JP4360070B2 - Method for producing highly crystalline double oxide powder - Google Patents

Method for producing highly crystalline double oxide powder Download PDF

Info

Publication number
JP4360070B2
JP4360070B2 JP2002230595A JP2002230595A JP4360070B2 JP 4360070 B2 JP4360070 B2 JP 4360070B2 JP 2002230595 A JP2002230595 A JP 2002230595A JP 2002230595 A JP2002230595 A JP 2002230595A JP 4360070 B2 JP4360070 B2 JP 4360070B2
Authority
JP
Japan
Prior art keywords
powder
raw material
double oxide
material powder
oxide powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002230595A
Other languages
Japanese (ja)
Other versions
JP2004067462A (en
Inventor
裕二 秋本
正美 中村
和郎 永島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoei Chemical Inc
Original Assignee
Shoei Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoei Chemical Inc filed Critical Shoei Chemical Inc
Priority to JP2002230595A priority Critical patent/JP4360070B2/en
Priority to CA002436391A priority patent/CA2436391C/en
Priority to SG200304272A priority patent/SG111132A1/en
Priority to US10/630,394 priority patent/US7094289B2/en
Priority to DE60303717T priority patent/DE60303717T2/en
Priority to AT03016653T priority patent/ATE318791T1/en
Priority to EP03016653A priority patent/EP1391423B1/en
Priority to MYPI20032938A priority patent/MY138755A/en
Priority to KR1020030054252A priority patent/KR100571622B1/en
Priority to TW092121446A priority patent/TWI245742B/en
Priority to CNB031275559A priority patent/CN100548873C/en
Publication of JP2004067462A publication Critical patent/JP2004067462A/en
Application granted granted Critical
Publication of JP4360070B2 publication Critical patent/JP4360070B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、2種以上の金属元素および/または半金属元素を含む高結晶性複酸化物粉末の製造方法に関するものである。特に蛍光体材料、誘電体材料、磁性体材料、導体材料、半導体材料、超伝導体材料、圧電体材料、磁気記録材料、二次電池用正極材料、電磁波吸収材料、触媒材料等のエレクトロニクス用機能性材料や、その他様々な分野で使用される工業材料として有用な、高純度でかつ粒度の揃った、高分散性、高結晶性複酸化物粉末の製造方法に関する。
【0002】
【従来の技術】
機能性材料として用いられる複酸化物の粉末は、その機能を十分に発揮させるため、高純度であること、組成的に均一で結晶性の高いものであることが望まれる。特にCRT、VFD、PDP、FEDなどの表示素子に用いられる蛍光体組成物、即ち蛍光体ペーストや蛍光体インク等に使用される複酸化物粉末は、薄膜化、充填性向上のため、平均粒径が0.1〜10μm程度の微細な粉末であること、粒子形状および粒径が揃っており、凝集のない単分散粒子であることなどが望まれている。また発光強度等蛍光特性向上のためには、不純物が少ないこと、粒子の表面及び内部に欠陥や格子歪がなく、組成的に均質で特に微量賦活元素が均一に分布しており、望ましくは単一結晶相からなる高結晶性のものであることが要求されている。
【0003】
従来、複酸化物粉末を製造するには、一般に固相反応法が用いられている。これは原料粉末を混合したものを坩堝などの焼成容器に入れて高温で長時間加熱することにより固相反応を起こさせ、それをボールミルなどで粉砕処理するものである。しかし、この方法で製造された複酸化物粉末は、粒子形状が不規則で粒度分布の大きい凝集体であり、また坩堝からの不純物混入が多い。また組成的な均質性を高めるためには、高温で長時間の処理を必要とするので効率が悪い。更に粉砕処理中に受けた物理的な衝撃および化学的な反応により粒子表面が変質し、このため粉末表面及び内部に欠陥が多く発生し、結晶性の低下や、複酸化物が本来有する物理的特性の低下を招くことがあった。
【0004】
表面変質がなく、結晶性の高い複酸化物粉末を得る方法としては、ゾルゲル法、水熱法、共沈法などが知られている。しかし、いずれも凝集のない、分散性の高い微粉末とすることが難しい。
噴霧熱分解法は、金属化合物を水または有機溶媒に溶解、または分散させた混合溶液を噴霧して微細な液滴にし、その液滴を金属酸化物を析出させることが可能な条件下で加熱して金属酸化物粉末を生成させる方法である。この方法では、凝集のない、微細な単分散粒子が得られ、また原料が溶液なので、各金属成分を任意の比率で均一に混合することができ、かつ不純物の混入も少ないため、複酸化物粉末の製造方法として適していると考えられる。例えば特開2001−152146号公報等には、この方法で発光特性の優れた蛍光体微粉末を製造することが記載されている。
【0005】
しかし噴霧熱分解法は、原料の金属化合物を液滴とするのに、溶媒として水や、アルコール、アセトン、エーテル等の有機溶媒を大量に使用するため、溶媒を蒸発させるのに多大なエネルギーを要し、熱分解時のエネルギーロスが大きくなってコストが高くなる。更に、溶媒の分解により、熱分解時の雰囲気制御が難しい。また、反応容器内において液滴の合一や***が起こることにより、生成する粉末の粒度分布が大きくなることがある。このため、噴霧速度、キャリヤガス中での液滴濃度、反応容器中での滞留時間等、反応条件の設定が難しく、生産性も悪い。更にこの方法では、出発原料が溶液化または懸濁液化できるものに限られるため、原料組成範囲、濃度に制限があり、製造できる複酸化物粉末の種類が限定される。
【0006】
【発明が解決しようとする課題】
本発明の目的は、不純物の混入がなく、高分散で、粒度の揃った高結晶性複酸化物粉末を、低コストかつ簡単な製造設備で製造することであり、特に組成的な均一性と高結晶性が強く要求される蛍光体などの機能性金属複酸化物粉末、機能性セラミックス粉末等を製造するのに適した製造方法を提供することである。更に他の目的は、厚膜ペースト、特に蛍光体部品を製造するための蛍光体ペーストに適した形状、粒度を有し、粒度の揃った高純度、高分散、高結晶性の複酸化物粉末を得ることにある。
【0007】
【課題を解決するための手段】
即ち本発明は、
1.複酸化物を構成する2種以上の金属元素および/または半金属元素を個々の粒子中に一定の組成比で含む原料粉末を、キャリヤガスと共にノズルを通して反応容器中に噴出させ、該原料粉末を10g/l以下の濃度で気相中に分散させた状態で、その分解温度もしくは反応温度より高く、かつ生成する複酸化物の融点をTm℃としたとき(Tm/2)℃以上の温度で加熱することにより複酸化物粉末を生成させることを特徴とする、高結晶性複酸化物粉末の製造方法を要旨とするものである。
【0008】
また、
2.前記1項に記載の製造方法において、原料粉末を反応容器中に噴出させる際の条件が、キャリヤガスの単位時間あたりの流量をV(l/min)、ノズルの開口部の断面積をS(cm2)としたとき、V/S>600であることを特徴とする高結晶性複酸化物粉末の製造方法を要旨とするものである。
【0009】
また、
3.前記1または2項に記載の製造方法において、原料粉末を、ノズルを通して反応容器中に噴出させる前に、分散機を用いてキャリヤガス中に混合、分散させることを特徴とする高結晶性複酸化物粉末の製造方法を要旨とするものである。
また、
4.前記1ないし3項のいずれかに記載の製造方法において、原料粉末が、予め粒度調整されたものである、高結晶性複酸化物粉末の製造方法を要旨とするものである。
【0010】
また、
5.前記1ないし4項のいずれかに記載の製造方法において、原料粉末を構成する個々の粒子が、金属、半金属およびこれらの化合物からなる群より選択された2種以上を含む混合物または複合物、もしくは2種以上の金属元素および/または半金属元素を含む特定の単一の化合物からなるものである高結晶性複酸化物粉末の製造方法を要旨とするものである。
【0011】
更に、
6.前記1ないし5項のいずれかに記載の製造方法において、複酸化物を構成する2種以上の金属元素および/または半金属元素を個々の粒子中に一定の組成比で含む原料粉末を調製し、得られた原料粉末を一旦捕集し、捕集された該原料粉末をキャリアガスと共にノズルを通して反応容器に噴出させる前に予め分散機を用いてキャリアガスに分散させることを特徴とする高結晶性複酸化物粉末の製造方法を要旨とするものである。
【0012】
【発明の実施の形態】
本発明で製造される複酸化物粉末は、金属元素および半金属元素から選ばれる2種以上の元素(以下「金属元素」という)と、酸素から構成されるものであり、特に限定されるものではない。例を挙げると、SrAl2O4:Eu、(Sr,Ca)B4O7:Eu、Y2SiO5:Ce、BaMgAl10O17:Eu、BaAl12O19:Mn、Y3Al5O12:Ce、Y3Al5O12:Tb、Zn2SiO4:Mn、InBO3:Tb、Y2O3:Eu、InBO3:Eu、YVO4:Eu、Mg2SiO4 :Mn、Zn3(PO4)2:Mn、(Y,Gd)BO3:Eu、(Y,Gd)BO3: Tb、SrTiO3:Eu、ZnO‐LiGaO2等の蛍光体材料、BaTiO3、SrTiO3、Pb(Mg1/3Nb2/3)O3、PZT、PLZT等の誘電体材料や圧電体材料、フェライト等の磁性体材料、Pb2Ru2O6、ITO等の導電体材料、YBa2Cu3Oy等の超伝導体材料、LiMn2O4、Li3V2(PO4)3、Li3Fe2(PO4)3、LiCoO2、LiNiO2、LiMn2O4、LaCoO3、LaMnO3等の二次電池正極材料、La1-XSrX+YCrO3等の固体電解質型燃料電池の電極材料、BaTi4O9、Nb6O17、CuAlO2等の光触媒材料、光機能性材料などがある。
【0013】
本発明において、複酸化物の構成成分となる金属元素は、例えばアルカリ金属、アルカリ土類金属、Al、Ga、In、Sn、Tl、Pb等の典型金属元素、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Hf、Ta、W、Ag、Au、白金族金属等の遷移金属元素、La、Y、Gd、Eu、Tb、Sm、Pr、Ce、Yb等のランタン系希土類金属元素、P、Si、B、Ge、Sb、Bi等の半金属元素等、特に制限はない。
【0014】
原料粉末として、その個々の粒子の中に、複数の金属元素が一定の組成比で含まれるような粉末を準備する。このような粉末としては、例えば複塩粉末、複核錯体粉末、複合アルコキシド粉末等の2以上の金属元素を含む単一化合物の粉末や、合金粉末、ガラス粉末などがある。また、金属または金属化合物を予め複合化させた複合粒子または被覆複合粒子からなる粉末を用いてもよい。金属化合物としては酸化物、水酸化物、硝酸塩、硫酸塩、炭酸塩、オキシ硝酸塩、オキシ硫酸塩、ハロゲン化物、アンモニウム錯体、アルミン酸塩、カルボン酸塩、樹脂酸塩、スルホン酸塩、アセチルアセトナート、アルコキシド、アミド化合物、イミド化合物、尿素化合物等の無機または有機化合物を、適宜選択して使用する。金属元素が硼素、珪素、リン等の半金属の場合は、硼酸、リン酸、珪酸、硼酸塩、リン酸塩、珪酸塩なども使用される。複合化の方法としては、例えば次のような方法がある。
【0015】
▲1▼予め原料となる金属または金属化合物を混合し、組成的に均一になるまで熱処理した後粉砕する固相反応法。
▲2▼複数の金属のアルコキシドを反応させて共縮合させ、これを加水分解し、更に所望により熱処理して複酸化物前駆体とするアルコキシド法。
▲3▼複数の金属化合物を含む溶液に各種の沈殿剤を添加し、各成分が均一に混合した沈殿を得る共沈法。例えば金属の硝酸塩溶液に炭酸塩やシュウ酸塩を添加して反応させ、得られた沈殿を濾過、乾燥して、炭酸塩やシュウ酸塩の複合体を得るか、またはこれを仮焼して酸化物複合体とする。
▲4▼複数の金属化合物を含む溶液に尿素を添加し、加熱して反応させ、水酸化物、炭酸塩等の均一な沈殿を得る、尿素均一沈殿法。更に得られた沈殿を仮焼して酸化物複合体としてもよい。
▲5▼複数の金属化合物と、クエン酸等のオキシカルボン酸と、エチレングリコール等のポリオールとを混合した水溶液を加熱して反応させ、均質な金属錯体の複合重合体を形成する錯体重合法。
▲6▼複数の金属化合物を均一に含む溶液または懸濁液を、噴霧乾燥するか、または噴霧熱分解することによって、1粒子中に複数の金属元素を一定の比で含む複合粉末を得る噴霧熱分解法。
【0016】
特にアルコキシド法により得られた複酸化物前駆体粉末、共沈法や尿素均一沈殿法等の沈殿法により得られた複酸化物前駆体粉末、錯体重合法により得られた金属錯体の複合重合体粉末、噴霧熱分解法により得られた複合粉末などを原料粉末として用いると、組成的に極めて均質な高結晶性複酸化物粉末が容易に製造できるので好ましい。これらの方法で調製された原料粉末は、一旦捕集された後、キャリヤガスと混合される。
【0017】
キャリヤガスとしては、通常、空気、酸素、水蒸気などの酸化性ガスや、窒素、アルゴンなどの不活性ガス、これらの混合ガスなどが使用される。加熱処理時の雰囲気を還元性雰囲気とする必要がある場合、水素、一酸化炭素、メタン、アンモニアガスなどの還元性ガスや、加熱時に分解して還元性雰囲気を作り出すようなアルコール類、カルボン酸類などの有機化合物を混合してもよい。また、熱分解時に一酸化炭素やメタン等を生成して還元性雰囲気を作り出すことのできる金属化合物を原料として用いれば、外部から反応系に還元性ガスを供給することなく、還元性雰囲気とすることも可能である。
【0018】
特に、賦活剤イオンの価数を厳密に制御する必要のある蛍光体の場合や、コントロールされた量の酸素欠損が必要な複酸化物などを製造する場合、従来の水溶液を用いた噴霧熱分解法では、水の分解により炉の内部の雰囲気が酸化性雰囲気に傾くため、還元性ガスを導入したとしても雰囲気制御が難しい。例えば、2価のEuイオンや3価のCeイオン等を賦活剤とするSrAl2O4:Eu2+、BaMgAl10O17:Eu2+、Y2SiO5:Ce3+などの蛍光体の場合、相当に強い還元性雰囲気が必要になるため、噴霧熱分解法では製造が困難である。このため、従来は生成した粉末を更に水素含有ガス雰囲気で熱処理するなど、工程が煩雑になっていた。しかし、本発明では水等の溶媒を使用しないため、容易に強還元性雰囲気を作ることができる。本法はこのように複酸化物の酸化の程度を厳密にコントロールしたい場合に、特に適している。
【0019】
本発明においては、固体の原料粉末を、キャリヤガスと共にノズルを通して反応容器中に噴出させ、気相中に原料粉末粒子を高度に分散させた状態で加熱処理することが重要である。即ち反応容器内では、原料粉末を、原料粒子及び生成粒子が互いに衝突を起こさないよう、低い濃度に分散させた状態で加熱処理を行なう必要がある。このため気相中での濃度は、10g/l以下でなくてはならない。これより濃度が高いと、粉末同士の衝突、焼結が生じ、粒度の揃った複酸化物粉末は得られない。分散濃度は10g/l以下であれば特に制限はなく、用いる分散装置や加熱装置に応じて適宜決定する。しかしあまり低濃度になると生産効率が悪くなるので、好ましくは0.01g/l以上とする。
【0020】
個々の原料粉末粒子をより確実に分散した状態で反応容器中に供給するためには、原料粉末を、ノズルを通して反応容器中に噴出させる前に、分散機を用いてキャリヤガス中に混合、分散させることが望ましい。分散機としては、エジェクタ型、ベンチュリ型、オリフィス型等、公知の気流式分散機や公知の気流式粉砕機が使用される。
【0021】
また、キャリヤガスの単位時間あたりの流量をV(l/min)、ノズルの開口部の断面積をS(cm2)としたとき、V/S>600となるような条件で、原料粉末を高速で反応容器中に噴出させると、反応容器内での急激な気体の膨張により、再凝集することなく、気相中に良好に分散させることができる。なおノズルには特に制限はなく、断面が円形、多角形またはスリット状のもの、先端が絞られているもの、途中まで絞られており開口部で広がっているものなど、いかなる形状のものを使用してもよい。
【0022】
本方法では、気相中に高度に分散させた状態で加熱するため、原料粉末1粒子あたり1粒子の複酸化物粉末が生成すると考えられる。このため生成する複酸化物粉末の粒度は、原料粉末の種類によってその比率は異なってくるが、原料粉末の粒度にほぼ比例する。従って均一な粒径の複酸化物粉末を得るためには、原料粉末の粒度の揃ったものを用いる。原料粉末の粒度分布が広い場合は、粉砕機や分級機で粉砕、解砕又は分級を行なうことにより、予め粒度調整をしておくことが望ましい。粉砕機としては、気流式粉砕機、湿式粉砕機、乾式粉砕機等いずれを用いてもよい。また、粒度の調整は、原料粉末をキャリヤガスに分散させる前に行ってもよいが、気流式粉砕機等を用いることにより、キャリヤガスに分散させた後に、あるいは分散と同時に行うこともできる。
【0023】
低濃度の分散状態を保ったまま加熱処理を行なうためには、例えば外側から加熱された管状の反応容器を用い、一方の開口部から原料粉末をノズルを通してキャリヤガスとともに一定の流速で噴出させて反応容器内を通過させ、加熱処理されて生成した複酸化物粉末を他方の開口部から回収する。反応容器内での粉末とキャリヤガスの混合物の通過時間は、粉末が所定の温度に十分に加熱されるように、用いる装置に応じて設定されるが、通常は0.3〜30秒程度である。加熱は電気炉やガス炉等により反応容器の外側から行なうほか、燃焼ガスを反応容器に供給しその燃焼炎を用いてもよい。
【0024】
加熱は、原料粉末の分解温度もしくは反応温度より高い温度で、かつ複酸化物の融点をTm℃としたとき(Tm/2)℃以上で行うことが必要である。加熱温度が(Tm/2)℃より低いと目的とする粉末が得られない。より結晶性の高い粉末を得るためには、目的とする複酸化物の焼結開始温度以上の温度で加熱することが望ましい。本発明では、原料粉末を気相中に低濃度で、かつノズルからの高速気流によって高度に分散させた状態で加熱するので、高温でも、融着、焼結により粒子同士が凝集することなく分散状態を保つことができ、熱分解と同時に1粒子内で固相反応が起こると推定される。限られた領域内での固相反応であるため、短時間で結晶成長が促進され、高結晶性で内部欠陥が少なく、しかも凝集のない一次粒子からなる高分散性の複酸化物粉末が得られると考えられる。また個々の原料粉末粒子中に複酸化物を構成する金属元素を一定の組成比で含んでいるため、極めて均質な組成を有するものである。
【0025】
最適な加熱温度は、複酸化物粉末の組成や用途、要求される結晶性の程度、球形度、耐熱性等の要求特性によって異なるので、目的により適宜決定する。例えば酸化物蛍光体では1200〜1800℃程度、耐熱性の低い電池用酸化物電極材料では900℃以下とするのが望ましい。また一般に粒子形状の揃った高結晶性または単結晶の複酸化物微粉末を得るためには、熱分解を目的とする複酸化物の融点近傍またはそれ以上の温度で行うことが望ましい。例えばフェライトの高結晶性球状粉末を得るためには、少なくとも1200℃で熱分解することが必要である。なお、熱分解の際、あるいは熱分解後に該原料粉末が窒化物、炭化物等を生成する場合には、これらが分解する条件で加熱を行なう必要がある。
【0026】
所望により、得られた複酸化物微粉末に更にアニール処理を施してもよい。例えば蛍光体の場合、この熱処理は400℃〜1800℃で行われる。この熱処理により、結晶性が向上するとともに賦活剤の価数が制御されると考えられ、発光強度の向上、残光時間や発光色調のコントロールが可能になる。本発明で得られた粉末は粒子の結晶性が高く、組成の均質性が保たれているため、高温でアニール処理を行っても、焼結による粒子の凝集が起こりにくい。
本発明の方法では、任意の平均粒径を有し、しかも粒度分布の狭い高結晶性複酸化物粉末を製造することが可能であるため、特に、蛍光体ペースト、蛍光体インク等の蛍光体組成物に用いられる蛍光体粉末の製造にも適している。蛍光体組成物を製造するためには、本発明の方法で製造された高結晶性複酸化物蛍光体粉末を、常法に従って樹脂、溶剤等からなるビヒクル中に均一に混合分散させる。ガラス粒子等の無機結合剤、顔料、その他の添加剤を含有させてもよい。
【0027】
【実施例】
次に、実施例及び比較例により本発明を具体的に説明する。
(Y2O3:Eu3+蛍光体)
実施例1
硝酸イットリウム六水和物に対して硝酸ユウロピウム六水和物が4mol%となるようにそれぞれ秤量し、純水に溶解して全金属イオン濃度が約0.1mol/lの水溶液を作製した。この溶液に、常温で炭酸アンモニウム水溶液を添加し、イットリウムとユウロピウムを共沈させた。生じた沈殿を濾別して捕集し、100℃で乾燥した後、気流式粉砕機によって粉砕して、平均粒径約2μmの、粒度の揃った均質な組成の炭酸塩複合体粉末を得た。
【0028】
得られた粉末を、キャリヤガスとして流量200 l/minの空気を随伴させ、5kg/hrの供給速度で、開口部の断面積0.13cm2のノズルを通して、電気炉で1550℃に加熱された反応管中に噴出させ、この分散濃度を保ったままで反応管を通過させて、加熱を行った。反応管内における気相中の原料粉末分散濃度は0.4g/lであり、またV/S=1500である。生成した白色の粉末をバグフィルターで捕集した。
【0029】
得られた粉末をX線回折計で分析したところ、(Y0.96Eu0.42O3で表わされる単一の結晶相からなっており、極めて良好な結晶性を有する複酸化物粉末であった。また走査型電子顕微鏡(SEM)で観察を行ったところ、凝集のない球状に近い形状の粒子からなる、平均粒径1μm、最大粒径3μmの粒度分布の狭い粉末であった。更に波長147nmの紫外線照射下での波長612nmの発光スペクトルを測定したところ、発光強度は、従来の固相反応法で得られた平均粒径2μmの粉末の発光強度の150%であった。
実施例2
実施例1と同様にして調製した平均粒径約2μmの炭酸塩複合体粉末を、エジェクタ型分散機を用いて空気キャリヤと混合した。得られた固−気混合物を、流量200 l/minで、開口部の断面積0.13cm2のノズルを通して、電気炉で1550℃に加熱された反応管中に噴出させ、反応管を通過させて加熱を行った。粉末の供給速度、反応管内における気相中の原料粉末分散濃度、V/Sは実施例1と同様、それぞれ5kg/hr、0.4g/l、1500である。
【0030】
得られた粉末は、X線回折により極めて高い結晶性を有する(Y0.96Eu0.42O3粉末であることが確認された。SEM観察の結果、凝集のない球状粒子からなっており、平均粒径0.8μm、最大粒径2μmと、分散機を使用しない実施例1に比べて粒度が小さく、粒度分布の狭いものであった。波長147nmの紫外線照射下での波長612nmの発光強度は、実施例1と同程度であった。
実施例3、4
電気炉の温度をそれぞれ1450℃、1650℃とする以外は実施例1と同様にして、複酸化物粉末を製造した。得られた粉末の特性を表1に示す。
【0031】
なお、表中の発光強度は、波長147nmの紫外線照射下での波長612nmの発光の強度であって、従来の固相反応法で得られた平均粒径3μmの(Y0.96Eu0.42O3粉末の発光強度を100としたときの相対強度である。また結晶性は、実施例1の粉末のX線回折強度を100としたときの相対強度で示した。
実施例5
原料粉末の供給速度を1.25kg/hrとする以外は実施例1と同様にした。気相中の原料粉末分散濃度は0.1g/lである。得られた粉末の特性を表1に示す。
実施例6
原料粉末の供給速度を62.5kg/hrとする以外は実施例1と同様にした。気相中の原料粉末分散濃度は5.0g/lである。得られた粉末の特性を表1に示す。
実施例7
ノズルの開口部の断面積を0.03cm2とする以外は実施例1と同様にして、複酸化物粉末を製造した。得られた粉末の特性を表1に示す。
実施例8
ノズルの開口部の断面積を0.28cm2とする以外は実施例1と同様にして、複酸化物粉末を製造した。得られた粉末の特性を表1に示す。
実施例9
ノズルの開口部の断面積を0.50cm2とする以外は実施例1と同様にして、複酸化物粉末を製造した。得られた粉末の結晶性、発光特性は良好であったが、SEMで観察したところ、巨大な不定形粒子が少量であるが確認された。
実施例10
硝酸イットリウム六水和物に対して硝酸ユウロピウム六水和物が4mol%となるようにそれぞれ秤量し、純水に溶解して全金属イオン濃度約0.1mol/lの水溶液を作製した。この溶液を超音波噴霧器で微細な液滴とし、キャリヤガスとして空気を用いて700℃で噴霧熱分解を行い、バグフィルターで捕集して、平均粒径約2μmのY2O3‐EuO複合粉末を得た。このY2O3‐EuO複合粉末を気流式粉砕機によって粉砕し平均粒径約0.5μmとした後、オリフィス型分散機を用いて空気キャリヤと混合した。得られた固−気混合物を、実施例2と同様に流量200 l/minで、開口部の断面積0.13cm2のノズルを通して、電気炉で1550℃に加熱された反応管中に噴出させ、反応管を通過させて加熱を行った。粉末の供給速度、反応管内における気相中の原料粉末分散濃度、V/Sは、それぞれ5kg/hr、0.4g/l、1500である。
【0032】
得られた粉末は、極めて高い結晶性を有する(Y0.96Eu0.42O3の球状粉末であった。粉末特性を表1に示す。
比較例1
原料粉末の供給速度を150kg/hrとする以外は実施例1と同様にした。反応管内での気相中の粉末濃度は12.0g/lであった。得られた粉末をSEMで観察したところ、複数の粒子が融着して巨大な不定形粒子となっており、粒度分布の広いものであった。粉末の特性を表1に示す。
比較例2
電気炉の温度を1100℃とする以外は実施例1と同様にした。この加熱温度は、(Y0.96Eu0.42O3の融点(およそ2300℃)の1/2より低い温度である。得られた粉末は矩形、柱状で、結晶性の低いものであリ、発光強度も低かった。粉末特性を表1に示す。
【0033】
【表1】

Figure 0004360070
【0034】
(BaMgAl10O17:Eu2+蛍光体)
実施例11
硝酸バリウム、硝酸ユウロピウム六水和物、硝酸マグネシウム六水和物、硝酸アルミニウム九水和物を、モル比でBa:Eu:Mg:Al=0.9:0.1:1:10になるように秤量して純水に溶解した後、全金属イオンのモル数の1.5倍のモル数のクエン酸を加えて溶解し、更にクエン酸と等モルのエチレングリコールを加えた溶液を、撹拌しながら150℃で加熱してゲル状の重合体を得た。この重合体を400℃で加熱・脱脂し、更に気流式粉砕機で粉砕して平均粒径約2μmの粒度の揃った原料粉末を得た。
【0035】
この原料粉末を、キャリヤガスとして流量200 l/minの1%水素含有窒素ガスを随伴させ、開口部の断面積0.13cm2のノズルを通して5kg/hrの供給速度で、電気炉で1600℃に加熱された反応管中に噴出させ、この分散濃度を保ったままで反応管を通過させ、加熱した。反応管内における気相中の原料粉末分散濃度は0.4g/lであり、またV/S=1500である。生成した粉末はバグフィルターで捕集した。
得られた粉末をX線回折計で分析したところ、Ba0.9Eu0.1MgAl10O17の回折線のみが確認された。SEMによる観察では、平均粒径1μm程度、最大粒径4μm程度の粒度の揃った板状粒子であった。波長147nmの紫外線照射下での波長450nmの発光スペクトルを測定したところ、発光強度は、従来の固相反応法で得られた平均粒径4μmの粉末の発光強度と同等であった。
【0036】
(BaFe12O19フェライト)
実施例12
硝酸バリウムおよび硝酸鉄九水和物をモル比で1:12になるように秤量し、純水に溶解して全金属イオン濃度が約0.2mol/lの溶液を調製した。この溶液を80℃に加熱し、撹拌しながら2mol/lの濃度の尿素を加えて、尿素の加水分解反応による均一沈殿反応を開始した。溶液のpHが8になった時点で冷却して反応を終了させた。生成した沈殿を濾別し、100℃で乾燥後、600℃で仮焼した。次いで気流式粉砕機で粉砕して、平均粒径約2μmの、粒度の揃った原料粉末を得た。
この原料粉末を、キャリヤガスとして流量200 l/minの空気を随伴させ、開口部の断面積0.13cm2のノズルを通して5kg/hrの供給速度で、電気炉で1300℃に加熱された反応管中に噴出させ、この分散濃度を保ったままで反応管を通過させ、加熱した。反応管内における気相中の原料粉末分散濃度は0.4g/lであり、またV/S=1500である。生成した粉末はバグフィルターで捕集した。得られた粉末は、平均粒径1μm程度、最大粒径3μm程度の粒度分布の狭い板状粒子であることがSEMで確認された。X線回折計による分析ではBaFe12O19の鋭い回折線のみが確認された。
【0037】
(BaTiO3誘電体)
実施例13
等モルの塩化バリウム水和物と塩化チタンを純水に溶解し、全金属イオン濃度が0.1mol/lの溶液を調製した。この溶液を0.5mol/lのシュウ酸水溶液に滴下して、シュウ酸チタニルバリウムの沈殿を生成させた。沈殿を濾別、水洗し、500℃で仮焼した後、0.3mmのジルコニアボールを使用してビーズミルで湿式粉砕し、乾燥して原料粉末を得た。この原料粉末を、流量200l/minの空気を使用して気流式粉砕機で解砕、分散させ、そのまま、開口部の断面積0.13cm2のノズルを通して5kg/hrの供給速度で、電気炉で1100℃に加熱された反応管中に噴出させた。反応管内における気相中の原料粉末分散濃度は0.4g/l、またV/S=1500である。この分散濃度を保ったままで反応管を通過させて加熱を行い、生成した粉末をバグフィルターで捕集した。得られた粉末は、平均粒径0.2μm、最大粒径0.4μmの凝集のない粒子であることがSEMで確認された。X線回折計での分析では、正方晶BaTiO3の鋭い回折線のみが確認された。
【0038】
【発明の効果】
本発明によれば、組成的に均質であり、かつ高結晶性で、粒子形状の揃った、凝集のない一次粒子からなる、高分散性の複酸化物粉末が容易に得られる。また純度に影響を及ぼす添加剤や溶媒を使用しないので、不純物の少ない高純度な粉末が得られる。更に、粉砕処理を必要としないので、粉末表面及び内部に欠陥や歪が少ない。
【0039】
更に本方法では、原料粉末の粒度および分散条件をコントロールすることにより、0.1μm以下のものから20μm程度までの、任意の平均粒径を有する、粒径の揃った複酸化物粉末を得ることができる。従って粉砕工程や分級工程の必要がなく、特に厚膜ペースト材料として有用な、粒度分布の狭い微粉末を製造するのに適している。
【0040】
また、原料を溶液、懸濁液状としないため、通常の噴霧熱分解法と比べて溶媒の蒸発によるエネルギーロスが少なく、ローコストで容易に製造できる。しかも液滴の合一の問題がなく、比較的高濃度で気相中に分散させることができるため、効率が高い。また、原料を溶液化または懸濁液化する必要がないため、出発原料の選択範囲が広く、従って多種類の複酸化物粉末の製造が可能である。
【0041】
更に本法は、溶媒からの酸化性ガスの発生がないので、低酸素分圧下で合成する必要のある複酸化物粉末にも適している。しかも、原料化合物の選択により分解時に系内を還元雰囲気にすることができるため、還元性ガスを外部から供給する必要なく、酸化を抑えることができるので、反応条件の設定が簡単である。
特に、本法で製造された複酸化物蛍光体は、不純物が少なく、組成的に均質で、特に微量の賦活剤イオンが均一に分散しており、表面及び内部に欠陥や格子歪がない高結晶性粉末であり、発光強度等の蛍光体特性が極めて優れている。しかも粒子形状および粒径の揃った、微細な単分散粒子であるため、分散性の優れた蛍光体ペーストが製造でき、これを塗布したときの粉末充填率が高く、薄膜化が可能である。
【0042】[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a highly crystalline double oxide powder containing two or more metal elements and / or metalloid elements. Electronic functions such as phosphor material, dielectric material, magnetic material, conductor material, semiconductor material, superconductor material, piezoelectric material, magnetic recording material, secondary battery positive electrode material, electromagnetic wave absorbing material, catalyst material, etc. The present invention relates to a method for producing a highly dispersible, highly crystalline double oxide powder having high purity and uniform particle size, which is useful as an industrial material used in various fields.
[0002]
[Prior art]
The double oxide powder used as the functional material is desired to have high purity, compositionally uniform and high crystallinity in order to sufficiently exhibit its function. In particular, phosphor compositions used in display elements such as CRT, VFD, PDP, and FED, that is, double oxide powders used in phosphor pastes and phosphor inks, have an average particle size for thinning and improving packing properties. A fine powder having a diameter of about 0.1 to 10 μm, a monodisperse particle having uniform particle shape and particle size, and no aggregation are desired. In addition, in order to improve the fluorescence characteristics such as emission intensity, there are few impurities, there are no defects or lattice distortions on the surface and inside of the particles, the composition is homogeneous, and in particular, the trace activation elements are uniformly distributed. It is required to have a high crystallinity composed of a single crystal phase.
[0003]
Conventionally, in order to produce a double oxide powder, a solid phase reaction method is generally used. In this method, a mixture of raw material powders is placed in a firing container such as a crucible and heated at a high temperature for a long time to cause a solid-phase reaction, which is then pulverized by a ball mill or the like. However, the double oxide powder produced by this method is an aggregate having an irregular particle shape and a large particle size distribution, and is often contaminated with impurities from the crucible. Further, in order to increase the compositional homogeneity, a long time treatment is required at a high temperature, so that the efficiency is poor. Furthermore, the particle surface is altered by the physical impact and chemical reaction received during the pulverization process, so that many defects occur on the powder surface and inside, resulting in a decrease in crystallinity and the physical properties inherent in the double oxide. The characteristics may be deteriorated.
[0004]
As a method for obtaining a double oxide powder having no surface alteration and high crystallinity, a sol-gel method, a hydrothermal method, a coprecipitation method and the like are known. However, it is difficult to make a fine powder with high dispersibility and no aggregation.
In the spray pyrolysis method, a mixed solution in which a metal compound is dissolved or dispersed in water or an organic solvent is sprayed into fine droplets, and the droplets are heated under conditions capable of depositing metal oxides. Thus, a metal oxide powder is produced. In this method, fine monodisperse particles without agglomeration are obtained, and since the raw material is a solution, each metal component can be uniformly mixed at an arbitrary ratio and there is little contamination with impurities. It is considered suitable as a method for producing powder. For example, Japanese Patent Application Laid-Open No. 2001-152146 describes that a phosphor fine powder having excellent emission characteristics is produced by this method.
[0005]
However, the spray pyrolysis method uses a large amount of organic solvent such as water, alcohol, acetone, ether, etc. as a solvent to make the metal compound of the raw material into droplets, so a great deal of energy is required to evaporate the solvent. In short, the energy loss during pyrolysis increases and the cost increases. Furthermore, it is difficult to control the atmosphere during the thermal decomposition due to the decomposition of the solvent. In addition, the particle size distribution of the generated powder may increase due to the coalescence or breakage of the droplets in the reaction vessel. For this reason, it is difficult to set reaction conditions such as the spray rate, the droplet concentration in the carrier gas, the residence time in the reaction vessel, and the productivity is also poor. Furthermore, in this method, since the starting material is limited to those that can be made into a solution or suspension, the raw material composition range and concentration are limited, and the types of double oxide powders that can be produced are limited.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to produce a highly crystalline double oxide powder with no impurities mixed, highly dispersed, and uniform in particle size, with low cost and simple production equipment. An object of the present invention is to provide a production method suitable for producing functional metal double oxide powders such as phosphors, functional ceramic powders, etc., which are highly required to have high crystallinity. Still another object is a high-purity, high-dispersion, highly-crystalline double oxide powder having a shape and particle size suitable for thick film pastes, particularly phosphor pastes for producing phosphor parts. There is in getting.
[0007]
[Means for Solving the Problems]
That is, the present invention
1. The raw material powder powder containing two or more metal elements and / or semi-metal elements constituting the double oxide in individual particles at constant composition ratio, is ejected into the reaction vessel through a nozzle together with a carrier gas, the raw material powder Is a temperature higher than its decomposition temperature or reaction temperature, and the melting point of the resulting double oxide is Tm ° C. (Tm / 2) ° C. or higher. The gist of the present invention is a method for producing a highly crystalline double oxide powder, characterized in that a double oxide powder is produced by heating at a high temperature.
[0008]
Also,
2. In the manufacturing method described in the above item 1, the conditions for injecting the raw material powder into the reaction vessel are such that the flow rate per unit time of the carrier gas is V (l / min) and the cross-sectional area of the nozzle opening is The gist of the present invention is a method for producing a highly crystalline double oxide powder, wherein V / S> 600 when S (cm 2 ) is satisfied.
[0009]
Also,
3. 3. The production method according to 1 or 2, wherein the raw material powder is mixed and dispersed in a carrier gas using a disperser before being jetted into a reaction vessel through a nozzle. The gist of the manufacturing method of the product powder.
Also,
4). 4. The manufacturing method according to any one of items 1 to 3, wherein the raw material powder has a particle size adjusted in advance, and the manufacturing method of a highly crystalline double oxide powder.
[0010]
Also,
5. In the production method according to any one of 1 to 4 above, a mixture or composite in which individual particles constituting the raw material powder include two or more selected from the group consisting of metals, metalloids and compounds thereof, Alternatively, the gist is a method for producing a highly crystalline double oxide powder comprising a specific single compound containing two or more metal elements and / or metalloid elements.
[0011]
Furthermore,
6). The preparation method of manufacture according to any one of 1 to 5, wherein the two or more metal elements and / or semi-metal elements constituting the composite oxide in each particle raw material powder powder containing at constant composition ratio The obtained raw material powder is once collected, and the collected raw material powder is dispersed in a carrier gas in advance using a disperser before being jetted into a reaction vessel through a nozzle together with a carrier gas. The gist of the manufacturing method of the crystalline double oxide powder.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The double oxide powder produced in the present invention is composed of two or more elements selected from metal elements and metalloid elements (hereinafter referred to as “metal elements”) and oxygen, and is particularly limited. is not. For example, SrAl 2 O 4 : Eu, (Sr, Ca) B 4 O 7 : Eu, Y 2 SiO 5 : Ce, BaMgAl 10 O 17 : Eu, BaAl 12 O 19 : Mn, Y 3 Al 5 O 12 : Ce, Y 3 Al 5 O 12 : Tb, Zn 2 SiO 4 : Mn, InBO 3 : Tb, Y 2 O 3 : Eu, InBO 3 : Eu, YVO 4 : Eu, Mg 2 SiO 4 : Mn, Zn 3 (PO 4 ) 2 : Mn, (Y, Gd) BO 3 : Eu, (Y, Gd) BO 3 : Tb, SrTiO 3 : Eu, ZnO-LiGaO 2 and other phosphor materials, BaTiO 3 , SrTiO 3 , Pb (Mg 1/3 Nb 2/3 ) O 3 , dielectric materials such as PZT and PLZT, piezoelectric materials, magnetic materials such as ferrite, conductor materials such as Pb 2 Ru 2 O 6 and ITO, YBa 2 Superconductor materials such as Cu 3 O y , LiMn 2 O 4 , Li 3 V 2 (PO 4 ) 3 , Li 3 Fe 2 (PO 4 ) 3 , LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LaCoO 3 , Secondary battery positive electrode material such as LaMnO 3, electrode material of solid electrolyte fuel cell such as La 1-X Sr X + Y CrO 3 , photocatalytic material such as BaTi 4 O 9 , Nb 6 O 17 , CuAlO 2 , optical function There are sex materials.
[0013]
In the present invention, the metal element that is a component of the double oxide is, for example, a typical metal element such as alkali metal, alkaline earth metal, Al, Ga, In, Sn, Tl, Pb, Ti, V, Cr, Mn, Transition metal elements such as Fe, Co, Ni, Cu, Zr, Nb, Mo, Hf, Ta, W, Ag, Au, platinum group metals, La, Y, Gd, Eu, Tb, Sm, Pr, Ce, Yb There are no particular restrictions on lanthanum rare earth metal elements such as P, Si, B, Ge, Sb, Bi, and other metalloid elements.
[0014]
As a raw material powder, a powder is prepared in which a plurality of metal elements are contained in the individual particles at a constant composition ratio. Examples of such powders include single compound powders containing two or more metal elements such as double salt powders, binuclear complex powders, and composite alkoxide powders, alloy powders, and glass powders. Moreover, you may use the powder which consists of a composite particle or the covering composite particle which compounded the metal or the metal compound previously. Metal compounds include oxides, hydroxides, nitrates, sulfates, carbonates, oxynitrates, oxysulfates, halides, ammonium complexes, aluminates, carboxylates, resinates, sulfonates, acetylacetates An inorganic or organic compound such as a nate, an alkoxide, an amide compound, an imide compound, or a urea compound is appropriately selected and used. When the metal element is a semimetal such as boron, silicon, or phosphorus, boric acid, phosphoric acid, silicic acid, borate, phosphate, silicate, or the like is also used. As a method of combining, for example, there are the following methods.
[0015]
(1) A solid phase reaction method in which a metal or metal compound as a raw material is mixed in advance, heat-treated until the composition becomes uniform, and then pulverized.
(2) An alkoxide method in which a plurality of metal alkoxides are reacted and co-condensed, hydrolyzed, and further subjected to heat treatment as desired to obtain a double oxide precursor.
(3) A coprecipitation method in which various precipitants are added to a solution containing a plurality of metal compounds to obtain a precipitate in which each component is uniformly mixed. For example, a carbonate or oxalate salt is added to a metal nitrate solution and allowed to react, and the resulting precipitate is filtered and dried to obtain a carbonate or oxalate complex or calcined. An oxide composite is used.
(4) A urea uniform precipitation method in which urea is added to a solution containing a plurality of metal compounds and heated to react to obtain a uniform precipitate of hydroxide, carbonate or the like. Furthermore, the obtained precipitate may be calcined to form an oxide composite.
(5) A complex polymerization method in which an aqueous solution obtained by mixing a plurality of metal compounds, an oxycarboxylic acid such as citric acid, and a polyol such as ethylene glycol is heated and reacted to form a homogeneous metal complex composite polymer.
(6) Spraying to obtain a composite powder containing a plurality of metal elements in a certain ratio by spray drying or spray pyrolysis of a solution or suspension containing a plurality of metal compounds uniformly Pyrolysis method.
[0016]
In particular, double oxide precursor powder obtained by alkoxide method, double oxide precursor powder obtained by precipitation method such as coprecipitation method and urea uniform precipitation method, complex polymer of metal complex obtained by complex polymerization method It is preferable to use a powder, a composite powder obtained by a spray pyrolysis method, or the like as a raw material powder because a highly crystalline double oxide powder that is extremely homogeneous in composition can be easily produced. The raw material powder prepared by these methods is once collected and then mixed with a carrier gas.
[0017]
As the carrier gas, an oxidizing gas such as air, oxygen or water vapor, an inert gas such as nitrogen or argon, or a mixed gas thereof is usually used. When the atmosphere during heat treatment needs to be a reducing atmosphere, reducing gases such as hydrogen, carbon monoxide, methane, and ammonia gas, and alcohols and carboxylic acids that decompose during heating to create a reducing atmosphere You may mix organic compounds, such as. In addition, if a metal compound that can generate a reducing atmosphere by generating carbon monoxide, methane, or the like during pyrolysis is used as a raw material, a reducing atmosphere is obtained without supplying a reducing gas to the reaction system from the outside. It is also possible.
[0018]
In particular, in the case of phosphors that require strict control of the valence of activator ions, or when producing complex oxides that require controlled amounts of oxygen vacancies, spray pyrolysis using conventional aqueous solutions According to the method, since the atmosphere inside the furnace is inclined to an oxidizing atmosphere due to the decomposition of water, it is difficult to control the atmosphere even if reducing gas is introduced. For example, phosphors such as SrAl 2 O 4 : Eu 2+ , BaMgAl 10 O 17 : Eu 2+ , Y 2 SiO 5 : Ce 3+ using divalent Eu ions or trivalent Ce ions as activators In this case, since a considerably strong reducing atmosphere is required, the spray pyrolysis method is difficult to manufacture. For this reason, conventionally, the generated powder is further heat-treated in a hydrogen-containing gas atmosphere, and the process becomes complicated. However, since a solvent such as water is not used in the present invention, a strongly reducing atmosphere can be easily created. This method is particularly suitable when it is desired to strictly control the degree of oxidation of the double oxide.
[0019]
In the present invention, it is important that the solid raw material powder is jetted into the reaction vessel through the nozzle together with the carrier gas, and the heat treatment is performed in a state where the raw material powder particles are highly dispersed in the gas phase. That is, in the reaction vessel, it is necessary to perform the heat treatment in a state where the raw material powder is dispersed at a low concentration so that the raw material particles and the generated particles do not collide with each other. For this reason, the concentration in the gas phase must be 10 g / l or less. When the concentration is higher than this, collision between powders and sintering occur, and a double oxide powder having a uniform particle size cannot be obtained. The dispersion concentration is not particularly limited as long as it is 10 g / l or less, and is appropriately determined according to the dispersion apparatus and heating apparatus used. However, if the concentration is too low, the production efficiency deteriorates, so it is preferably 0.01 g / l or more.
[0020]
In order to supply the individual raw material powder particles into the reaction vessel in a more reliably dispersed state, the raw material powder is mixed and dispersed in the carrier gas using a disperser before being jetted into the reaction vessel through the nozzle. It is desirable to make it. As the disperser, a known airflow type disperser such as an ejector type, a venturi type or an orifice type or a known airflow type pulverizer is used.
[0021]
Further, the raw material powder is prepared under the condition that V / S> 600 where V (l / min) is the flow rate per unit time of the carrier gas and S (cm 2 ) is the cross-sectional area of the nozzle opening. When jetted into the reaction vessel at a high speed, it can be dispersed well in the gas phase without re-aggregation due to rapid gas expansion in the reaction vessel. There are no particular restrictions on the nozzle, and any shape can be used, such as a circular, polygonal, or slit-shaped cross-section, one with a narrowed tip, or one that has been squeezed halfway and widened at the opening. May be.
[0022]
In this method, since heating is performed in a highly dispersed state in the gas phase, it is considered that one double oxide powder is generated per one raw material powder. For this reason, the particle size of the generated double oxide powder varies substantially depending on the type of raw material powder, but is almost proportional to the particle size of the raw material powder. Therefore, in order to obtain a double oxide powder having a uniform particle size, a powder having a uniform particle size is used. When the particle size distribution of the raw material powder is wide, it is desirable to adjust the particle size beforehand by pulverizing, crushing or classifying with a pulverizer or classifier. As the pulverizer, any of an airflow pulverizer, a wet pulverizer, a dry pulverizer, or the like may be used. The particle size may be adjusted before the raw material powder is dispersed in the carrier gas. However, the particle size may be adjusted after being dispersed in the carrier gas by using an airflow pulverizer or the like or simultaneously with the dispersion.
[0023]
In order to perform the heat treatment while maintaining a low concentration dispersion state, for example, a tubular reaction vessel heated from the outside is used, and raw material powder is ejected from one opening through a nozzle together with a carrier gas at a constant flow rate. The double oxide powder produced by passing through the reaction vessel and being heat-treated is recovered from the other opening. The transit time of the mixture of the powder and carrier gas in the reaction vessel is set according to the apparatus used so that the powder is sufficiently heated to a predetermined temperature, but is usually about 0.3 to 30 seconds. Heating may be performed from the outside of the reaction vessel by an electric furnace, a gas furnace, or the like, or combustion gas may be supplied to the reaction vessel and the combustion flame may be used.
[0024]
Heating is required to be performed at a temperature higher than the decomposition temperature or reaction temperature of the raw material powder and at or above (Tm / 2) ° C when the melting point of the double oxide is Tm ° C. If the heating temperature is lower than (Tm / 2) ° C., the desired powder cannot be obtained. In order to obtain a powder with higher crystallinity, it is desirable to heat at a temperature equal to or higher than the sintering start temperature of the target double oxide. In the present invention, since the raw material powder is heated in a low concentration in the gas phase and highly dispersed by a high-speed air stream from the nozzle, the particles are dispersed without agglomeration due to fusion and sintering even at a high temperature. The state can be maintained, and it is presumed that a solid-phase reaction occurs in one particle simultaneously with thermal decomposition. Because it is a solid phase reaction in a limited region, crystal growth is accelerated in a short time, and a highly dispersible complex oxide powder consisting of primary particles with high crystallinity, few internal defects, and no aggregation is obtained. It is thought that. Further, since the metal powder constituting the double oxide is contained in each raw material powder particle at a constant composition ratio, it has a very homogeneous composition.
[0025]
The optimum heating temperature varies depending on the composition and application of the double oxide powder, required crystallinity, required properties such as sphericity, heat resistance, and the like. For example, it is desirable that the temperature is about 1200 to 1800 ° C. for an oxide phosphor and 900 ° C. or less for a battery oxide electrode material with low heat resistance. In general, in order to obtain a highly crystalline or single crystal double oxide fine powder having a uniform particle shape, it is desirable to carry out at a temperature near or higher than the melting point of the double oxide for thermal decomposition. For example, in order to obtain a highly crystalline spherical powder of ferrite, it is necessary to thermally decompose at least 1200 ° C. When the raw material powder produces nitrides, carbides or the like during or after thermal decomposition, it is necessary to heat them under conditions that decompose them.
[0026]
If desired, the obtained double oxide fine powder may be further subjected to an annealing treatment. For example, in the case of a phosphor, this heat treatment is performed at 400 ° C to 1800 ° C. This heat treatment is considered to improve the crystallinity and control the valence of the activator, thereby improving the emission intensity and controlling the afterglow time and emission color tone. Since the powder obtained by the present invention has high crystallinity of the particles and maintains the homogeneity of the composition, the particles are hardly aggregated by sintering even when annealing is performed at a high temperature.
In the method of the present invention, it is possible to produce a highly crystalline double oxide powder having an arbitrary average particle diameter and a narrow particle size distribution, and in particular, phosphors such as phosphor pastes and phosphor inks. It is also suitable for the production of phosphor powder used in the composition. In order to produce the phosphor composition, the highly crystalline double oxide phosphor powder produced by the method of the present invention is uniformly mixed and dispersed in a vehicle composed of a resin, a solvent and the like according to a conventional method. Inorganic binders such as glass particles, pigments, and other additives may be included.
[0027]
【Example】
Next, the present invention will be specifically described with reference to Examples and Comparative Examples.
(Y 2 O 3 : Eu 3+ phosphor)
Example 1
Each of europium nitrate hexahydrate was weighed to 4 mol% with respect to yttrium nitrate hexahydrate and dissolved in pure water to prepare an aqueous solution having a total metal ion concentration of about 0.1 mol / l. To this solution, an aqueous ammonium carbonate solution was added at room temperature to coprecipitate yttrium and europium. The resulting precipitate was collected by filtration, dried at 100 ° C., and then pulverized by an airflow pulverizer to obtain a carbonate composite powder having an average particle diameter of about 2 μm and a uniform composition having a uniform particle size.
[0028]
The resulting powder was heated to 1550 ° C. in an electric furnace through a nozzle having a cross-sectional area of 0.13 cm 2 at a supply rate of 5 kg / hr with air at a flow rate of 200 l / min as a carrier gas. The mixture was jetted into a tube, passed through the reaction tube while maintaining the dispersion concentration, and heated. The raw material powder dispersion concentration in the gas phase in the reaction tube is 0.4 g / l, and V / S = 1500. The generated white powder was collected with a bag filter.
[0029]
When the obtained powder was analyzed with an X-ray diffractometer, it was a double oxide powder consisting of a single crystal phase represented by (Y 0.96 Eu 0.4 ) 2 O 3 and having very good crystallinity. . Further, when observed with a scanning electron microscope (SEM), it was a powder having a narrow particle size distribution with an average particle diameter of 1 μm and a maximum particle diameter of 3 μm, which was composed of particles having an almost spherical shape without aggregation. Further, when an emission spectrum at a wavelength of 612 nm under irradiation with ultraviolet rays at a wavelength of 147 nm was measured, the emission intensity was 150% of the emission intensity of a powder having an average particle diameter of 2 μm obtained by a conventional solid phase reaction method.
Example 2
A carbonate composite powder having an average particle size of about 2 μm, prepared in the same manner as in Example 1, was mixed with an air carrier using an ejector-type disperser. The obtained solid-gas mixture was jetted at a flow rate of 200 l / min through a nozzle having a sectional area of 0.13 cm 2 into a reaction tube heated to 1550 ° C. in an electric furnace and passed through the reaction tube. Heating was performed. The powder feed rate, the raw material powder dispersion concentration in the gas phase in the reaction tube, and V / S are 5 kg / hr, 0.4 g / l, and 1500, respectively, as in Example 1.
[0030]
The obtained powder was confirmed to be (Y 0.96 Eu 0.4 ) 2 O 3 powder having extremely high crystallinity by X-ray diffraction. As a result of SEM observation, it was composed of spherical particles without aggregation, and had an average particle size of 0.8 μm and a maximum particle size of 2 μm, which were smaller in particle size and narrow in particle size distribution than Example 1 in which no disperser was used. . The emission intensity at a wavelength of 612 nm under irradiation with an ultraviolet ray at a wavelength of 147 nm was similar to that in Example 1.
Examples 3 and 4
A double oxide powder was produced in the same manner as in Example 1 except that the temperature of the electric furnace was 1450 ° C. and 1650 ° C., respectively. The properties of the obtained powder are shown in Table 1.
[0031]
The light emission intensity in the table is the intensity of light emission at a wavelength of 612 nm under irradiation with ultraviolet light at a wavelength of 147 nm, and (Y 0.96 Eu 0.4 ) 2 O having an average particle diameter of 3 μm obtained by a conventional solid phase reaction method. 3 Relative intensity when the emission intensity of the powder is 100. The crystallinity was shown as a relative intensity when the X-ray diffraction intensity of the powder of Example 1 was taken as 100.
Example 5
The same procedure as in Example 1 was performed except that the feed rate of the raw material powder was 1.25 kg / hr. The raw material powder dispersion concentration in the gas phase is 0.1 g / l. The properties of the obtained powder are shown in Table 1.
Example 6
The same procedure as in Example 1 was performed except that the feed rate of the raw material powder was 62.5 kg / hr. The raw material powder dispersion concentration in the gas phase is 5.0 g / l. The properties of the obtained powder are shown in Table 1.
Example 7
A double oxide powder was produced in the same manner as in Example 1 except that the sectional area of the nozzle opening was 0.03 cm 2 . The properties of the obtained powder are shown in Table 1.
Example 8
A double oxide powder was produced in the same manner as in Example 1 except that the cross-sectional area of the nozzle opening was 0.28 cm 2 . The properties of the obtained powder are shown in Table 1.
Example 9
A double oxide powder was produced in the same manner as in Example 1 except that the cross-sectional area of the nozzle opening was 0.50 cm 2 . Although the crystallinity and light emission characteristics of the obtained powder were good, it was confirmed by SEM that a small amount of huge amorphous particles was observed.
Example 10
Each of europium nitrate hexahydrate was weighed to 4 mol% with respect to yttrium nitrate hexahydrate and dissolved in pure water to prepare an aqueous solution having a total metal ion concentration of about 0.1 mol / l. This solution is made into fine droplets with an ultrasonic sprayer, spray pyrolyzed at 700 ° C. using air as a carrier gas, collected with a bag filter, and Y 2 O 3 -EuO composite with an average particle size of about 2 μm A powder was obtained. The Y 2 O 3 -EuO composite powder was pulverized with an airflow pulverizer to an average particle size of about 0.5 μm, and then mixed with an air carrier using an orifice type disperser. The obtained solid-gas mixture was jetted at a flow rate of 200 l / min as in Example 2 through a nozzle having a sectional area of 0.13 cm 2 into a reaction tube heated to 1550 ° C. in an electric furnace, Heating was performed through the reaction tube. The powder feed rate, the raw material powder dispersion concentration in the gas phase in the reaction tube, and V / S are 5 kg / hr, 0.4 g / l, and 1500, respectively.
[0032]
The obtained powder was a spherical powder of (Y 0.96 Eu 0.4 ) 2 O 3 having extremely high crystallinity. The powder characteristics are shown in Table 1.
Comparative Example 1
The same procedure as in Example 1 was performed except that the feed rate of the raw material powder was 150 kg / hr. The powder concentration in the gas phase in the reaction tube was 12.0 g / l. When the obtained powder was observed with an SEM, a plurality of particles were fused to form large irregular particles, and the particles had a wide particle size distribution. The characteristics of the powder are shown in Table 1.
Comparative Example 2
Example 1 was repeated except that the temperature of the electric furnace was 1100 ° C. This heating temperature is lower than ½ of the melting point (approximately 2300 ° C.) of (Y 0.96 Eu 0.4 ) 2 O 3 . The obtained powder was rectangular and columnar, had low crystallinity, and had low emission intensity. The powder characteristics are shown in Table 1.
[0033]
[Table 1]
Figure 0004360070
[0034]
(BaMgAl 10 O 17 : Eu 2+ phosphor)
Example 11
Weigh barium nitrate, europium nitrate hexahydrate, magnesium nitrate hexahydrate, and aluminum nitrate nonahydrate to a molar ratio of Ba: Eu: Mg: Al = 0.9: 0.1: 1: 10. After dissolving in pure water, add 1.5 mol of citric acid, which is 1.5 times the total number of metal ions, to dissolve, and then add a solution of citric acid and equimolar ethylene glycol at 150 ° C with stirring. Thus, a gel polymer was obtained. This polymer was heated and degreased at 400 ° C., and further pulverized by an airflow pulverizer to obtain a raw material powder having an average particle size of about 2 μm.
[0035]
This raw material powder was heated to 1600 ° C in an electric furnace at a supply rate of 5 kg / hr through a nozzle with a cross-sectional area of 0.13 cm 2 , accompanied by 1% hydrogen-containing nitrogen gas at a flow rate of 200 l / min as a carrier gas. The mixture was jetted into the reaction tube, passed through the reaction tube while maintaining the dispersion concentration, and heated. The raw material powder dispersion concentration in the gas phase in the reaction tube is 0.4 g / l, and V / S = 1500. The generated powder was collected with a bag filter.
When the obtained powder was analyzed with an X-ray diffractometer, only diffraction lines of Ba 0.9 Eu 0.1 MgAl 10 O 17 were confirmed. Observation by SEM showed plate-like particles with an average particle size of about 1 μm and a maximum particle size of about 4 μm. When an emission spectrum at a wavelength of 450 nm under irradiation with an ultraviolet ray at a wavelength of 147 nm was measured, the emission intensity was equivalent to that of a powder having an average particle diameter of 4 μm obtained by a conventional solid phase reaction method.
[0036]
(BaFe 12 O 19 ferrite)
Example 12
Barium nitrate and iron nitrate nonahydrate were weighed to a molar ratio of 1:12 and dissolved in pure water to prepare a solution having a total metal ion concentration of about 0.2 mol / l. This solution was heated to 80 ° C., and urea having a concentration of 2 mol / l was added with stirring to start a uniform precipitation reaction by urea hydrolysis reaction. When the pH of the solution reached 8, the reaction was terminated by cooling. The produced precipitate was separated by filtration, dried at 100 ° C, and calcined at 600 ° C. Subsequently, the mixture was pulverized with an airflow pulverizer to obtain a raw material powder having an average particle size of about 2 μm and having a uniform particle size.
In a reaction tube heated to 1300 ° C in an electric furnace at a supply rate of 5 kg / hr through a nozzle having a cross-sectional area of 0.13 cm 2 with an air flow rate of 200 l / min as a carrier gas. Then, while maintaining this dispersion concentration, the reaction tube was passed through and heated. The raw material powder dispersion concentration in the gas phase in the reaction tube is 0.4 g / l, and V / S = 1500. The generated powder was collected with a bag filter. It was confirmed by SEM that the obtained powder was a plate-like particle having an average particle size of about 1 μm and a maximum particle size of about 3 μm and having a narrow particle size distribution. In the analysis by X-ray diffractometer, only sharp diffraction lines of BaFe 12 O 19 were confirmed.
[0037]
(BaTiO 3 dielectric)
Example 13
Equimolar amounts of barium chloride hydrate and titanium chloride were dissolved in pure water to prepare a solution having a total metal ion concentration of 0.1 mol / l. This solution was dropped into a 0.5 mol / l oxalic acid aqueous solution to form a precipitate of titanyl barium oxalate. The precipitate was filtered off, washed with water, calcined at 500 ° C., wet-ground with a bead mill using 0.3 mm zirconia balls, and dried to obtain a raw material powder. This raw material powder is pulverized and dispersed with an airflow type pulverizer using air at a flow rate of 200 l / min, and is passed through a nozzle with a sectional area of 0.13 cm 2 in the opening at a supply rate of 5 kg / hr in an electric furnace. It was ejected into a reaction tube heated to 1100 ° C. The raw material powder dispersion concentration in the gas phase in the reaction tube is 0.4 g / l, and V / S = 1500. While maintaining this dispersion concentration, heating was performed by passing through a reaction tube, and the produced powder was collected by a bag filter. It was confirmed by SEM that the obtained powder was an agglomerated particle having an average particle diameter of 0.2 μm and a maximum particle diameter of 0.4 μm. In the analysis with an X-ray diffractometer, only sharp diffraction lines of tetragonal BaTiO 3 were confirmed.
[0038]
【The invention's effect】
According to the present invention, it is possible to easily obtain a highly dispersible double oxide powder composed of primary particles that are homogeneous in composition, have high crystallinity, have a uniform particle shape, and have no aggregation. Further, since no additive or solvent affecting the purity is used, a high-purity powder with few impurities can be obtained. Furthermore, since no pulverization is required, there are few defects and distortions on the powder surface and inside.
[0039]
Furthermore, in this method, by controlling the particle size and dispersion conditions of the raw material powder, it is possible to obtain a double oxide powder having an arbitrary average particle size from 0.1 μm or less to about 20 μm and having a uniform particle size. it can. Therefore, there is no need for a pulverization process or a classification process, and it is particularly suitable for producing a fine powder having a narrow particle size distribution that is useful as a thick film paste material.
[0040]
In addition, since the raw material is not in the form of a solution or a suspension, energy loss due to evaporation of the solvent is less than that in a normal spray pyrolysis method, and the raw material can be easily manufactured at a low cost. Moreover, since there is no problem of droplet coalescence and it can be dispersed in the gas phase at a relatively high concentration, the efficiency is high. In addition, since it is not necessary to make the raw material into a solution or suspension, the selection range of the starting raw material is wide, and therefore various types of double oxide powders can be produced.
[0041]
Furthermore, since this method does not generate oxidizing gas from the solvent, it is also suitable for double oxide powders that need to be synthesized under a low oxygen partial pressure. Moreover, since the inside of the system can be made a reducing atmosphere at the time of decomposition by selecting the raw material compound, it is not necessary to supply a reducing gas from the outside, and oxidation can be suppressed, so that reaction conditions can be easily set.
In particular, the double oxide phosphor produced by this method has few impurities, is homogeneous in composition, has a particularly small amount of activator ions dispersed uniformly, and has no defects or lattice distortion on the surface and inside. It is a crystalline powder and has excellent phosphor characteristics such as emission intensity. Moreover, since it is fine monodisperse particles having a uniform particle shape and particle size, a phosphor paste with excellent dispersibility can be produced, and the powder filling rate when this is applied is high, and a thin film can be formed.
[0042]

Claims (9)

複酸化物を構成する2種以上の金属元素および/または半金属元素を個々の粒子中に一定の組成比で含むものであって、複塩粉末、複核錯体粉末、複合アルコキシド粉末から選ばれる2種以上の金属元素および/または半金属元素を含む単一の化合物、合金粉末、ガラス粉末、もしくは、金属、半金属およびこれらの化合物からなる群より選択された2種以上を含む混合物または複合物の粉末から選ばれる原料粉末を、キャリヤガスと共にノズルを通して反応容器中に噴出させ、該原料粉末を10g/l以下の濃度で気相中に分散させた状態で、その分解温度もしくは反応温度より高く、かつ生成する複酸化物の融点をTm℃としたとき(Tm/2)℃以上の温度で加熱することにより複酸化物粉末を生成させることを特徴とする、高結晶性複酸化物粉末の製造方法。Two or more kinds of metal elements and / or metalloid elements constituting a double oxide are contained in individual particles at a constant composition ratio, and are selected from double salt powders, binuclear complex powders, and complex alkoxide powders 2 Single compound, alloy powder, glass powder containing two or more metal elements and / or metalloid elements, or a mixture or composite containing two or more metals selected from the group consisting of metal, metalloid and these compounds A raw material powder selected from the above powders is jetted into a reaction vessel through a nozzle together with a carrier gas, and the raw material powder is dispersed in the gas phase at a concentration of 10 g / l or less, and its decomposition temperature or reaction temperature is higher. In addition, when the melting point of the generated double oxide is Tm ° C. (Tm / 2), the compound is heated at a temperature of not lower than C ° C. to generate a double oxide powder. Method of manufacturing an oxide powder. 原料粉末を反応容器中に噴出させる際の条件が、キャリヤガスの単位時間あたりの流量をV(l/min)、ノズルの開口部の断面積をS(cm)としたとき、V/S>600であることを特徴とする、請求項1に記載の高結晶性複酸化物粉末の製造方法。When the raw material powder is jetted into the reaction vessel, the flow rate per unit time of the carrier gas is V (l / min), and the sectional area of the nozzle opening is S (cm 2 ). The method for producing a highly crystalline double oxide powder according to claim 1, wherein> 600. 原料粉末を、ノズルを通して反応容器中に噴出させる前に、分散機を用いてキャリヤガス中に混合、分散させることを特徴とする、請求項1または2に記載の高結晶性複酸化物粉末の製造方法。  The high crystalline double oxide powder according to claim 1 or 2, wherein the raw material powder is mixed and dispersed in a carrier gas using a disperser before being jetted into a reaction vessel through a nozzle. Production method. 原料粉末が、予め粒度調整されたものである、請求項1ないし3のいずれかに記載の高結晶性複酸化物粉末の製造方法。  The method for producing a highly crystalline double oxide powder according to any one of claims 1 to 3, wherein the raw material powder has been previously adjusted in particle size. 原料粉末を構成する個々の粒子が、金属、半金属およびこれらの化合物からなる群より選択された2種以上を含む混合物または複合物、もしくは2種以上の金属元素および/または半金属元素を含む単一の化合物からなるものである、請求項1ないし4のいずれかに記載の高結晶性複酸化物粉末の製造方法。  The individual particles constituting the raw material powder include a mixture or composite containing two or more selected from the group consisting of metals, metalloids and their compounds, or two or more metal elements and / or metalloid elements The method for producing a highly crystalline double oxide powder according to any one of claims 1 to 4, comprising a single compound. 複酸化物を構成する2種以上の金属元素および/または半金属元素を個々の粒子中に一定の組成比で含むものであって、複塩粉末、複核錯体粉末、複合アルコキシド粉末から選ばれる2種以上の金属元素および/または半金属元素を含む単一の化合物、合金粉末、ガラス粉末、もしくは、金属、半金属およびこれらの化合物からなる群より選択された2種以上を含む混合物または複合物の粉末から選ばれる原料粉末を製造する工程、該原料粉末を捕集する工程、捕集された該原料粉末を分散機を用いてキャリヤガスに分散させる工程、該原料粉末を分散させたキャリヤガスをノズルを通して反応容器中に噴出させる工程、該原料粉末を反応容器中で10g/l以下の濃度で気相中に分散させた状態で、その分解温度もしくは反応温度より高く、かつ生成する複酸化物の融点をTm℃としたとき(Tm/2)℃以上の温度で加熱することにより複酸化物粉末を生成させる工程とからなる、高結晶性複酸化物粉末の製造方法。Two or more kinds of metal elements and / or metalloid elements constituting a double oxide are contained in individual particles at a constant composition ratio, and are selected from double salt powders, binuclear complex powders, and complex alkoxide powders 2 Single compound, alloy powder, glass powder containing two or more metal elements and / or metalloid elements, or a mixture or composite containing two or more metals selected from the group consisting of metal, metalloid and these compounds A raw material powder selected from the above powders, a step of collecting the raw material powder, a step of dispersing the collected raw material powder in a carrier gas using a disperser, and a carrier gas in which the raw material powder is dispersed Jetting into the reaction vessel through the nozzle, the raw material powder being dispersed in the gas phase at a concentration of 10 g / l or less in the reaction vessel, higher than its decomposition temperature or reaction temperature And a method of producing a highly crystalline double oxide powder comprising the step of producing a double oxide powder by heating at a temperature of (Tm / 2) ° C. or higher when the melting point of the resulting double oxide is Tm ° C. . 原料粉末を分散させたキャリヤガスを反応容器中に噴出させる際の条件が、キャリヤガスの単位時間あたりの流量をV(l/min)、ノズルの開口部の断面積をS(cm)としたとき、V/S>600であることを特徴とする、請求項6に記載の高結晶性複酸化物粉末の製造方法。The conditions for jetting the carrier gas in which the raw material powder is dispersed into the reaction vessel are as follows: the flow rate per unit time of the carrier gas is V (l / min), and the sectional area of the nozzle opening is S (cm 2 ). The method for producing a highly crystalline double oxide powder according to claim 6, wherein V / S> 600. 原料粉末をキャリヤガスに分散させる前もしくは分散させた後に、粉砕機により粒度調整を行うことを特徴とする、請求項6または7に記載の高結晶性複酸化物粉末の製造方法。  The method for producing a highly crystalline double oxide powder according to claim 6 or 7, wherein the particle size is adjusted by a pulverizer before or after the raw material powder is dispersed in the carrier gas. 原料粉末を構成する個々の粒子が、金属、半金属およびこれらの化合物からなる群より選択された2種以上を含む混合物または複合物、もしくは2種以上の金属元素および/または半金属元素を含む単一の化合物からなるものである、請求項6ないし8のいずれかに記載の高結晶性複酸化物粉末の製造方法。  The individual particles constituting the raw material powder include a mixture or composite containing two or more selected from the group consisting of metals, metalloids and their compounds, or two or more metal elements and / or metalloid elements The method for producing a highly crystalline double oxide powder according to any one of claims 6 to 8, comprising a single compound.
JP2002230595A 2002-08-07 2002-08-07 Method for producing highly crystalline double oxide powder Expired - Lifetime JP4360070B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2002230595A JP4360070B2 (en) 2002-08-07 2002-08-07 Method for producing highly crystalline double oxide powder
SG200304272A SG111132A1 (en) 2002-08-07 2003-07-30 Method for manufacturing highly-crystallized oxide powder
US10/630,394 US7094289B2 (en) 2002-08-07 2003-07-30 Method for manufacturing highly-crystallized oxide powder
CA002436391A CA2436391C (en) 2002-08-07 2003-07-30 Method for manufacturing highly-crystallized oxide powder
AT03016653T ATE318791T1 (en) 2002-08-07 2003-07-31 METHOD FOR PRODUCING HIGHLY CRYSTALIZED OXIDE POWDER
EP03016653A EP1391423B1 (en) 2002-08-07 2003-07-31 Method for manufacturing highly-crystallized oxide powder
DE60303717T DE60303717T2 (en) 2002-08-07 2003-07-31 Process for the preparation of highly crystallized oxide powder
MYPI20032938A MY138755A (en) 2002-08-07 2003-08-05 method for manufacturing highly-crystallized oxide powder
KR1020030054252A KR100571622B1 (en) 2002-08-07 2003-08-06 Method for manufacturing highly- crystallized oxide powder
TW092121446A TWI245742B (en) 2002-08-07 2003-08-06 Method for manufacturing highly-crystallized oxide powder
CNB031275559A CN100548873C (en) 2002-08-07 2003-08-07 The manufacture method of highly-crystallized oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002230595A JP4360070B2 (en) 2002-08-07 2002-08-07 Method for producing highly crystalline double oxide powder

Publications (2)

Publication Number Publication Date
JP2004067462A JP2004067462A (en) 2004-03-04
JP4360070B2 true JP4360070B2 (en) 2009-11-11

Family

ID=32016626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002230595A Expired - Lifetime JP4360070B2 (en) 2002-08-07 2002-08-07 Method for producing highly crystalline double oxide powder

Country Status (1)

Country Link
JP (1) JP4360070B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4570516B2 (en) * 2005-05-24 2010-10-27 京セラ株式会社 Barium titanate powder and method for producing the same, and barium titanate sintered body
WO2008018582A1 (en) * 2006-08-11 2008-02-14 Ishihara Sangyo Kaisha, Ltd. Europium-activated yttrium oxide and process for producing the same
JP5531606B2 (en) * 2009-12-22 2014-06-25 東亞合成株式会社 Spherical crystalline titanium oxyoxalate powder and method for producing the same

Also Published As

Publication number Publication date
JP2004067462A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
KR100571622B1 (en) Method for manufacturing highly- crystallized oxide powder
JP4186529B2 (en) Method for producing highly crystalline double oxide powder
KR100753773B1 (en) Method for preparing perovskite oxide nanopowders
JP6875605B2 (en) Method for Producing Lithium Cobalt Pyrophosphate and Method for Producing Lithium Cobalt Pyrophosphate Carbon Composite
JP4360070B2 (en) Method for producing highly crystalline double oxide powder
Lenggoro et al. One-step synthesis for Zn2SiO4: Mn particles 0.3–1.3 µm in size with spherical morphology and non-aggregation
JP4207501B2 (en) Method for producing highly crystalline oxide powder
JP2004315344A (en) Method for manufacturing single crystal ceramic particle
KR20010039371A (en) Process for Preparing Oxidized Phosphor Particles by Flame Spray Pyrolysis
TWI804647B (en) Method of manufacturing lithium cobalt phosphate and method of manufacturing carbon composite of lithium cobalt phosphate
JP2007290885A (en) Method for producing inorganic particle
JPH08148147A (en) Manufacture of positive electrode active material for secondary battery
JP3981513B2 (en) Method for producing metal oxide
KR100527060B1 (en) Preparation of Single and Multi-Component Oxide by Pyrophoric Synthesis Method
JP3176119B2 (en) Acicular dielectric oxide particles and method for producing the same
JP4212032B2 (en) Composite materials and electronic components
JPH01226723A (en) Method for synthesizing particulate oxide raw material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4360070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140821

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term