JPH08148147A - Manufacture of positive electrode active material for secondary battery - Google Patents

Manufacture of positive electrode active material for secondary battery

Info

Publication number
JPH08148147A
JPH08148147A JP6291461A JP29146194A JPH08148147A JP H08148147 A JPH08148147 A JP H08148147A JP 6291461 A JP6291461 A JP 6291461A JP 29146194 A JP29146194 A JP 29146194A JP H08148147 A JPH08148147 A JP H08148147A
Authority
JP
Japan
Prior art keywords
active material
acid
positive electrode
electrode active
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6291461A
Other languages
Japanese (ja)
Other versions
JP3443991B2 (en
Inventor
Kazumi Okabe
参省 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP29146194A priority Critical patent/JP3443991B2/en
Publication of JPH08148147A publication Critical patent/JPH08148147A/en
Application granted granted Critical
Publication of JP3443991B2 publication Critical patent/JP3443991B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: To manufacture a homogeneous and fine lithium positive electrode active material having a large surface area and high activity for a secondary battery. CONSTITUTION: Li and at least one metal element selected from a group of Cr, Mn, Ni, Fe, Co and V are used as active material forming elements, and oxypolycarboxylic acid of each forming element or the water soluble compound thereof are made to react with oxypolycarboxylic acid and polyol. Then, the water soluble oligomer solution of a composite carboxylic acid ester complex so produced is sprayed to space at temperature between 450 and 650 deg.C, thereby thermally decomposing the oligomer of the complex.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は二次電池用正極活物質、
特に、表面積が大きく、充填密度が高く、均質で微細な
二次電池用リチウム系正極活物質の製造方法に関するも
のである。
The present invention relates to a positive electrode active material for a secondary battery,
In particular, the present invention relates to a method for producing a homogeneous and fine lithium-based positive electrode active material for a secondary battery, which has a large surface area, a high packing density, and is fine.

【0002】[0002]

【従来の技術】一般に、二次電池用正極活物質の製造方
法としては、(イ)リチウム系正極活物質を構成する元
素の炭酸塩又は酸化物の粉体を別々に秤量し、これらを
混合粉砕して700℃以上の温度で仮焼する乾式法、
(ロ)リチウム系正極活物質を構成する元素のアルコキ
シドの混合物して得られる複合アルコキシド溶液を加水
分解し、生成したゲルを仮焼するゾルーゲル法、(ハ)
正極活物質構成元素のイオンを含有する溶液に沈殿剤を
添加して正極活物質構成元素の塩を沈殿させ、その沈殿
物を洗浄、乾燥した後、仮焼する方法などが報告されて
いる。
2. Description of the Related Art Generally, as a method for producing a positive electrode active material for a secondary battery, (a) powders of carbonates or oxides of elements constituting the lithium-based positive electrode active material are separately weighed and mixed. A dry method of crushing and calcining at a temperature of 700 ° C or higher,
(B) A sol-gel method in which a composite alkoxide solution obtained by mixing a mixture of alkoxides of elements constituting a lithium-based positive electrode active material is hydrolyzed and the resulting gel is calcined, (c)
It has been reported that a precipitating agent is added to a solution containing ions of the positive electrode active material constituent elements to precipitate a salt of the positive electrode active material constituent elements, the precipitate is washed, dried, and then calcined.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記乾
式法では、出発原料として正極活物質構成元素の炭酸塩
又は酸化物の粉体を使用しているため、各々の粉体を分
子レベルで均一に混合することは全く不可能であり、し
かも粉体間の混合分散性が悪いため、均質な2次電池正
極活物質が得られず、必然的に局部的な組成ズレを生
じ、特性のバラツキの大きな酸化物粉体しか得られない
という問題があった。また、出発原料である各粉体は、
湿式法で合成し、その沈殿物を仮焼することによっても
製造できるが、合成時の沈殿物が微細であっても、使用
する際に乾燥等の処理を行うため凝集して粒子が粗大化
し、表面活性が悪くなっているため、正極活物質の酸化
物を得る為には700℃以上の高温で仮焼しなければな
らないという問題がある。しかも、高温で仮焼して得た
仮焼粉体は粒子の強い凝集により粒子が粗大化している
ため、充填密度が低く表面積が小さくなり、十分な電気
量を取り出すことができないという問題もある。
However, since the powder of carbonate or oxide of the constituent elements of the positive electrode active material is used as a starting material in the dry method, each powder is made uniform at the molecular level. Since it is completely impossible to mix, and the mixing and dispersibility of the powders is poor, a homogeneous secondary battery positive electrode active material cannot be obtained, which inevitably causes local compositional deviation and variation in characteristics. There is a problem that only large oxide powder can be obtained. In addition, each powder as a starting material,
It can also be manufactured by synthesizing by a wet method and calcining the precipitate, but even if the precipitate during synthesis is fine, it undergoes a treatment such as drying when used, resulting in aggregation and coarsening of particles. However, since the surface activity is poor, there is a problem that calcination must be performed at a high temperature of 700 ° C. or higher in order to obtain an oxide of the positive electrode active material. Moreover, the calcined powder obtained by calcining at a high temperature has coarse particles due to strong agglomeration of particles, so that the packing density is low and the surface area is small, so that there is a problem that a sufficient amount of electricity cannot be taken out. .

【0004】他方、ゾルーゲル法では、低温で正極活物
質である酸化物粉体を製造でき、しかも、得られる粉体
は粒径が微細で表面積が大きく充填密度が高くなるの
で、電気量を十分に取り出すことができる利点がある
が、出発原料であるアルコキシドは実験室的には適した
材料であっても、工業的に採用するには高価すぎて採用
できないものである。また、アルコキシドは水分に対し
て非常に敏感で加水分解し易いため、アルコキシドが空
気中の水分に影響を受けないような反応装置を必要と
し、設備費が高くコストアップの要因となるなど経済的
問題がある。
On the other hand, in the sol-gel method, an oxide powder which is a positive electrode active material can be produced at a low temperature, and the obtained powder has a fine particle size, a large surface area and a high packing density. However, the alkoxide as a starting material is a material that is suitable in a laboratory, but is too expensive to be industrially adopted and cannot be used. In addition, since alkoxides are extremely sensitive to water and easily hydrolyzed, a reaction device that does not affect the water in the air is required for the alkoxide, which is expensive and is a factor of cost increase. There's a problem.

【0005】更に、沈殿法は沈殿剤として蓚酸塩を用
い、これを正極活物質構成元素イオン含有液に添加して
正極活物質構成元素の蓚酸塩を沈殿させる方法が代表的
であるが、通常、蓚酸塩は大部分が水に対してかなりの
溶解度を有し、しかも各正極活物質構成元素の蓚酸塩の
溶解度が相違するため、不純物イオンを除去する洗浄を
繰り返す過程で生成物の溶解が起こり、洗浄脱水後の焙
焼用沈殿物の構成元素比率は配合時の組成からズレてく
るという重大な問題がある。また、Liを主構成元素と
しているため、他の構成元素と一緒に沈殿を形成させる
ための沈殿形成剤が無いところに大きな障害がある。例
えば、Li以外の構成元素は苛性アルカリや炭酸塩を沈
殿形成剤として用いることことにより難溶性の水酸化物
或は炭酸塩として沈殿させ回収できるが、リチウムにつ
いてはその水酸化物及び炭酸塩が水に対して易溶性であ
るため、水酸化物又は炭酸塩として回収することは殆ど
不可能である。更に、この方法では、沈殿物を洗浄、乾
燥させた凝集度の高い粉体を仮焼するため、粒子が粗大
で粉砕しない限りそのままでは正極活物質用材料として
使用できないという問題もある。
Further, the precipitation method is typically a method in which oxalate is used as a precipitating agent, and this is added to the liquid containing the ion of the constituent element of the positive electrode active material to precipitate the oxalate of the constituent element of the positive electrode active material. However, most of the oxalates have a considerable solubility in water, and the oxalates of the constituent elements of the positive electrode active materials are different in solubility, so that the products are not dissolved in the process of repeating washing for removing impurity ions. There is a serious problem that the ratio of the constituent elements of the roasting precipitate after washing and dehydration deviates from the composition at the time of compounding. Further, since Li is the main constituent element, there is a major obstacle in that there is no precipitation forming agent for forming a precipitate together with other constituent elements. For example, the constituent elements other than Li can be precipitated and recovered as a sparingly soluble hydroxide or carbonate by using caustic alkali or carbonate as a precipitation forming agent. Since it is easily soluble in water, it is almost impossible to recover it as a hydroxide or carbonate. Further, in this method, since the precipitate is washed and dried and the powder having a high degree of aggregation is calcined, there is a problem that the particle cannot be used as it is as a material for the positive electrode active material as it is, unless the particle is coarse and crushed.

【0006】従って、本発明は、表面積が大きく活性度
が高く、均質で微細な二次電池用リチウム系正極活物質
を製造できるようにすることを課題とするものである。
また、本発明の他の課題は、充填密度を高め大容量を取
り出せる二次電池用リチウム系正極活物質を安価に効率
良く製造できるようにすることにある。
Therefore, an object of the present invention is to make it possible to produce a homogeneous and fine lithium-based positive electrode active material for a secondary battery having a large surface area and a high activity.
Another object of the present invention is to make it possible to inexpensively and efficiently manufacture a lithium-based positive electrode active material for a secondary battery, which has a high packing density and can take out a large capacity.

【0007】[0007]

【課題を解決するための手段】本発明は、前記課題を達
成する手段として、一般式:LiMO2(MはCr、Mn、
Ni、Fe、Co及びVからなる群から選ばれた少なくと
も一種の金属元素)で示される二次電池用リチウム系正
極活物質を製造する方法において、オキシポリカルボン
酸と、ポリオールと、各活物質構成元素のオキシポリカ
ルボン酸又は水に可溶な化合物とを反応させ、生成した
水溶性複合カルボン酸エステル錯体オリゴマー溶液を4
50〜650℃の空間内に噴霧して前記複合カルボン酸
エステル錯体オリゴマーを熱分解するようにしたもので
ある。
Means for Solving the Problems The present invention provides a means for achieving the above object by the general formula: LiMO 2 (M is Cr, Mn,
A method for producing a lithium-based positive electrode active material for a secondary battery, which is represented by at least one metal element selected from the group consisting of Ni, Fe, Co and V), wherein an oxypolycarboxylic acid, a polyol, and each active material The resulting water-soluble complex carboxylic acid ester complex oligomer solution is reacted with an oxypolycarboxylic acid as a constituent element or a water-soluble compound to give 4
The composite carboxylic acid ester complex oligomer is thermally decomposed by spraying in a space of 50 to 650 ° C.

【0008】各活物質構成元素、即ち、リチウムLiと
Cr、Mn、Ni、Fe、Co及びVからなる群から選ばれ
た少なくとも一種の金属元素Mのオキシポリカルボン酸
又は水に可溶な化合物としては、例えば、塩化物、硝酸
塩、硫酸塩、炭酸塩などの水溶性無機化合物が挙げら
れ、これらは単独で又は組み合わせて使用することがで
きる。
Each active material constituent element, that is, lithium Li and at least one metal element M selected from the group consisting of Cr, Mn, Ni, Fe, Co and V, an oxypolycarboxylic acid or a water-soluble compound. Examples thereof include water-soluble inorganic compounds such as chlorides, nitrates, sulfates and carbonates, and these can be used alone or in combination.

【0009】前記オキシポリカルボン酸としては、クエ
ン酸が最も代表的なものとして挙げられるが、リンゴ
酸、メソ酒石酸、葡萄酸、メコン酸など他のヒドロキシ
酸も使用できる。
The most representative oxypolycarboxylic acid is citric acid, but other hydroxy acids such as malic acid, meso-tartaric acid, grape acid and meconic acid can also be used.

【0010】また、前記ポリオールとしては、エチレン
グリコール、プロピレングリコール、ジエチレングリコ
ール、ジプロピレングリコール、ポリエチレングリコー
ル、ポリプロピレングリコール、トリグリコール、テト
ラエチレングリコール、ブタンジオール-1,4-ヘキシレ
ングリコール、オクチレングリコールなどのグリコール
の他、グリセリンなどの三価アルコール、四価、五価ア
ルコールなど任意の多価アルコールを単独で或は組み合
わせて使用できる。
Examples of the polyol include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, triglycol, tetraethylene glycol, butanediol-1,4-hexylene glycol, octylene glycol and the like. In addition to the glycols mentioned above, any polyhydric alcohol such as trihydric alcohol such as glycerin, tetrahydric alcohol and pentahydric alcohol can be used alone or in combination.

【0011】オキシポリカルボン酸、ポリオール及びオ
キシポリカルボン酸又は水に可溶な各活物質構成元素化
合物との反応は、オキシポリカルボン酸が分解しない温
度、通常、140℃以下で行なわれるが、100〜13
0℃の範囲内の温度で行うのが好適である。これは、1
40℃を超えると、重縮合反応が進みすぎて反応溶液の
粘度が高くなり、溶液が粘調になり過ぎて後の工程の処
理で支障を来すからである。
The reaction of the oxypolycarboxylic acid, the polyol and the oxypolycarboxylic acid or the water-soluble active material constituent element compound is carried out at a temperature at which the oxypolycarboxylic acid is not decomposed, usually 140 ° C. or lower. 100-13
It is preferred to carry out at a temperature in the range of 0 ° C. This is 1
If the temperature exceeds 40 ° C., the polycondensation reaction proceeds too much and the viscosity of the reaction solution increases, and the solution becomes too viscous, which causes trouble in the subsequent process.

【0012】また、前記水溶性複合カルボン酸エステル
錯体オリゴマーの熱分解は、反応液をそのまま450〜
650℃の空間内に噴霧することにより行われるが、雰
囲気の温度が450℃未満では短時間で熱分解が十分に
行われず、650℃を超えると、一旦生成したLiMO2
の部分分解が生じ、モル比のズレが発生するため好まし
くない。
Further, the thermal decomposition of the water-soluble complex carboxylic acid ester complex oligomer is carried out by leaving the reaction solution as it is for 450-
It is carried out by spraying in a space of 650 ° C. However, if the temperature of the atmosphere is less than 450 ° C., the thermal decomposition is not sufficiently carried out in a short time, and if it exceeds 650 ° C., LiMO 2 once formed is generated.
Is partially decomposed and a molar ratio shift occurs, which is not preferable.

【0013】[0013]

【作用】オキシポリカルボン酸、ポリオール及びオキシ
ポリカルボン酸又は水に可溶な各活物質構成元素化合物
とを反応させると、水溶性複合カルボン酸エステル錯体
オリゴマーを形成し、活物質構成元素がイオンレベルで
オリゴマー分子中に均一に分散した状態となる。このオ
リゴマー溶液を所定温度に維持された酸化性雰囲気の空
間、例えば、加熱筒内に霧状に吹き込むと、オリゴマー
が瞬時に熱分解して複合金属酸化物が合成され、凝集が
著しく抑制された微細な球状の活物質粉体が得られる。
熱分解時、オリゴマー溶液中に含まれる硫酸根、塩素イ
オン又は硝酸根はガスとなって系外に放出され活物質粉
体中に残存せず、しかも原料であるオキシポリカルボン
酸、ポリオール及びオキシポリカルボン酸又は水に可溶
な各活物質構成元素化合物には、NaイオンやKイオン
など好ましくない陽イオンが全く含まれていないので、
高純度の酸化物活物質粉体が生成される。
[Function] When an oxypolycarboxylic acid, a polyol, an oxypolycarboxylic acid or a compound of each active material constituent element soluble in water is reacted, a water-soluble complex carboxylic acid ester complex oligomer is formed, and the active material constituent element is an ion. At the level, it is in a state of being uniformly dispersed in the oligomer molecule. When this oligomer solution was atomized into a space of an oxidizing atmosphere maintained at a predetermined temperature, for example, a heating cylinder, the oligomer was instantly thermally decomposed to synthesize a composite metal oxide, and aggregation was significantly suppressed. A fine spherical active material powder is obtained.
At the time of thermal decomposition, sulfate radicals, chloride ions or nitrate radicals contained in the oligomer solution are released to the outside of the system as gas and do not remain in the active material powder. Each of the active material constituent element compounds soluble in polycarboxylic acid or water does not contain any undesired cations such as Na ions and K ions.
A high-purity oxide active material powder is produced.

【0014】本発明においては、オリゴマー溶液をその
まま熱分解するため、洗浄等による活物質構成元素の損
失、従って、組成ズレが回避される。しかも、生成した
活物質はサブミクロン単位の微粒子であるため、従来法
のような製造後の粉砕を全く必要とせず、従って、粉砕
に起因する不純物の混入を考慮する必要性がなくなり、
粉砕工程の排除による経費の低減化に寄与している。ま
た、原料として硫酸塩、硝酸塩或は塩化物を用いる代わ
りに、オキシカルボン酸に可溶な炭酸塩を用いることに
より、熱分解時に酸性ガスが発生することがなく、排ガ
ス処理の問題も回避でき、環境上の問題の解決に寄与す
ることになる。更に、実用電池では充填できる容積は一
定であるから正極活物質の単位重量当たりの電池性能が
同じであれば、充填性が高く比表面積が大きいほど、多
くの電気量を取り出すことが可能になるため、空間中で
の熱分解により生成される活物質粉体は、粒径が小さ
く、粒度分布巾が狭く比表面積が大きいため、充填性が
高く、従って、取り出せる電気量を増大させることがで
き、電池性能の向上に寄与する。
In the present invention, since the oligomer solution is directly pyrolyzed, loss of constituent elements of the active material due to washing and the like, and thus compositional deviation, can be avoided. Moreover, since the generated active material is fine particles in the submicron unit, there is no need for pulverization after production as in the conventional method, and therefore, it is not necessary to consider contamination of impurities due to pulverization.
It contributes to cost reduction by eliminating the grinding process. In addition, by using a carbonate soluble in oxycarboxylic acid instead of using sulfate, nitrate or chloride as a raw material, acid gas is not generated during thermal decomposition and the problem of exhaust gas treatment can be avoided. , Will contribute to the solution of environmental problems. Furthermore, since the volume that can be filled in a practical battery is constant, if the battery performance per unit weight of the positive electrode active material is the same, the higher the filling property and the larger the specific surface area, the more electricity can be extracted. Therefore, the active material powder generated by thermal decomposition in the space has a small particle size, a narrow particle size distribution width, and a large specific surface area, so that the packing property is high, and therefore the amount of electricity that can be taken out can be increased. Contribute to the improvement of battery performance.

【0015】[0015]

【実施例】正極活物質原料として炭酸リチウムと硝酸コ
バルトとを用い、これらをLiCoO2濃度換算で0.6
25モル/Lになるように正確に秤量して反応容器に入
れ、活物質構成元素の合計モル数(1.25モル)に対
して1.3倍のモル数のクエン酸と、クエン酸に対して
0.7倍のモル数のエチレングリコールとを添加し、更
に純水を加えて全量を800mlとした。
[Examples] Lithium carbonate and cobalt nitrate were used as raw materials for the positive electrode active material, and these were converted to 0.6 in terms of LiCoO 2 concentration.
Accurately weigh it to 25 mol / L and put it in a reaction vessel, and add citric acid in an amount 1.3 times the total number of active material constituent elements (1.25 mol). On the other hand, 0.7 times the number of moles of ethylene glycol was added, and pure water was added to make the total amount 800 ml.

【0016】前記反応容器を110℃に維持したオイル
バスにセットし、攪拌しながら2時間反応を行わせ、水
溶性複合錯体カルボン酸エステルオリゴマーを生成させ
た。反応終了後、反応容器をオイルバスから取り出して
室温まで放冷し、次いで、反応容器に純水を加えてLi
CoO2濃度で0.5モル/Lになるように水溶性複合錯
体カルボン酸エステルオリゴマー溶液を希釈し、全量を
1000mlにした。このオリゴマー溶液を500℃に調
整された縦形熱分解炉中へ1200ml/hの速度で霧状
に吹き込んで熱分解させ、LiCoO2からなる正極活物
質粉体を得た。
The reaction vessel was set in an oil bath maintained at 110 ° C., and the reaction was carried out for 2 hours while stirring to produce a water-soluble complex complex carboxylic acid ester oligomer. After completion of the reaction, the reaction vessel was taken out of the oil bath and allowed to cool to room temperature, and then pure water was added to the reaction vessel to obtain Li.
The water-soluble complex complex carboxylic acid ester oligomer solution was diluted to a CoO 2 concentration of 0.5 mol / L, and the total amount was adjusted to 1000 ml. The oligomer solution was blown into a vertical pyrolysis furnace adjusted to 500 ° C. at a rate of 1200 ml / h in a mist state to be pyrolyzed to obtain a LiCoO 2 positive electrode active material powder.

【0017】得られた正極活物質粉体についてX線回析
分析(XRD)、走査型電子顕微鏡(SEM)及びTE
M観察及び比表面積測定を行い、粒径はSEM写真によ
り、比表面積は窒素吸着法によりそれぞれ求めた。それ
らの結果を表1に示す。
X-ray diffraction analysis (XRD), scanning electron microscope (SEM) and TE were performed on the obtained positive electrode active material powder.
M observation and specific surface area measurement were performed, and the particle size was determined by a SEM photograph and the specific surface area was determined by a nitrogen adsorption method. The results are shown in Table 1.

【0018】[0018]

【比較例】正極活物質原料として炭酸リチウムと酸化コ
バルトとを用い、これらをLiとCoのモル比が1:1
(LiCoO2濃度換算で0.625モル/L)になるよ
うに正確に秤量してエタノール溶液中で混合粉砕した
後、500、600、750℃の各温度でそれぞれ2時
間仮焼した。得られた仮焼粉末についてX線回析分析を
行った。その結果を表1に示す。表中、LCはLiCoO
2、LxyはLi−Co系酸化物で、x/yが1.00で
ないものを表す。
Comparative Example Lithium carbonate and cobalt oxide were used as raw materials for the positive electrode active material, and the molar ratio of Li and Co was 1: 1.
The mixture was accurately weighed so as to have a LiCoO 2 concentration conversion of 0.625 mol / L, mixed and pulverized in an ethanol solution, and then calcined at temperatures of 500, 600 and 750 ° C. for 2 hours. X-ray diffraction analysis was performed on the obtained calcined powder. Table 1 shows the results. In the table, LC is LiCoO
2, L x C y in Li-Co-based oxide, represents what x / y is not 1.00.

【0019】[0019]

【表1】 試料 熱処理温度 平均粒径 標準偏差 比表面積 XRD (℃) (μm) (σ) (m2/g) 相 実施例 500 0.3 0.07 45 LC単相 比較例 500 − − − Co23 比較例 600 − − − LC、Lx 比較例 700 − − − LC単相[Table 1] Sample heat treatment temperature Average particle size Standard deviation Specific surface area XRD (° C) (μm) (σ) (m 2 / g) Phase Example 500 0.3 0.007 45 LC single phase Comparative Example 500 --- Co 2 O 3 Comparative example 600 - - - LC, L x C y Comparative example 700 - - - LC single phase

【0020】実施例の活物質粉体は、TEM観察により
5〜10nmの超微細な一次粒子が凝集して0.25〜
0.45μmの球状の二次粒子になっていることが確認さ
れた。表1の結果から、比較例では700℃以上で仮焼
しないとLiCoO2単相の粉体が得られないのに対し
て、本発明の方法では200℃以上も低い温度の500
℃でLiCoO2単相になっており、低温で比表面積の大
きな充填性の高い二次電池用正極活物質粉体を得ること
ができることが判る。
In the active material powder of the example, TEM observation shows that ultrafine primary particles of 5 to 10 nm are aggregated to form 0.25 to
It was confirmed that the particles were spherical secondary particles of 0.45 μm. From the results of Table 1, the LiCoO 2 single-phase powder cannot be obtained unless it is calcined at 700 ° C. or higher in the comparative example, whereas in the method of the present invention, the temperature is as low as 200 ° C. or higher, 500
It can be seen that a LiCoO 2 single phase is formed at a temperature of ℃, and a positive electrode active material powder for a secondary battery having a large specific surface area and a high filling property can be obtained at a low temperature.

【0021】[0021]

【発明の効果】以上の説明から明らかなように、本発明
によれば、LiとCr、Mn、Ni、Fe、Co及びVからな
る群から選ばれた少なくとも一種の金属元素とを活物質
構成元素とし、各活物質構成元素のオキシポリカルボン
酸又は水に可溶な化合物と、オキシポリカルボン酸と、
ポリオールとを反応させ、生成した水溶性複合カルボン
酸エステル錯体オリゴマー溶液を450〜650℃の空
間内に噴霧して前記複合カルボン酸エステル錯体オリゴ
マーを熱分解するようにしたので、微細で比表面積の大
きな球状の活物質粉体が得られ、従って、充填密度を著
しく高め、電池性能を向上させることができる。
As is apparent from the above description, according to the present invention, Li and at least one metal element selected from the group consisting of Cr, Mn, Ni, Fe, Co and V are used as an active material. As an element, an oxypolycarboxylic acid of each active material constituent element or a water-soluble compound, and an oxypolycarboxylic acid,
Since the water-soluble complex carboxylic acid ester complex oligomer solution produced by reacting with the polyol was sprayed into the space of 450 to 650 ° C. to thermally decompose the complex carboxylic acid ester complex oligomer, the fine and specific surface area A large spherical active material powder can be obtained, and therefore, the packing density can be remarkably increased and the battery performance can be improved.

【0022】また、活物質原料が無機化合物で安価であ
り、低温で熱処理を行うことができることと、廃液処理
が不要であることとが相まって、アセチルアセトネート
やアルコキシドなどの高価な金属含有有機化合物を用い
るゾルーゲル法に比べて安価に製造でき、また、沈殿法
と異なり活物質原料に起因する硫酸根、塩素イオン又は
硝酸根などの陰イオンが粉体中に残留せず、従って洗浄
処理が不要であり、しかもNaやKなど好ましくない陽
イオンを全く含有しないので、高純度の酸化物活物質粉
体を製造できる、など優れた効果が得られる。
In addition, since the raw material for the active material is an inorganic compound, which is inexpensive, and can be heat-treated at a low temperature, and waste liquid treatment is not required, expensive metal-containing organic compounds such as acetylacetonate and alkoxide are combined. It can be manufactured at a lower cost than the sol-gel method using, and unlike the precipitation method, anions such as sulfate groups, chloride ions or nitrate groups due to the active material raw materials do not remain in the powder, and therefore no cleaning treatment is required. In addition, since it does not contain any undesired cations such as Na and K, it is possible to produce an oxide active material powder with high purity, which is an excellent effect.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一般式:LiMO2(MはCr、Mn、N
i、Fe、Co及びVからなる群から選ばれた少なくとも
一種の金属元素)で示される二次電池用リチウム系正極
活物質を製造する方法において、オキシポリカルボン酸
と、ポリオールと、各活物質構成元素のオキシポリカル
ボン酸又は水に可溶な化合物とを反応させ、生成した水
溶性複合カルボン酸エステル錯体オリゴマー溶液を45
0〜650℃の空間内に噴霧して前記複合カルボン酸エ
ステル錯体オリゴマーを熱分解することを特徴とする二
次電池用正極活物質の製造方法。
1. A general formula: LiMO 2 (M is Cr, Mn, N
In the method for producing a lithium-based positive electrode active material for a secondary battery represented by at least one metal element selected from the group consisting of i, Fe, Co and V), an oxypolycarboxylic acid, a polyol, and each active material The water-soluble complex carboxylic acid ester complex oligomer solution produced by reacting the constituent element oxypolycarboxylic acid or a water-soluble compound with 45
A method for producing a positive electrode active material for a secondary battery, comprising spraying in a space of 0 to 650 ° C. to thermally decompose the complex carboxylic acid ester complex oligomer.
【請求項2】 前記活物質構成元素のオキシポリカルボ
ン酸又は水に可溶な化合物が、塩化物、硝酸塩、硫酸塩
及び炭酸塩からなる群から選ばれた少なくとも一種の水
溶性無機化合物である請求項1に記載の方法。
2. The oxypolycarboxylic acid or water-soluble compound of the active material constituent element is at least one water-soluble inorganic compound selected from the group consisting of chloride, nitrate, sulfate and carbonate. The method of claim 1.
【請求項3】 前記オキシポリカルボン酸が、クエン
酸、リンゴ酸、メソ酒石酸、葡萄酸及びメコン酸からな
る群から選ばれた一種である請求項1又は2に記載の方
法。
3. The method according to claim 1 or 2, wherein the oxypolycarboxylic acid is one selected from the group consisting of citric acid, malic acid, meso-tartaric acid, grape acid and meconic acid.
【請求項4】 前記水溶性複合カルボン酸エステル錯体
オリゴマーの生成反応を140℃以下で行なう請求項1
〜3のいずれかに記載の方法。
4. The reaction for producing the water-soluble complex carboxylic acid ester complex oligomer is carried out at 140 ° C. or lower.
4. The method according to any one of 3 to 3.
JP29146194A 1994-11-25 1994-11-25 Method for producing positive electrode active material for secondary battery Expired - Fee Related JP3443991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29146194A JP3443991B2 (en) 1994-11-25 1994-11-25 Method for producing positive electrode active material for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29146194A JP3443991B2 (en) 1994-11-25 1994-11-25 Method for producing positive electrode active material for secondary battery

Publications (2)

Publication Number Publication Date
JPH08148147A true JPH08148147A (en) 1996-06-07
JP3443991B2 JP3443991B2 (en) 2003-09-08

Family

ID=17769177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29146194A Expired - Fee Related JP3443991B2 (en) 1994-11-25 1994-11-25 Method for producing positive electrode active material for secondary battery

Country Status (1)

Country Link
JP (1) JP3443991B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09175825A (en) * 1995-12-19 1997-07-08 Samsung Display Devices Co Ltd Production of compound oxide using sol-gel method
WO1998029915A1 (en) * 1996-12-25 1998-07-09 Mitsubishi Denki Kabushiki Kaisha Anode active material, its producing process, and lithium ion secondary cell using the anode active material
US6383235B1 (en) * 1997-09-26 2002-05-07 Mitsubishi Denki Kabushiki Kaisha Cathode materials, process for the preparation thereof and secondary lithium ion battery using the cathode materials
JP2003077541A (en) * 2001-08-31 2003-03-14 Mitsubishi Heavy Ind Ltd Battery device and its electrode
JP2003536231A (en) * 2000-06-19 2003-12-02 ネオフォトニクス・コーポレイション Lithium metal oxide
JP2011108406A (en) * 2009-11-13 2011-06-02 Univ Of Fukui Method of manufacturing active material for lithium ion secondary battery positive electrode

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09175825A (en) * 1995-12-19 1997-07-08 Samsung Display Devices Co Ltd Production of compound oxide using sol-gel method
WO1998029915A1 (en) * 1996-12-25 1998-07-09 Mitsubishi Denki Kabushiki Kaisha Anode active material, its producing process, and lithium ion secondary cell using the anode active material
KR100303455B1 (en) * 1996-12-25 2001-11-30 다니구찌 이찌로오, 기타오카 다카시 Positive electrode active material and its manufacturing method and lithium ion secondary battery using the positive electrode active material
US6383235B1 (en) * 1997-09-26 2002-05-07 Mitsubishi Denki Kabushiki Kaisha Cathode materials, process for the preparation thereof and secondary lithium ion battery using the cathode materials
JP2003536231A (en) * 2000-06-19 2003-12-02 ネオフォトニクス・コーポレイション Lithium metal oxide
JP2003077541A (en) * 2001-08-31 2003-03-14 Mitsubishi Heavy Ind Ltd Battery device and its electrode
JP2011108406A (en) * 2009-11-13 2011-06-02 Univ Of Fukui Method of manufacturing active material for lithium ion secondary battery positive electrode

Also Published As

Publication number Publication date
JP3443991B2 (en) 2003-09-08

Similar Documents

Publication Publication Date Title
Huang et al. Wet chemical synthesis of Sr-and Mg-doped LaGaO3, a perovskite-type oxide-ion conductor
CN101044092B (en) Fine-particled alkaline-earth titanates and method for the production thereof using titan oxide particles
TWI245742B (en) Method for manufacturing highly-crystallized oxide powder
KR20080078864A (en) Methods for production of metal oxide nano particles, and nano particles and preparations produced thereby
JP4186529B2 (en) Method for producing highly crystalline double oxide powder
TWI750137B (en) Method for manufacturing zirconium tungstate phosphate
KR20170088924A (en) Method for producing a cathode material and special cathode material
JP2726439B2 (en) Method for producing ceramic powder having perovskite structure
JPH10139430A (en) Production of lithium-titanium complex oxide
JPH09309728A (en) Lithium titanate, its production and lithium battery using the same
JP3443991B2 (en) Method for producing positive electrode active material for secondary battery
Bhattacharya et al. Sol gel preparation, structure and thermal stability of crystalline zirconium titanate microspheres
Yu et al. Thermochemical behavior of metallic citrate precursors for the production of pure LaAlO3
JP2021109809A (en) Method for producing vanadium dioxide
JPH10139429A (en) Production of lithium-titanium complex oxide
Srisombat et al. Chemical synthesis of magnesium niobate powders
JP3491355B2 (en) Method for producing positive electrode active material for secondary battery
JPH08306358A (en) Manufacture of cathode active material for secondary battery
JP4360070B2 (en) Method for producing highly crystalline double oxide powder
Li et al. Crystallization of RE2 (OH) 2CO3SO4· nH2O as a new family of layered hydroxides (RE= Gd− Lu lanthanides and Y), derivation of RE2O2SO4, photoluminescence and optical thermometry
JP3149467B2 (en) Method for producing fine powder for semiconductor porcelain
US2733129A (en) Copper hemicbromite and its preparation
Chen et al. Hydrothermal synthesis and characterization of the layered titanates MLaTiO4 (M= Li, Na, K) powders
Predoana et al. Influence of the precursors on the La0. 5Sr0. 5CoO3 formation by water-based sol-gel method
Xi et al. Synthetic studies of nanocrystalline composite oxides with the perovskite structure based on LaFeO3

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees