machine
ITBO20090588A1 (en) * 2009-09-16 2011-03-17 A M A S P A OPERATING MACHINE
CN102502405A (en) * 2011-10-31 2012-06-20 徐州重型机械有限公司 Boom angle detecting device, detection method and crane comprising detecting device
CN102756976A (en) * 2012-07-23 2012-10-31 中联重科股份有限公司 Equipment, system and method for bending deflection detection and safety control of suspension arm, and crane
WO2012159381A1 (en) * 2011-05-20 2012-11-29 Lin Handing Laser displaying and monitoring arrangement for crane hook deflection angle
CN103332599A (en) * 2013-07-22 2013-10-02 广东力特工程机械有限公司 Device for monitoring lateral displacement of crane boom and method thereof
CN104692250A (en) * 2015-02-05 2015-06-10 三一汽车起重机械有限公司 Crane, and torque measuring system and method thereof
JP2015520713A (en) * 2012-05-23 2015-07-23 ヒルシュマン オートメイション アンド コントロール ゲゼルシャフトミット ベシュレンクテル ハフツングHirschmann Automation and ControlGmbH Method for determining the boom length of a crane by measuring travel time
CN107290116A (en) * 2017-07-31 2017-10-24 安徽合力股份有限公司 A kind of detection means of forklift door frame deflection metrology
EP3650397A1 (en) * 2018-11-07 2020-05-13 Manitowoc Crane Companies, LLC System for determining crane status using optical and/or electromagnetic sensors
US10829347B2 (en) 2016-11-22 2020-11-10 Manitowoc Crane Companies, Llc Optical detection system for lift crane
CN113247772A (en) * 2021-03-29 2021-08-13 中船澄西船舶修造有限公司 Load test method for crane solid ship after installation
RU2766916C1 (en) * 2020-12-17 2022-03-16 Общество с ограниченной ответственностью "МОЛОДАЯ, ДИНАМИЧНО РАЗВИВАЮЩАЯСЯ КОМПАНИЯ" (ООО "МДРК") Method for determining deformation of structural elements of delta robot which is manifested only during movement thereof
CN116253258A (en) * 2023-05-12 2023-06-13 四川川运重工机械有限公司 Crane jib structure and crane

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007276996A (en) * 2006-04-12 2007-10-25 Ohbayashi Corp Jib operation monitoring device of construction machine, jib operation monitoring method of construction machine and operation monitoring system of construction machine
ITBO20090588A1 (en) * 2009-09-16 2011-03-17 A M A S P A OPERATING MACHINE
WO2012159381A1 (en) * 2011-05-20 2012-11-29 Lin Handing Laser displaying and monitoring arrangement for crane hook deflection angle
CN102502405A (en) * 2011-10-31 2012-06-20 徐州重型机械有限公司 Boom angle detecting device, detection method and crane comprising detecting device
JP2015520713A (en) * 2012-05-23 2015-07-23 ヒルシュマン オートメイション アンド コントロール ゲゼルシャフトミット ベシュレンクテル ハフツングHirschmann Automation and ControlGmbH Method for determining the boom length of a crane by measuring travel time
CN102756976A (en) * 2012-07-23 2012-10-31 中联重科股份有限公司 Equipment, system and method for bending deflection detection and safety control of suspension arm, and crane
CN103332599A (en) * 2013-07-22 2013-10-02 广东力特工程机械有限公司 Device for monitoring lateral displacement of crane boom and method thereof
CN104692250A (en) * 2015-02-05 2015-06-10 三一汽车起重机械有限公司 Crane, and torque measuring system and method thereof
US11124392B2 (en) 2016-11-22 2021-09-21 Manitowoc Crane Companies, Llc Optical detection and analysis for boom angles on a crane
US10829347B2 (en) 2016-11-22 2020-11-10 Manitowoc Crane Companies, Llc Optical detection system for lift crane
US11130658B2 (en) 2016-11-22 2021-09-28 Manitowoc Crane Companies, Llc Optical detection and analysis of a counterweight assembly on a crane
CN107290116A (en) * 2017-07-31 2017-10-24 安徽合力股份有限公司 A kind of detection means of forklift door frame deflection metrology
EP3650397A1 (en) * 2018-11-07 2020-05-13 Manitowoc Crane Companies, LLC System for determining crane status using optical and/or electromagnetic sensors
RU2766916C1 (en) * 2020-12-17 2022-03-16 Общество с ограниченной ответственностью "МОЛОДАЯ, ДИНАМИЧНО РАЗВИВАЮЩАЯСЯ КОМПАНИЯ" (ООО "МДРК") Method for determining deformation of structural elements of delta robot which is manifested only during movement thereof
WO2022131962A1 (en) * 2020-12-17 2022-06-23 Общество С Ограниченной Ответственностью "Молодая, Динамично Развивающаяся Компания" Method for determining the deformation of structural elements of a delta robot
CN113247772A (en) * 2021-03-29 2021-08-13 中船澄西船舶修造有限公司 Load test method for crane solid ship after installation
CN116253258A (en) * 2023-05-12 2023-06-13 四川川运重工机械有限公司 Crane jib structure and crane
CN116253258B (en) * 2023-05-12 2023-10-03 四川川运重工机械有限公司 Crane jib structure and crane

Similar Documents

Publication Publication Date Title
JPH08157188A (en) Deflection detecting method of boom in crane and operation radius calculating method and operation radius calculating device
JP5497658B2 (en) Method and apparatus for surveying elevator hoistway
KR100378719B1 (en) Position Detector for Fluid Cylinder
JP4658716B2 (en) Elevator guide rail installation accuracy measuring device
KR102073244B1 (en) Elevator termination assembly that provides an indication of elevator car load
CN106869205B (en) System for controlling the rope on mining shovel
CN110255379A (en) Side sway detection method, system and the side sway monitoring system of boom
US7267241B2 (en) Device for determining a load on a hoist
EP4071098A1 (en) Elevator tension member monitor
CN213265431U (en) Real-time positioning device for overhead traveling crane hook
CA2415605A1 (en) Apparatus for measuring an extended length of a multi-section telescopic boom
JPH08282977A (en) Method and device for detecting work radius of crane
KR102288940B1 (en) car velocity and deflection anc weight detecting apparatus
JP2001059719A (en) Sensing device for preventing damage of underground structure
JPH10239012A (en) Contour shape measuring method and contour shape measuring machine
CN211425319U (en) Prefabricated crashproof wall straightness detection device that hangs down
JPH1082686A (en) Measuring device for loaded freight weight
JPH0942933A (en) Device for measuring accuracy of installation of elevator guide rail
JPS6117755B2 (en)
JPH0749929B2 (en) Piston ring wear measurement method
JPH06135659A (en) Groove abrasion quantity measuring device for sheave
JPH0714795B2 (en) Crane overload prevention device
JPS6124316B2 (en)
JP4272342B2 (en) Automatic boom length detection device
SU1752714A2 (en) Indicator of hoist paid-out rope length