JPH08153781A - Horizontal semiconductor device having high breakdown voltage and its using method - Google Patents

Horizontal semiconductor device having high breakdown voltage and its using method

Info

Publication number
JPH08153781A
JPH08153781A JP24900995A JP24900995A JPH08153781A JP H08153781 A JPH08153781 A JP H08153781A JP 24900995 A JP24900995 A JP 24900995A JP 24900995 A JP24900995 A JP 24900995A JP H08153781 A JPH08153781 A JP H08153781A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
potential
breakdown voltage
region
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP24900995A
Other languages
Japanese (ja)
Inventor
Kazuo Matsuzaki
一夫 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP24900995A priority Critical patent/JPH08153781A/en
Publication of JPH08153781A publication Critical patent/JPH08153781A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE: To improve breakdown voltage of a semiconductor element by establishing specific relations between the distances from two diffusion areas to two insulating film separating grooves and between the thickness of a first semiconductor substrate and the distance between the two diffusion areas. CONSTITUTION: In a semiconductor element, a p-diffusion area 11 and n-diffusion area 12 are formed in an element area 10 separated from other element areas by a separating groove 9 which is formed from the main surface of a first semiconductor substrate 6 to an oxide film 8 in a composite semiconductor substrate obtained by sticking the first semiconductor substrate 6 to a second semiconductor substrate 7 with the oxide film 8 in between. The distances LG between each area 11 and 12 and each groove 9, thickness (d) of the substrate 6, and the distance LD between the areas 11 and 12 are set so that they can meet a relation, LG>=(D-d). When the potential VS at the second substrate 7 is fixed at a value which is higher than the lowest potential (earth potential connected to the area 11) in the element area 10 of the substrate 6, the breakdown voltage of the semiconductor element can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、二つの半導体基板
を酸化膜を介して貼り合わせた形の複合半導体基板にお
いて、半導体基板の主表面に平行な方向にキャリアが主
として流れ、その一方の主表面に設けられた電極から入
力および出力が行われる、いわゆる横型半導体装置およ
びその使用方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite semiconductor substrate in which two semiconductor substrates are bonded together via an oxide film, carriers mainly flow in a direction parallel to the main surface of the semiconductor substrate, and one main The present invention relates to a so-called lateral semiconductor device in which input and output are performed from electrodes provided on the surface and a method of using the same.

【0002】[0002]

【従来の技術】従来、大電力を取り扱いうる半導体装置
の電力を扱う半導体素子部分、いわゆるパワー素子と呼
ばれるものは、キャリアの流れである電流が半導体基板
の主表面に対して垂直方向に流れる、いわゆるたて型半
導体素子とされることが多かった。この最大の理由を耐
圧特性からみると、以下の通りである。すなわち、耐圧
を決める基本式は、次式で与えられる。
2. Description of the Related Art Conventionally, in a semiconductor element portion that handles a large amount of power in a semiconductor device that handles power, a so-called power element, a current that is a flow of carriers flows in a direction perpendicular to the main surface of a semiconductor substrate. It was often a so-called vertical semiconductor element. The maximum reason for this is as follows in terms of withstand voltage characteristics. That is, the basic formula for determining the breakdown voltage is given by the following formula.

【0003】 VB =(1/2)・ECrit・LD (1) ここで、VB は素子の耐圧、LD は接合に電圧が印加さ
れた時にできる空乏層の幅である。ECritは接合の臨界
電界強度であって、素子内の電界がこの値を越えると、
降伏が起こる。ECritは接合の構造や形成方法、不純物
濃度などにより変化するが、基本的には(1)式から、
耐圧を決定する要因はLD で決まり、空乏層が延びるこ
とのできる領域をどれだけ長くとれるかにかかってく
る。従って、チップサイズという点からみると、縦型素
子の方が有利であり、高耐圧素子においてたて型素子が
採用されている所以となっている。
V B = (1/2) · E Crit · L D (1) Here, V B is the breakdown voltage of the element, and L D is the width of the depletion layer formed when a voltage is applied to the junction. E Crit is the critical electric field strength of the junction, and when the electric field in the device exceeds this value,
Surrender occurs. E Crit changes depending on the structure of the junction, the forming method, the impurity concentration, etc., but basically, from the equation (1),
The factor that determines the breakdown voltage is determined by L D , and depends on how long the region where the depletion layer can extend can be taken. Therefore, the vertical element is more advantageous in terms of chip size, which is the reason why the vertical element is used in the high breakdown voltage element.

【0004】近年、パワー素子とICとをモノリシツク
に集積化したいわゆる一チップパワーICが注目される
に至って、パワー素子とICとの製造工程のマッチング
という観点から、パワー素子を横型で形成する必要が生
じてきている。図6はpn接合分離型半導体装置の例と
して、パワーICの部分断面および電圧の印加方法を示
した図である。p型基板1の表面にエピタキシャル法に
より素子領域2が形成され、表面から素子領域2を囲ん
でp型基板1に達するp分離領域3によって、素子領域
2が他の素子領域から分離されている。素子領域2の内
部には、簡単な素子として、バイポーラトランジスタの
ベース領域、コレクタ領域にあたるp拡散領域4とn拡
散領域5とが形成され、それらの上には、それぞれB、
C端子に接続された電極が設けられ、バイアス電圧VBC
が印加されている。p型基板1にはパワーICの電源電
圧の最低電位を印加して使用するのが普通である。例え
ば、電源が±15Vであれば、基板1には−15Vを印
加する。また、電源が+5V単一であれば、基板1には
0V(グラウンド、GND)バイアスを引加する。図6
においては、バイアス電源VBCの負端子と基板1のS端
子とは、ともに接地され、p型基板1の電位は0V(G
ND)に固定される。これにより、p型基板1とn拡散
領域5との間の接合は、常に逆バイアス状態となり、基
板1と素子領域2とは、空乏層により分離される。な
お、このバイアス方式は特公昭40−17410号公報
に記載されている。
In recent years, a so-called one-chip power IC in which a power element and an IC are monolithically integrated has been attracting attention, and it is necessary to form the power element in a horizontal type from the viewpoint of matching the manufacturing process of the power element and the IC. Is happening. FIG. 6 is a diagram showing a partial cross section of a power IC and a voltage application method as an example of a pn junction separation type semiconductor device. An element region 2 is formed on the surface of a p-type substrate 1 by an epitaxial method, and the element region 2 is separated from other element regions by a p isolation region 3 that surrounds the element region 2 from the surface and reaches the p-type substrate 1. . Inside the element region 2, a p-diffusion region 4 and an n-diffusion region 5 corresponding to a base region and a collector region of a bipolar transistor are formed as simple devices, and B and B are respectively formed on them.
An electrode connected to the C terminal is provided, and the bias voltage V BC
Is applied. It is usual to apply the lowest potential of the power supply voltage of the power IC to the p-type substrate 1 for use. For example, if the power source is ± 15V, −15V is applied to the substrate 1. If the power source is a single + 5V, a 0V (ground, GND) bias is applied to the substrate 1. Figure 6
, The negative terminal of the bias power supply V BC and the S terminal of the substrate 1 are both grounded, and the potential of the p-type substrate 1 is 0 V (G
Fixed to ND). As a result, the junction between the p-type substrate 1 and the n diffusion region 5 is always in the reverse bias state, and the substrate 1 and the element region 2 are separated by the depletion layer. This bias method is described in Japanese Patent Publication No. 40-17410.

【0005】上記の従来のpn接合分離法の問題点は、
大別して次の二つある。 (a)寄生素子効果 (b)素子の高耐圧化 p型基板1およびp分離領域3を素子領域2の最低電位
に固定しているものの、素子領域2に形成される素子に
対し、pnp寄生トランジスタ等を形成し、サイリスタ
動作やC−MOS素子のラッチアップ動作を招き易くな
る。これが寄生素子効果であって、これを避けるために
は、回路設計に種々の制約を受ける。また、素子の高耐
圧化については、pn接合分離を用いたICでは、高耐
圧を得るためには、(1)式から分かるように、素子領
域2のnエピタキシャル層の厚さを厚くする必要があ
り、このため、p分離領域3が深くなり、同時にその横
方向拡散が大きくなって、素子の実効面積が減少する。
このため、実際上高耐圧化には、困難が伴う。
The problems of the above-mentioned conventional pn junction isolation method are as follows.
There are two main categories. (A) Parasitic element effect (b) Higher breakdown voltage of the element Although the p-type substrate 1 and the p isolation region 3 are fixed to the lowest potential of the element region 2, a pnp parasitic is applied to the element formed in the element region 2. A transistor or the like is formed so that the thyristor operation and the latch-up operation of the C-MOS element are easily caused. This is a parasitic element effect, and in order to avoid this, various restrictions are imposed on the circuit design. Further, regarding the high breakdown voltage of the element, in the IC using the pn junction isolation, it is necessary to increase the thickness of the n epitaxial layer in the element region 2 in order to obtain the high breakdown voltage, as can be seen from the equation (1). Therefore, the p isolation region 3 becomes deep, and at the same time, its lateral diffusion becomes large, and the effective area of the device decreases.
Therefore, it is difficult to increase the breakdown voltage in practice.

【0006】一方、素子分離に必要な面積を少なくし
て、素子の実効面積を増加できると共に、高耐圧が得ら
れる技術手段に対する市場のニーズは極めて大きい。こ
のニーズに応える素子分離構造として、近年、酸化膜を
挟んで接着した複合半導体基板と、深いトレンチとを組
み合わせた完全誘電体分離構造が提案されている。最
近、かかる完全誘電体分離構造を採用し、さらに高耐圧
にするための完全誘電体分離素子の使用方法が提案され
た(特開平4−336446号公報参照)。
On the other hand, there is an extremely large market need for a technical means capable of increasing the effective area of an element by reducing the area required for element isolation and increasing the withstand voltage. As an element isolation structure that meets this need, in recent years, a complete dielectric isolation structure has been proposed in which a composite semiconductor substrate bonded with an oxide film sandwiched therebetween and a deep trench are combined. Recently, there has been proposed a method of using the perfect dielectric isolation element for adopting such a perfect dielectric isolation structure and further increasing the withstand voltage (see Japanese Patent Laid-Open No. 4-336446).

【0007】図7は、完全誘電体分離型半導体装置の部
分断面とその使用方法を示した図である。第一の半導体
基板6と第二の半導体基板7とを酸化膜8を介して接合
した複合半導体基板と、第一半導体基板6の主表面から
酸化膜8に達する絶縁物を埋め込んだ分離溝9によっ
て、他の素子領域から分離された素子領域10内にp拡
散領域11とn拡散領域12が形成されている半導体素
子において、第二半導体基板7の電位VS を第一半導体
基板6の素子領域10内の最低電位(図7ではp拡散領
域11に接続されたアース電位)より高い電位に固定す
ることにより、素子耐圧VB を上昇させる使用方法であ
る。
FIG. 7 is a diagram showing a partial cross section of a completely dielectric isolation type semiconductor device and a method of using the same. A composite semiconductor substrate in which a first semiconductor substrate 6 and a second semiconductor substrate 7 are bonded together via an oxide film 8, and a separation groove 9 in which an insulator reaching the oxide film 8 from the main surface of the first semiconductor substrate 6 is embedded. In the semiconductor device in which the p diffusion region 11 and the n diffusion region 12 are formed in the device region 10 separated from other device regions by the above, the potential V S of the second semiconductor substrate 7 is set to the device of the first semiconductor substrate 6. This is a method of use in which the element breakdown voltage V B is increased by fixing the potential higher than the lowest potential in the region 10 (the ground potential connected to the p diffusion region 11 in FIG. 7).

【0008】[0008]

【発明が解決しようとする課題】上の使用方法は有益で
はあるが、この方法による高耐圧素子の欠点は、下記の
点で浮き彫りにされる。すなわち、耐圧の設計方法が不
明であり、半導体素子を仕様に従って設計製造すること
ができない。この点は、前記の公報の中に開示されてい
る下記のような記述からも明らかである。 上記素子領域10内の最低電位より高い電位は、試
行により再現性よく一義的に決定できる。 さらに、素子領域内の最低電位より高い電位には素
子耐圧を最大にする最適値があって、半導体装置が特定
されれば再現性よく決定できる電位である。
Although the above method of use is beneficial, the drawbacks of the high voltage device by this method are highlighted in the following points. That is, the design method of the breakdown voltage is unknown, and the semiconductor element cannot be designed and manufactured according to the specifications. This point is also apparent from the following description disclosed in the above publication. The potential higher than the lowest potential in the element region 10 can be uniquely determined with good reproducibility by trial. Further, the potential higher than the lowest potential in the element region has an optimum value that maximizes the element breakdown voltage, and is a potential that can be determined with good reproducibility if the semiconductor device is specified.

【0009】かかる欠点が生ずる原因は、前記の公報で
も述べられているように、素子耐圧に対する基板電位の
作用について、未だ不明であるという点に帰着される。
以上の問題に鑑み、本発明の目的は、基板電位の素子耐
圧に対する作用を明らかにし、高耐圧素子に最適な構造
およびその使用方法を明らかにすることによって、半導
体素子の高耐圧化を図ることにある。
The cause of such a defect is attributed to the fact that the effect of the substrate potential on the device breakdown voltage is still unknown, as described in the above publication.
In view of the above problems, an object of the present invention is to increase the breakdown voltage of a semiconductor device by clarifying the action of the substrate potential on the breakdown voltage of the device, and by clarifying the optimum structure for the high breakdown voltage device and the method of using the same. It is in.

【0010】[0010]

【課題を解決するための手段】上記の課題を解決する手
段としては、第一の半導体基板と第二の半導体基板とを
酸化膜を介して接合した複合半導体基板の第一半導体基
板の主表面から前記酸化膜に達する絶縁膜を埋め込んだ
絶縁膜分離溝と、その分離溝によって他の素子領域から
分離された素子領域と、その素子領域の表面層に形成さ
れた第一導電型拡散領域、第二導電型拡散領域を有する
半導体装置において、前記二つの拡散領域と絶縁物分離
溝との距離LG と、第一の半導体基板の厚さdと、前記
二つの拡散領域間の距離LD との間に、LG ≧(LD
d)なる関係が成立するものとする。
Means for Solving the Problems As a means for solving the above problems, a main surface of a first semiconductor substrate of a composite semiconductor substrate in which a first semiconductor substrate and a second semiconductor substrate are bonded via an oxide film An insulating film isolation groove in which an insulating film reaching the oxide film is buried, an element region separated from other element regions by the isolation groove, and a first conductivity type diffusion region formed in a surface layer of the element region, In a semiconductor device having a second conductivity type diffusion region, the distance L G between the two diffusion regions and the insulating isolation groove, the thickness d of the first semiconductor substrate, and the distance L D between the two diffusion regions. Between L G ≧ (L D
The relationship d) is established.

【0011】また、第一の半導体基板と第二の半導体基
板とを酸化膜を介して接合した複合半導体基板の第一半
導体基板の主表面から前記酸化膜に達する絶縁膜を埋め
込んだ絶縁膜分離溝と、その分離溝によって他の素子領
域から分離された厚さが10μmを越える素子領域と、
その素子領域の表面層に形成された第一導電型拡散領
域、第二導電型拡散領域を有する半導体装置の、第二半
導体基板の電位を第一半導体基板の素子領域内の最低電
位より高い電位に固定する使用方法として、第二半導体
基板の電位を、素子の最高耐圧のほぼ三分の一の電位に
固定するものとする。
In addition, an insulating film separation in which an insulating film reaching the oxide film is buried from the main surface of the first semiconductor substrate of the composite semiconductor substrate in which the first semiconductor substrate and the second semiconductor substrate are bonded together via the oxide film. A groove and an element region having a thickness of more than 10 μm, which is separated from other element regions by the separation groove,
The potential of the second semiconductor substrate of the semiconductor device having the first conductivity type diffusion region and the second conductivity type diffusion region formed in the surface layer of the element region is higher than the lowest potential in the element region of the first semiconductor substrate. As a usage method for fixing the second semiconductor substrate, the potential of the second semiconductor substrate is fixed to a potential of approximately one third of the maximum breakdown voltage of the element.

【0012】厚さが10μm以下の素子領域と、その素
子領域の表面層に形成された第一導電型拡散領域、第二
導電型拡散領域を有する半導体装置の、使用方法として
は、第二半導体基板の電位を、素子の最高耐圧のほぼ二
分の一の電位に固定するものとする。更に、前記絶縁膜
分離溝内に多結晶シリコンを充填し、その多結晶シリコ
ンに、第一半導体基板の素子領域内の最低電位より高い
電位、例えば、第二半導体基板と同電位をを与えてもよ
い。
As a method of using a semiconductor device having an element region having a thickness of 10 μm or less, a first conductivity type diffusion region and a second conductivity type diffusion region formed in a surface layer of the element region, the second semiconductor is used. It is assumed that the potential of the substrate is fixed to a potential that is approximately one half of the maximum breakdown voltage of the device. Further, the insulating film isolation groove is filled with polycrystalline silicon, and the polycrystalline silicon is given a potential higher than the lowest potential in the element region of the first semiconductor substrate, for example, the same potential as the second semiconductor substrate. Good.

【0013】図7の素子構造における基板電位の影響に
ついて、以下に考察してみる。第一半導体基板6の素子
領域10内に接合がある場合、酸化膜8からの空乏層の
伸び幅XD は次式で表される。
The influence of the substrate potential on the device structure of FIG. 7 will be considered below. When there is a junction in the element region 10 of the first semiconductor substrate 6, the extension width X D of the depletion layer from the oxide film 8 is expressed by the following equation.

【0014】[0014]

【数1】 XD =[2εSi{(VB −VS )+2|φFn|}(qND -11/2 (2) ここで、qは電子の電荷、ND は第一半導体基板6の不
純物濃度、εSiはシリコンの誘電率、φFnは素子領域の
フェルミポテンシャル、VB は逆バイアス電圧(耐
圧)、VS は、第二半導体基板7の基板電位である。 (2)式から明らかなように、VS の印加は、酸化膜
8からの空乏層の伸び幅XD を減少させる方向に働く。
このことは、VS =0の時の耐圧(VBO)に対してVS
だけ耐圧を高める方向に作用することを意味する。すな
わち、
X D = [2ε Si {(V B −V S ) +2 | φ Fn │} (qN D ) −1 ] 1/2 (2) where q is the electron charge and N D is the The impurity concentration of one semiconductor substrate 6, ε Si is the dielectric constant of silicon, φ Fn is the Fermi potential of the element region, V B is the reverse bias voltage (breakdown voltage), and V S is the substrate potential of the second semiconductor substrate 7. As is clear from the equation (2), the application of V S acts in the direction of decreasing the extension width X D of the depletion layer from the oxide film 8.
This is, V S with respect to the breakdown voltage (V BO) when the V S = 0
It means that it acts only in the direction of increasing the breakdown voltage. That is,

【0015】[0015]

【数2】 VB =VBo+VS =ECrit・d−q・ND ・d2 /(2εSi)+VS (3) ここで、dは第一半導体基板6の厚さである。 一方、空乏層の電界強度はコーナー部で最大であり、
特に図7のような構造の場合、電界強度は酸化膜8を横
切る電場と関連付けられ、第二半導体基板7に電位VS
を与えると、n拡散領域12の近傍、p拡散領域11の
近傍では、それぞれ次式で与えられる。
[Number 2] V B = V Bo + V S = E Crit · d-q · N D · d 2 / (2ε Si) + V S (3) where, d is the thickness of the first semiconductor substrate 6. On the other hand, the electric field strength of the depletion layer is maximum at the corner,
Particularly in the case of the structure as shown in FIG. 7, the electric field strength is associated with the electric field across the oxide film 8 and the potential V S is applied to the second semiconductor substrate 7.
Then, in the vicinity of the n diffusion region 12 and the p diffusion region 11, they are respectively given by the following equations.

【0016】 ECrit(n)=α(VB * −VS )/dox (4) ECrit(p)=α・VS /dox (5) ここで、αはある幾何学的な補正因子、VB * はの機
構による耐圧、doxは第一の半導体基板6と第二の半導
体基板7の間の酸化膜8の厚さである。(4)、(5)
式から明らかなように、この場合の第二半導体基板の電
位VS の効果は耐圧がn拡散領域12の近傍とp拡散領
域11の近傍のどちらで決まるかを決定する作用である
ことを意味する。は、第一半導体基板6の厚さdで耐
圧が決まる場合であり、は第一半導体基板6の厚さd
というよりも酸化膜8の厚さdoxおよび拡散領域11ま
たは12の曲率半径で耐圧が決まる場合である。そこ
で、耐圧設計上決めなければならないことは、耐圧が上
記、のいずれで決められるかを決定することであ
る。
E Crit (n) = α (V B * −V S ) / d ox (4) E Crit (p) = α · V S / d ox (5) where α is a geometrical value. The correction factor, V B *, is the breakdown voltage due to the mechanism of, and d ox is the thickness of the oxide film 8 between the first semiconductor substrate 6 and the second semiconductor substrate 7. (4), (5)
As is apparent from the formula, the effect of the potential V S of the second semiconductor substrate in this case means that it is an action that determines whether the breakdown voltage is determined by the vicinity of the n diffusion region 12 or the p diffusion region 11. To do. Is the case where the breakdown voltage is determined by the thickness d of the first semiconductor substrate 6, and is the thickness d of the first semiconductor substrate 6.
Rather, the breakdown voltage is determined by the thickness d ox of the oxide film 8 and the radius of curvature of the diffusion region 11 or 12. Therefore, what must be determined in the breakdown voltage design is to decide which of the above breakdown voltages is used.

【0017】(3)、(4)式から耐圧がで決まる場
合にはVB ≦VB * であるから、
When the breakdown voltage is determined by the equations (3) and (4), V B ≤V B *

【0018】[0018]

【数3】 ECrit(n)dox/α−ECrit・d+qND 2 /(2εSi)≧0 (6) (6)式を満足する第一半導体基板の厚さdは一般に、
d≦10μmである。その時の最大耐圧は、(3)式で
基板濃度ND が低い場合には、一般に高耐圧素子ではN
D は低濃度であるから、
[ Equation 3] E Crit (n) d ox / α-E Crit · d + qN D d 2 / (2ε Si ) ≧ 0 (6) The thickness d of the first semiconductor substrate that satisfies the formula (6) is generally
d ≦ 10 μm. The maximum breakdown voltage at that time is generally N in the case of a high breakdown voltage element when the substrate concentration N D is low in the formula (3).
Since D is a low concentration,

【0019】[0019]

【数4】 VB =VBo+VS =ECrit・d−q・ND ・d2 /(2εSi)+VS ≒ECrit・d+VSB =VB * で最大耐圧を与えるため、(4)式に代入
して ECrit(n)dox/α=ECrit・d α/dox=ECrit(n)/(ECrit・d) 特別のことがない限り ECrit(n)=ECrit(p) であるから、(5)式より、 VS =ECrit・d よって、(3)式より、 VB =2VS (7) 次に耐圧ができまる場合には、 VB ≧VB * であるから、
Since V B = V Bo + V S = E Crit · d−q · N D · d 2 / (2ε Si ) + V S ≈E Crit · d + V S V B = V B * Substituting into equation (4), E Crit (n) d ox / α = E Crit · d α / d ox = E Crit (n) / (E Crit · d) E Crit (n) unless otherwise specified = because it is E Crit (p), from equation (5), V S = E Crit · d Therefore, (3) from the equation, if circle can V B = 2V S (7) then breakdown voltage, V Since B ≧ V B * ,

【0020】[0020]

【数5】 ECrit(n)dox/α−ECrit・d+qND 2 /(2εSi)≦0 (8) (8)式を満足するdは一般に、d≧10μm であ
る。(4)、(5)式から耐圧がで決まる場合には、
Crit(n)=ECrit(p)で最大耐圧がきまり、 VB * =2VS 故に、 VS =1/2VB * その時の最大耐圧VB maxは、次のようになる。
Equation 5] E Crit (n) d ox / α-E Crit · d + qN D d 2 / (2ε Si) d which satisfies ≦ 0 (8) (8) Equation is generally a d ≧ 10 [mu] m. When the breakdown voltage is determined by the equations (4) and (5),
Since the maximum withstand voltage is determined by E Crit (n) = E Crit (p) and V B * = 2V S , V S = 1 / 2V B * The maximum withstand voltage V B max at that time is as follows.

【0021】[0021]

【数6】 VB max=ECrit・d−q・ND ・d2 /(2εSi)+VS =ECrit・d−q・ND ・d2 /(2εSi)+1/2VB * ≒ECrit・d+1/2VB * 耐圧がで決まる場合、第一半導体基板6中は完全に空
乏化し、酸化膜8中に密集した電位で決まるので、 VB * =ECrit・d 故に、 VB max=3VS (9) 以上、基板電位の作用について検討した。我々は、ここ
で素子の最高耐圧が決まるのがの場合を二倍効果、
の場合を三倍効果と呼ぶことにする。
[ Equation 6] V B max = E Crit · d−q · N D · d 2 / (2ε Si ) + V S = E Crit · d−q · N D · d 2 / (2ε Si ) + ½V B * ≈ E Crit · d + 1/2 V B * When the breakdown voltage is determined by, the first semiconductor substrate 6 is completely depleted and is determined by the potential concentrated in the oxide film 8. Therefore, V B * = E Crit · d B max = 3V S (9) Above, the action of the substrate potential was examined. We double the effect that the maximum breakdown voltage of the device is determined here,
The case of is called triple effect.

【0022】前術の手段を講じ、二つの拡散領域と絶縁
膜分離溝との距離LG と、第一の半導体基板の厚さd
と、前記二つの拡散領域間の距離LD との間に、LG
(LD−d)とすることによって、誘電体分離型半導体
装置の高耐圧化が図れる。また、厚さが10μmを越え
る素子領域を有する半導体装置で、第二半導体基板の電
位を、素子の最高耐圧のほぼ三分の一の電位に固定する
ものとし、 厚さが10μm以下の素子領域を有する半
導体装置で、第二半導体基板の電位を、素子の最高耐圧
のほぼ二分の一の電位に固定することによって、半導体
装置の耐圧が、上記する機構により、最大になる。
Taking the means of the previous technique, the distance L G between the two diffusion regions and the insulating film isolation groove and the thickness d of the first semiconductor substrate are set.
And a distance L D between the two diffusion regions, L G
By the (L D -d), attained a high withstand voltage of the dielectric isolation semiconductor device. Further, in a semiconductor device having an element region with a thickness exceeding 10 μm, the potential of the second semiconductor substrate is fixed to a potential of approximately one third of the maximum breakdown voltage of the element, and the element region with a thickness of 10 μm or less is used. In the semiconductor device having the above, by fixing the potential of the second semiconductor substrate to a potential that is approximately one half of the maximum breakdown voltage of the element, the breakdown voltage of the semiconductor device is maximized by the mechanism described above.

【0023】更に、絶縁膜分離溝内の絶縁膜に多結晶シ
リコンを充填し、その多結晶シリコンに、第一半導体基
板の素子領域内の最低電位より高い電位、例えば、第二
半導体基板と同電位をを与えることによって、誘電体分
離型半導体装置の高耐圧化が図れる。
Further, the insulating film in the insulating film isolation groove is filled with polycrystalline silicon, and the polycrystalline silicon has a potential higher than the lowest potential in the element region of the first semiconductor substrate, for example, the same as the second semiconductor substrate. By applying a potential, the dielectric isolation type semiconductor device can have a high breakdown voltage.

【0024】[0024]

【発明の実施の形態】図1は、本発明の実施例の完全誘
電体分離型半導体装置の実験素子の断面とともに電圧印
加方法を示した図である。第一の半導体基板6と第二の
半導体基板7とを酸化膜8を介して接合した複合半導体
基板に、第一半導体基板6の主表面から酸化膜8に達す
る絶縁物を埋め込んだ分離溝9によって他の素子領域か
ら分離された素子領域10内にp拡散領域11とn拡散
領域12が形成されている半導体素子において、第二半
導体基板7の電位VS を第一半導体基板6の素子領域1
0内の最低電位(図1ではp拡散領域11に接続された
アース電位)より高い電位に固定することにより、素子
耐圧VB を向上させることができる。実験素子の変数と
して、第一半導体基板6の厚さdは10μmまたは30
μmとした。半導体基板6の不純物濃度は1×1014
-3(n型)、p拡散領域11およびn拡散領域12の
ドーズ量はそれぞれ1×1015cm-2、3.1×1015
cm-2である。また、拡散領域の曲率半径の影響を調べ
るために、p拡散領域11の拡散深さxj を1.5μm
と3.5μmの二種類を選択した。p拡散領域11とn
拡散領域12の間の距離(ドリフト長)LD は70μm
一定とした。
FIG. 1 is a diagram showing a cross section of an experimental element of a complete dielectric isolation type semiconductor device of an embodiment of the present invention and a voltage applying method. A separation groove 9 in which an insulating material reaching the oxide film 8 from the main surface of the first semiconductor substrate 6 is embedded in a composite semiconductor substrate in which the first semiconductor substrate 6 and the second semiconductor substrate 7 are bonded to each other through the oxide film 8. In the semiconductor element in which the p diffusion region 11 and the n diffusion region 12 are formed in the element region 10 separated from other element regions by the element region of the first semiconductor substrate 6, the potential V S of the second semiconductor substrate 7 is 1
By fixing the potential higher than the lowest potential within 0 (the ground potential connected to the p diffusion region 11 in FIG. 1), the element breakdown voltage V B can be improved. As a variable of the experimental element, the thickness d of the first semiconductor substrate 6 is 10 μm or 30
μm. The impurity concentration of the semiconductor substrate 6 is 1 × 10 14 c
The dose amounts of m −3 (n type), p diffusion region 11 and n diffusion region 12 are 1 × 10 15 cm −2 and 3.1 × 10 15 respectively.
cm -2 . Further, in order to investigate the influence of the radius of curvature of the diffusion region, the diffusion depth x j of the p diffusion region 11 is set to 1.5 μm.
And 3.5 μm were selected. p diffusion region 11 and n
The distance (drift length) L D between the diffusion regions 12 is 70 μm.
It was fixed.

【0025】図3は、その実験結果を示す。横軸は第二
半導体基板の電位VS 、たて軸は半導体素子の耐圧VB
である。基板の電位VS が増す程素子耐圧VB も増加し
ているが、或るピーク値を経て再び減少している。そし
て、素子耐圧VB のピーク値を与える基板の電位V
S は、第一半導体基板6の厚さが10μmの△の例で
は、素子耐圧VB のピーク値の二分の一、第一半導体基
板6の厚さが30μmの□、○の例では、素子耐圧VB
のピーク値の三分の一の電位の点になっており、先の理
論的な予測と一致している。すなわち、従来のように実
験によって、基板の電圧を決め、素子の耐圧設計をする
のではなく、耐圧設計をしながら素子のディメンション
の設計ができることになる。
FIG. 3 shows the experimental results. The horizontal axis represents the potential V S of the second semiconductor substrate, and the vertical axis represents the breakdown voltage V B of the semiconductor element.
Is. The device breakdown voltage V B increases as the substrate potential V S increases, but decreases again after a certain peak value. Then, the substrate potential V that gives the peak value of the element withstand voltage V B
S is half of the peak value of the element breakdown voltage V B in the case of Δ where the thickness of the first semiconductor substrate 6 is 10 μm, and is the element in the case of □ and ◯ where the thickness of the first semiconductor substrate 6 is 30 μm. Withstand voltage V B
It is at the point of one-third of the peak value of, which is in agreement with the previous theoretical prediction. That is, it is possible to design the dimensions of the device while designing the breakdown voltage, instead of designing the breakdown voltage of the device by deciding the voltage of the substrate by experiments as in the conventional case.

【0026】図4は、図1の半導体装置において、n拡
散領域12と分離溝9との間の距離LG の耐圧に及ぼす
影響について実験した結果である。横軸は距離LG 、た
て軸は耐圧である。距離LG とともに耐圧は向上し、あ
る値、この場合40μm以上でほぼ飽和している。この
ような実験を重ねた結果、図1の構造で高耐圧を実現す
るための条件として、次式が得られた。
FIG. 4 is a result of an experiment conducted on the influence of the distance L G between the n diffusion region 12 and the isolation trench 9 on the breakdown voltage in the semiconductor device of FIG. The horizontal axis represents the distance L G , and the vertical axis represents the pressure resistance. The breakdown voltage increases with the distance L G , and is almost saturated at a certain value, 40 μm or more in this case. As a result of repeating such an experiment, the following equation was obtained as a condition for realizing a high breakdown voltage in the structure of FIG.

【0027】 LG ≧LD −d (10) 図2は、本発明の別の実施例の半導体装置の断面図とと
もに電圧印加方法を示した図である。図1の実施例との
違いは、分離溝9内が絶縁物だけでなく、多結晶シリコ
ン13が絶縁物で挟まれた構造になっており、多結晶シ
リコン13に電位VG が印加できる点である。電位VG
は第二の基板7の電位VS と同じにもまた変えることも
できる。図5(b)に、図2の半導体装置において、多
結晶シリコン13に、第二基板7の電位VS と同じ電位
を与えた時の電位分布の様子を示す。図5(a)は、多
結晶シリコン13に電位を与えない時の電位分布の様子
を示す。各曲線は50Vごとの等電位線である。多結晶
シリコン13に電位VG を与えた時の作用は、第二の基
板7に電位VS を与えた作用と同等で、電位分布が緩や
かになり、特に(10)式の条件が満たせない状況での
高耐圧の実現に有効であることがわかる。
L G ≧ L D −d (10) FIG. 2 is a diagram showing a voltage application method together with a sectional view of a semiconductor device according to another embodiment of the present invention. The difference from the embodiment of FIG. 1 is that not only an insulator but also a polycrystalline silicon 13 is sandwiched between the insulators in the separation groove 9, and a potential V G can be applied to the polycrystalline silicon 13. Is. Potential V G
Can also be changed to be the same as the potential V S of the second substrate 7. FIG. 5B shows a state of the potential distribution when the same potential as the potential V S of the second substrate 7 is applied to the polycrystalline silicon 13 in the semiconductor device of FIG. FIG. 5A shows a state of potential distribution when no potential is applied to the polycrystalline silicon 13. Each curve is an equipotential line for every 50V. The action when the potential V G is applied to the polycrystalline silicon 13 is equivalent to the action when the potential V S is applied to the second substrate 7, the potential distribution becomes gentle, and the condition of the formula (10) cannot be particularly satisfied. It can be seen that it is effective in realizing a high breakdown voltage in each situation.

【0028】[0028]

【発明の効果】本発明によれば、完全誘電体分離構造の
半導体装置において、基板電位の耐圧におよぼす作用が
明らかになったため、予め、素子の耐圧設計をすること
が可能になった。また、分離溝内に多結晶シリコンを挟
み、電位を与えることにより、高耐圧が得られる半導体
装置の使用方法を提供できた。
According to the present invention, in the semiconductor device having the complete dielectric isolation structure, the action of the substrate potential on the breakdown voltage has been clarified, so that the breakdown voltage of the element can be designed in advance. Further, it was possible to provide a method of using a semiconductor device in which a high breakdown voltage is obtained by sandwiching polycrystalline silicon in the isolation trench and applying a potential.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の半導体装置の断面および電圧
印加方法の説明図
FIG. 1 is an explanatory view of a cross section of a semiconductor device and a voltage applying method according to an embodiment of the present invention.

【図2】本発明の別の実施例の半導体装置の断面および
電圧印加方法の説明図
FIG. 2 is an explanatory view of a cross section of a semiconductor device according to another embodiment of the present invention and a voltage application method.

【図3】図1の実施例における素子耐圧の基板電位依存
性を示す図
FIG. 3 is a diagram showing the substrate potential dependency of the device breakdown voltage in the embodiment of FIG.

【図4】図1の実施例における素子耐圧の拡散領域−分
離溝間距離依存性を示す図
FIG. 4 is a diagram showing the dependence of the device breakdown voltage on the distance between the diffusion region and the separation groove in the embodiment of FIG.

【図5】図2の実施例における分離溝の電位の影響を示
す電位分布図
5 is a potential distribution diagram showing the influence of the potential of the separation groove in the embodiment of FIG.

【図6】従来の半導体装置における接合分離を示す断面
および電圧印加方法の説明図
FIG. 6 is a cross-sectional view showing junction separation in a conventional semiconductor device and an explanatory diagram of a voltage application method.

【図7】従来の半導体装置における誘電体分離を示す断
面および電圧印加方法の説明図
FIG. 7 is a cross-sectional view showing dielectric isolation in a conventional semiconductor device and an explanatory diagram of a voltage application method.

【符号の説明】[Explanation of symbols]

1 p型基板 2 素子領域 3 分離領域 4 p拡散領域 5 n拡散領域 6 第一半導体基板 7 第二半導体基板 8 酸化膜 9 絶縁物分離溝 10 素子領域 11 p拡散領域 12 n拡散領域 13 多結晶シリコン 1 p-type substrate 2 element region 3 isolation region 4 p diffusion region 5 n diffusion region 6 first semiconductor substrate 7 second semiconductor substrate 8 oxide film 9 insulator isolation groove 10 device region 11 p diffusion region 12 n diffusion region 13 polycrystal silicon

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】第一の半導体基板と第二の半導体基板とを
酸化膜を介して接合した複合半導体基板の第一半導体基
板の主表面から前記酸化膜に達する絶縁膜を埋め込んだ
絶縁膜分離溝と、その分離溝によって他の素子領域から
分離された素子領域と、その素子領域の表面層に形成さ
れた第一導電型拡散領域、第二導電型拡散領域を有する
ものにおいて、前記二つの拡散領域と絶縁膜分離溝との
距離L G と、第一の半導体基板の厚さdと、前記二つの
拡散領域間の距離LD との間に、 LG ≧(LD −d)
なる関係が成立することを特徴とする高耐圧横型半導
体装置。
1. A first semiconductor substrate and a second semiconductor substrate are provided.
First semiconductor substrate of composite semiconductor substrate bonded through an oxide film
An insulating film that reaches the oxide film from the main surface of the plate is embedded
Insulating film isolation groove and other element area
Formed on the separated element area and the surface layer of the element area.
Having a first conductivity type diffusion region and a second conductivity type diffusion region
Of the two diffusion regions and the insulating film isolation groove
Distance L GAnd the thickness d of the first semiconductor substrate and the two
Distance L between diffusion areasDBetween and LG≧ (LD-D)
 High-breakdown-voltage lateral semiconductor characterized in that
Body device.
【請求項2】第一の半導体基板と第二の半導体基板とを
酸化膜を介して接合した複合半導体基板の第一半導体基
板の主表面から前記酸化膜に達する絶縁膜を埋め込んだ
絶縁膜分離溝と、その分離溝によって他の素子領域から
分離された厚さが10μmを越える素子領域と、その素
子領域の表面層に形成された第一導電型拡散領域、第二
導電型拡散領域を有する半導体装置の、第二半導体基板
の電位を第一半導体基板の素子領域内の最低電位より高
い電位に固定する使用方法において、第二半導体基板の
電位を、素子の最高耐圧のほぼ三分の一の電位に固定す
ることを特徴とする高耐圧横型半導体装置の使用方法。
2. An insulating film separation in which an insulating film reaching the oxide film is embedded from the main surface of the first semiconductor substrate of a composite semiconductor substrate in which a first semiconductor substrate and a second semiconductor substrate are bonded via an oxide film. A groove, an element region having a thickness of more than 10 μm separated from other element regions by the isolation groove, and a first-conductivity-type diffusion region and a second-conductivity-type diffusion region formed in the surface layer of the element region. In a method of using a semiconductor device in which the potential of the second semiconductor substrate is fixed to a potential higher than the lowest potential in the element region of the first semiconductor substrate, the potential of the second semiconductor substrate is set to approximately one third of the maximum breakdown voltage of the element. A method of using a high withstand voltage lateral semiconductor device, which is characterized in that it is fixed at a potential of 1.
【請求項3】第一の半導体基板と第二の半導体基板とを
酸化膜を介して接合した複合半導体基板の第一半導体基
板の主表面から前記酸化膜に達する絶縁膜を埋め込んだ
絶縁膜分離溝と、その分離溝によって他の素子領域から
分離された厚さが10μm以下の素子領域と、その素子
領域の表面層に形成された第一導電型拡散領域、第二導
電型拡散領域を有する半導体装置の、第二半導体基板の
電位を第一半導体基板の素子領域内の最低電位より高い
電位に固定する使用方法において、第二半導体基板の電
位を、素子の最高耐圧のほぼ二分の一の電位に固定する
ことを特徴とする高耐圧横型半導体装置の使用方法。
3. An insulating film separation in which an insulating film reaching the oxide film is embedded from the main surface of the first semiconductor substrate of a composite semiconductor substrate in which a first semiconductor substrate and a second semiconductor substrate are bonded together via an oxide film. A groove, an element region having a thickness of 10 μm or less, which is separated from other element regions by the separation groove, and a first-conductivity-type diffusion region and a second-conductivity-type diffusion region formed in a surface layer of the element region. In a method of using the semiconductor device, wherein the potential of the second semiconductor substrate is fixed to a potential higher than the lowest potential in the element region of the first semiconductor substrate, the potential of the second semiconductor substrate is set to approximately one half of the maximum breakdown voltage of the element. A method of using a high withstand voltage lateral semiconductor device, which is characterized in that it is fixed at a potential.
【請求項4】前記絶縁膜分離溝内の絶縁膜に多結晶シリ
コンを充填し、その多結晶シリコンに、第一半導体基板
の素子領域内の最低電位より高い電位を与えることを特
徴とする請求項2または3に記載の高耐圧横型半導体装
置の使用方法。
4. The insulating film in the insulating film isolation groove is filled with polycrystalline silicon, and the polycrystalline silicon is given a potential higher than the lowest potential in the element region of the first semiconductor substrate. Item 4. A method of using the high breakdown voltage lateral semiconductor device according to Item 2 or 3.
【請求項5】前記多結晶シリコンに第二半導体基板と同
電位を与えることを特徴とする請求項4に記載の高耐圧
横型半導体装置の使用方法。
5. The method of using a high breakdown voltage lateral semiconductor device according to claim 4, wherein the same potential as that of the second semiconductor substrate is applied to the polycrystalline silicon.
JP24900995A 1994-09-27 1995-09-27 Horizontal semiconductor device having high breakdown voltage and its using method Withdrawn JPH08153781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24900995A JPH08153781A (en) 1994-09-27 1995-09-27 Horizontal semiconductor device having high breakdown voltage and its using method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-230882 1994-09-27
JP23088294 1994-09-27
JP24900995A JPH08153781A (en) 1994-09-27 1995-09-27 Horizontal semiconductor device having high breakdown voltage and its using method

Publications (1)

Publication Number Publication Date
JPH08153781A true JPH08153781A (en) 1996-06-11

Family

ID=26529590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24900995A Withdrawn JPH08153781A (en) 1994-09-27 1995-09-27 Horizontal semiconductor device having high breakdown voltage and its using method

Country Status (1)

Country Link
JP (1) JPH08153781A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6492683B2 (en) 2000-09-28 2002-12-10 Nec Corporation Semiconductor device with SOI structure and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6492683B2 (en) 2000-09-28 2002-12-10 Nec Corporation Semiconductor device with SOI structure and method of manufacturing the same
US6541314B2 (en) 2000-09-28 2003-04-01 Nec Corporation Semiconductor device with SOI structure and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US5343067A (en) High breakdown voltage semiconductor device
US6307232B1 (en) Semiconductor device having lateral high breakdown voltage element
US6150697A (en) Semiconductor apparatus having high withstand voltage
US6768180B2 (en) Superjunction LDMOST using an insulator substrate for power integrated circuits
EP0682811B1 (en) Lateral semiconductor-on-insulator (soi) semiconductor device having a buried diode
US7417296B2 (en) Dielectric isolation type semiconductor device
JP4206543B2 (en) Semiconductor device
KR100311589B1 (en) Semiconductor component for high voltage
US7910962B2 (en) SOI trench lateral IGBT
US20150194482A1 (en) Semiconductor device and method for fabricating the same
US5874768A (en) Semiconductor device having a high breakdown voltage
US6246101B1 (en) Isolation structure and semiconductor device including the isolation structure
JP2896141B2 (en) High voltage semiconductor device
JP3293871B2 (en) High voltage semiconductor device
JP2009260208A (en) Semiconductor device
US9640611B2 (en) HV complementary bipolar transistors with lateral collectors on SOI with resurf regions under buried oxide
US20020195659A1 (en) Semiconductor device
JPH04336446A (en) Using method for semiconductor device
US5592014A (en) High breakdown voltage semiconductor device
JP2878689B2 (en) High voltage semiconductor device
US5432377A (en) Dielectrically isolated semiconductor device and a method for its manufacture
US6914270B2 (en) IGBT with PN insulation and production method
KR20010102237A (en) Depletion type mos transistor
US6339243B1 (en) High voltage device and method for fabricating the same
JPH11145277A (en) Dielectric isolation type semiconductor device

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20031225

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040322