JPH08145947A - Liquid quality monitoring method for high specific resistance liquid, liquid quality monitor thereof and liquid quality monitoring system thereof - Google Patents

Liquid quality monitoring method for high specific resistance liquid, liquid quality monitor thereof and liquid quality monitoring system thereof

Info

Publication number
JPH08145947A
JPH08145947A JP28383094A JP28383094A JPH08145947A JP H08145947 A JPH08145947 A JP H08145947A JP 28383094 A JP28383094 A JP 28383094A JP 28383094 A JP28383094 A JP 28383094A JP H08145947 A JPH08145947 A JP H08145947A
Authority
JP
Japan
Prior art keywords
liquid
high resistivity
point
sensor
specific resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28383094A
Other languages
Japanese (ja)
Other versions
JP2721313B2 (en
Inventor
Akira Nakano
陽 仲野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FURONTETSUKU KK
Frontec Inc
Original Assignee
FURONTETSUKU KK
Frontec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FURONTETSUKU KK, Frontec Inc filed Critical FURONTETSUKU KK
Priority to JP28383094A priority Critical patent/JP2721313B2/en
Priority to KR1019950041590A priority patent/KR0157676B1/en
Publication of JPH08145947A publication Critical patent/JPH08145947A/en
Application granted granted Critical
Publication of JP2721313B2 publication Critical patent/JP2721313B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE: To easily perform low-cost multi-point measurement of liquid quality by forming the part of a tube in contact with high specific resistance liquid by a conductive member electrically insulated from the tube and detecting its charged amount. CONSTITUTION: The part of a tube 110 made of an insulating member is replaced by a sensor 111 made of a conductive member such as SUS304 at the ground point (a) of the tube 110. Since the sensor 111 is provided at the position in direct contact with ultrapure water flowing in the tube 110, charge is generated by the flow of the water. Then, the change of the charged amount by the charging is measured at the change of the voltage value applied across a resistor 112 of 100kΩ disposed between the sensor 111 and a ground contact point. When the normal water having a specific resistance of 18MΩcm flows, the voltage value is about -0.3mV. When the purity of the water is decreased, the absolute value of the voltage value has a trend to decrease toward 0mV, and hence when the sensor 111 is used, the purity of the water can be measured to manage the purity of the water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高比抵抗液体の液質監
視方法、その液質監視装置、及びその液質監視システム
に係る。より詳細には、配管部内にて、使用点にて、及
び被洗浄物を介して、高比抵抗液体の純度管理が可能な
高比抵抗液体の液質監視方法、その液質監視装置、及び
その液質監視システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid quality monitoring method for a high resistivity liquid, a liquid quality monitoring device therefor, and a liquid quality monitoring system therefor. More specifically, a liquid quality monitoring method for a high resistivity liquid capable of controlling the purity of the high resistivity liquid in the piping portion, at the point of use, and through the object to be cleaned, its liquid quality monitoring device, and Regarding the liquid quality monitoring system.

【0002】[0002]

【従来の技術】半導体や各種電子部品、又は原子力など
のハイテク産業では、使用する超純水の抵抗率を管理す
ることが、高い良品率の実現、又は高い信頼性の実現に
つながる。特に、半導体分野では、洗浄工程に用いる純
水の抵抗率管理は、より集積密度の高い素子を製造する
場合のキーテクノロジーの1つである。
2. Description of the Related Art In high-tech industries such as semiconductors, various electronic components, and nuclear power, controlling the resistivity of ultrapure water used leads to a high yield rate or a high reliability. Particularly in the semiconductor field, controlling the resistivity of pure water used in the cleaning process is one of the key technologies for manufacturing devices with higher integration density.

【0003】従来、高比抵抗液体の液質監視装置として
は、純水の導電率を測定するための素子と、純水の温度
を測定するための素子とを一体化した複合センサーが使
われている。例えば、導電率測定用としては、Tiから
なる2極の電極が絶縁体を介して設けられた素子が、温
度測定用としては、サーミスターが挙げられる。ここ
で、導電率とは、純水に含まれる電解質の総量を知る指
標であり、また、純水の純度を知る指標として用いる抵
抗率の逆数である。この複合センサーは、常時純水が流
れている配管系に設置し、水温の変化を補正しながら導
電率を高精度に測定できるという特長がある。
Conventionally, as a liquid quality monitor for a high resistivity liquid, a composite sensor in which an element for measuring the conductivity of pure water and an element for measuring the temperature of pure water are integrated is used. ing. For example, an element in which two electrodes of Ti are provided through an insulator is used for conductivity measurement, and a thermistor is used for temperature measurement. Here, the conductivity is an index for knowing the total amount of electrolyte contained in pure water, and is the reciprocal of the resistivity used as an index for knowing the purity of pure water. This composite sensor has the feature that it can be installed in a pipe system where pure water is constantly flowing, and it can measure conductivity with high accuracy while compensating for changes in water temperature.

【0004】しかし、上記従来技術には、次のような問
題点がある。 (1)検出部を純水中に挿入して使用するタイプであ
り、配管内の純水が溜まり水となったり、又は、配管内
が外気と触れる使用点付近では使えない。 (2)配管系にセンサーを設置した場所でのみ測定可で
あり、配管系において自由な測定点を選択できない。 (3)センサー価格が高いため、配管系に多数個のセン
サーを設置して、多点測定する純水の液質監視システム
を構築するには、多額の費用を要する。
However, the above conventional technique has the following problems. (1) This is a type in which the detector is used by inserting it into pure water, and it cannot be used near the point of use where pure water in the pipe accumulates and becomes water, or the inside of the pipe comes into contact with the outside air. (2) Measurement is possible only at the location where the sensor is installed in the piping system, and free measurement points cannot be selected in the piping system. (3) Since the sensor price is high, it requires a large amount of money to install a large number of sensors in the piping system and construct a pure water liquid quality monitoring system for multipoint measurement.

【0005】[0005]

【発明が解決しようとしている課題】本発明は、高比抵
抗液体の使用点末端においても測定可能で、配管系にお
いて自由な測定点が選択でき、かつ、センサーが安価で
あるため高比抵抗液体の水質監視システム構築が容易な
高比抵抗液体の液質監視方法、その液質監視装置、及び
その液質監視システムを提供することを目的とする。
DISCLOSURE OF THE INVENTION According to the present invention, a high resistivity liquid can be measured even at the end of the point of use of the high resistivity liquid, a free measurement point can be selected in the piping system, and the sensor is inexpensive. It is an object of the present invention to provide a liquid quality monitoring method for a high-resistivity liquid, a liquid quality monitoring device thereof, and a liquid quality monitoring system for which a water quality monitoring system can be easily constructed.

【0006】[0006]

【課題を解決するための手段】本発明は、高比抵抗液体
を流すために用いる配管部において、該高比抵抗液体が
接触する該配管部の一部が、少なくとも該配管部と電気
的に絶縁された導電性部材から構成されており、該導電
性部材からなるセンサー部の帯電量を検出することを特
徴とする高比抵抗液体の液質監視方法に要旨が存在す
る。
According to the present invention, in a pipe portion used for flowing a high resistivity liquid, a part of the pipe portion with which the high resistivity liquid comes into contact is at least electrically connected to the pipe portion. There is a gist in a liquid quality monitoring method for a high-resistivity liquid, which is composed of an electrically conductive member that is insulated, and which detects the charge amount of a sensor unit made of the electrically conductive member.

【0007】[0007]

【作用】[Action]

(請求項1)請求項1に係る発明では、高比抵抗液体を
流すために用いる配管部の一部が、少なくとも該配管部
と電気的に絶縁された導電性部材から構成されているた
め、この導電性部材には配管部内を流れる高比抵抗液体
から電荷の帯電が生じる。その結果、この帯電量を検出
することによって、高比抵抗液体の抵抗率変化の測定が
可能となる。
(Claim 1) In the invention according to claim 1, since a part of the pipe portion used for flowing the high resistivity liquid is composed of at least a conductive member electrically insulated from the pipe portion, The electrically conductive member is charged with electric charges from the high resistivity liquid flowing in the pipe portion. As a result, by detecting this charge amount, it is possible to measure the change in resistivity of the high resistivity liquid.

【0008】また、配管部の一部を、少なくとも該配管
部と電気的に絶縁された導電性部材から構成するだけで
上記検出が可能となるため、多点測定を安価に実現する
ことができる。
Further, since the above-mentioned detection can be performed only by constructing a part of the piping portion from at least a conductive member electrically insulated from the piping portion, multipoint measurement can be realized at low cost. .

【0009】(請求項2)請求項2に係る発明では、高
比抵抗液体を取り出す使用点近傍に、前記センサー部を
設けているため、該使用点から排出される直前の高比抵
抗液体の液質を検出することができる。その結果、該高
比抵抗液体が流れていない場合、配管内が外気となる使
用点付近において、精度の高い高比抵抗液体の液質監視
が可能となる。
(Claim 2) In the invention according to claim 2, since the sensor portion is provided in the vicinity of the point of use for taking out the high resistivity liquid, the high resistivity liquid immediately before being discharged from the point of use is The liquid quality can be detected. As a result, when the high-resistivity liquid is not flowing, it is possible to accurately monitor the liquid quality of the high-resistivity liquid near the point of use where the inside of the pipe is the outside air.

【0010】(請求項3)請求項3に係る発明では、高
比抵抗液体を取り出す使用点端部に、前記センサー部を
設けているため、該使用点から噴出される使用直前の高
比抵抗液体の液質を検出できるばかりでなく、該センサ
ー部の形状は任意に選択可能となり、かつ、該センサー
部の脱着が何時でも可能となる。その結果、高比抵抗液
体を流すために用いる配管部を止めることなく、該セン
サー部の修理・点検・交換等が可能となる。
(Claim 3) In the invention according to claim 3, since the sensor portion is provided at the end of the point of use for taking out the high specific resistance liquid, the high specific resistance immediately before use ejected from the point of use. Not only can the liquid quality of the liquid be detected, the shape of the sensor unit can be arbitrarily selected, and the sensor unit can be detached at any time. As a result, the sensor section can be repaired, inspected, replaced, etc. without stopping the piping section used for flowing the high resistivity liquid.

【0011】(請求項4)請求項4に係る発明では、前
記センサー部と接地点との電荷移動量を測定することに
より帯電量を検出するため、インラインでの高比抵抗液
体の液質モニタを、液に外乱を与えることなく容易に実
現することができる。その結果、高比抵抗液体に影響を
与えることのない液質管理が図れる。
(Claim 4) In the invention according to claim 4, since the charge amount is detected by measuring the charge transfer amount between the sensor section and the grounding point, the in-line liquid quality monitor of the high resistivity liquid is provided. Can be easily realized without giving disturbance to the liquid. As a result, liquid quality control that does not affect the high resistivity liquid can be achieved.

【0012】(請求項5)請求項5に係る発明では、前
記センサー部は、該センサー内部を高比抵抗液体が通過
するリング形状としたため、該高比抵抗液体の流量に依
存せず、該センサー部は安定して該高比抵抗液体に接す
ることが可能となる。その結果、検出感度の安定化が図
れる。
(Claim 5) In the invention according to claim 5, since the sensor portion has a ring shape through which the high specific resistance liquid passes, it does not depend on the flow rate of the high specific resistance liquid. The sensor section can stably come into contact with the high resistivity liquid. As a result, the detection sensitivity can be stabilized.

【0013】(請求項6)請求項6に係る発明では、高
比抵抗液体が、純水又は重水であるため、微量不純物の
含有が問題となる半導体分野の洗浄水用途から原子力分
野の冷却水用途まで、広範囲な利用分野への適用ができ
る。
(Claim 6) In the invention according to claim 6, since the high-resistivity liquid is pure water or heavy water, the use of cleaning water in the semiconductor field in which the inclusion of trace impurities poses a problem, to cooling water in the nuclear field It can be applied to a wide range of fields of use.

【0014】(請求項7)請求項7に係る発明では、前
記使用点から噴出された前記高比抵抗液体を、被洗浄物
の表面を介さずファラディケージに接続された導電性電
極に、直接的にかけることにより該高比抵抗液体にのっ
た電荷量を測定するため、該使用点と該導電性電極との
間にある空間内の汚れが、該高比抵抗液体に及ぼす影響
を検出することができる。その結果、該使用点と該導電
性電極との間にある空間内の清浄度管理が可能となる。
According to a seventh aspect of the present invention, the high resistivity liquid jetted from the point of use is directly applied to a conductive electrode connected to a Faraday cage without passing through the surface of the object to be cleaned. The amount of electric charge on the high-resistivity liquid is measured by applying it to detect the influence of dirt in the space between the point of use and the conductive electrode on the high-resistivity liquid. can do. As a result, it becomes possible to manage the cleanliness in the space between the point of use and the conductive electrode.

【0015】(請求項8)請求項8に係る発明では、前
記使用点から噴出された前記高比抵抗液体を、被洗浄物
の表面を介してファラディケージに接続された導電性電
極に、間接的にかけることにより該高比抵抗液体にのっ
た電荷量を測定するため、該被洗浄物の表面の清浄度、
すなわち洗浄された度合いを検出することができる。そ
の結果、該被洗浄物の汚染度が異なっても、各被洗浄物
ごとに最適な洗浄条件等を順次決めることができる。
According to an eighth aspect of the present invention, the high resistivity liquid ejected from the point of use is indirectly connected to a conductive electrode connected to a Faraday cage through the surface of the object to be cleaned. To measure the amount of charge on the high-resistivity liquid by applying the
That is, the degree of cleaning can be detected. As a result, even if the degree of contamination of the object to be cleaned is different, the optimum cleaning conditions and the like can be sequentially determined for each object to be cleaned.

【0016】(請求項9)請求項9に係る発明では、請
求項1乃至8のいずれか1項に記載の高比抵抗液体の液
質監視方法を有することにより、汎用性が高く、かつ、
安価な高比抵抗液体の液質監視装置がえられる。
(Claim 9) In the invention according to claim 9, the method for monitoring the quality of a high resistivity liquid according to any one of claims 1 to 8 has high versatility, and
An inexpensive liquid quality monitoring device for high resistivity liquid can be obtained.

【0017】(請求項10)請求項10に係る発明で
は、前記帯電量又は前記電荷量の値が変化した場合に、
警告を発する警告手段を有するため、前記高比抵抗液体
の液質監視をフィードバック制御することが可能とな
る。その結果、信頼性の高い高比抵抗液体の液質監視シ
ステムがえられる。
(Claim 10) In the invention according to claim 10, when the charge amount or the value of the charge amount changes,
Since the warning means for issuing a warning is provided, it is possible to perform feedback control for monitoring the liquid quality of the high resistivity liquid. As a result, a highly reliable liquid quality monitoring system for high resistivity liquid can be obtained.

【0018】[0018]

【実施例】以下、本発明の一実施例を説明する。 (実施例1)本例では、高比抵抗液体を流すために用い
る配管部において、該高比抵抗液体が接触する該配管部
の一部が、少なくとも該配管部と電気的に絶縁された導
電性部材から構成した点が従来と異なる。該高比抵抗液
体としては純水を用い、該導電性部材からなるセンサー
部の帯電量を検出することによって、純水の導電率を検
出した。
EXAMPLE An example of the present invention will be described below. (Embodiment 1) In the present embodiment, in the piping portion used for flowing the high resistivity liquid, at least a part of the piping portion which the high resistivity liquid comes into contact with is electrically insulated from the piping portion. It is different from the conventional one in that it is composed of a flexible member. Pure water was used as the high-resistivity liquid, and the conductivity of pure water was detected by detecting the amount of charge of the sensor section made of the conductive member.

【0019】以下では、図1及び図2を参照して本例に
ついて説明する。図1は、本発明の二次純水製造ライン
の一例を示す概略図である。図2は、図1の導電性部材
からなるセンサー部(a地点)付近の拡大図であり、図
2(a)が斜視図、図2(b)が図2(a)のA−A’
部分の断面図である。
This example will be described below with reference to FIGS. 1 and 2. FIG. 1 is a schematic view showing an example of the secondary pure water production line of the present invention. 2 is an enlarged view of the vicinity of the sensor portion (point a) made of the conductive member of FIG. 1, FIG. 2 (a) is a perspective view, and FIG. 2 (b) is AA ′ of FIG. 2 (a).
It is a sectional view of a part.

【0020】本発明の二次純水製造ラインは、次の10
1〜111の各機器から構成した。
The secondary pure water production line of the present invention includes the following 10
It was composed of each device of 1-111.

【0021】101は、一次純水製造ライン(図示せ
ず)にて処理された超純水(比抵抗が、MΩcmオーダ
ー)を溜める一次純水保管容器、102は、超純水を循
環させるためのポンプ、103は、超純水の温度を一定
に保つための熱交換器であり、24℃に保持した。10
4は、有機物を分解するための低圧UV酸化器、105
は、アニオン(負イオン)を除去するためのイオン交換
器(アニオンデミナー)であり、その主目的は前段の低
圧UV酸化器で発生する有機酸や炭酸イオンの除去にあ
る。106は、正負を問わずイオンをを除去するための
イオン交換器(デミナー)、107は、微粒子を除去す
るためのファイナルフィルター(UF)、108は、二
次純水を使用点に分岐する分岐ポイント、109は、二
次純水を使用点(デベロッパ)である。
Reference numeral 101 denotes a primary pure water storage container for storing ultrapure water (specific resistance is on the order of MΩcm) processed in a primary pure water production line (not shown), and 102 for circulating the ultrapure water. The pump 103 is a heat exchanger for keeping the temperature of the ultrapure water constant and kept at 24 ° C. 10
4 is a low-pressure UV oxidizer for decomposing organic substances, 105
Is an ion exchanger (anion dimener) for removing anions (negative ions), and its main purpose is to remove organic acids and carbonate ions generated in the low-pressure UV oxidizer in the preceding stage. Reference numeral 106 is an ion exchanger (demina) for removing ions regardless of positive or negative, 107 is a final filter (UF) for removing fine particles, and 108 is a branch for branching secondary pure water to a use point. Points 109 are points where the secondary pure water is used (developer).

【0022】図1に示すとおり、101〜108は環状
に、108と109は線状に、配管部110によって接
続した。配管部110の材質としては、絶縁性部材であ
るPVDF(Poly vinylidene fluoride)を用いた。配
管部110のa地点では、配管部110の一部を導電性
部材からなるセンサー部111に置き換えた。センサー
部111の材質としては、SUS304を用いた。
As shown in FIG. 1, 101 to 108 are connected in an annular shape, and 108 and 109 are connected in a linear shape by a pipe portion 110. As the material of the piping part 110, PVDF (Poly vinylidene fluoride) which is an insulating member was used. At a point a of the piping part 110, a part of the piping part 110 was replaced with a sensor part 111 made of a conductive member. SUS304 was used as the material of the sensor unit 111.

【0023】図2に示すとおり、センサー部111は、
配管部110の中を流れる超純水が直接触れる位置に設
けた。センサー部111には、超純水の流れによって帯
電が発生する。センサー部111と接地点との間には、
100kΩの抵抗112を配置し、抵抗112の両端に
かかる電圧値を測定した。すなわち、前記帯電による電
荷量の変化は、前記電圧値の変化として観測した。
As shown in FIG. 2, the sensor section 111 is
It was provided at a position where the ultrapure water flowing in the pipe section 110 was in direct contact. The sensor unit 111 is charged by the flow of ultrapure water. Between the sensor unit 111 and the ground point,
A resistor 112 of 100 kΩ was arranged, and the voltage value applied across the resistor 112 was measured. That is, the change in the charge amount due to the charging was observed as the change in the voltage value.

【0024】本例では、上述した帯電量と電圧値の関係
を調べたところ、比抵抗が18MΩcmである正常な超
純水を流した場合、電圧値は約−0.3mVであった。
一方、この超純水の純度を低下させた場合、上記電圧値
は0mV方向へ絶対値が減少する傾向があることを見い
だした。したがって、本発明のセンサー部111を用い
ることによって、超純水の純度管理を行うことが可能で
あると判断した。
In this example, when the relationship between the charge amount and the voltage value was examined, the voltage value was about -0.3 mV when normal ultrapure water having a specific resistance of 18 MΩcm was passed.
On the other hand, it has been found that when the purity of this ultrapure water is lowered, the absolute value of the voltage value tends to decrease in the direction of 0 mV. Therefore, it was judged that it is possible to control the purity of ultrapure water by using the sensor unit 111 of the present invention.

【0025】本例では、配管部110のa地点にセンサ
ー部111を配置したが、図1の環状部であればどこで
もよく、例えば、b地点やc地点であっても構わない。
また、本例では、高比抵抗液体を超純水としたが、重水
を用いても同様の結果が別途確認された。
In this example, the sensor section 111 is arranged at the point a of the piping section 110, but it may be anywhere as long as it is the annular portion of FIG. 1, for example, it may be the point b or the point c.
Further, in this example, the high-resistivity liquid was ultrapure water, but the same result was confirmed separately even when heavy water was used.

【0026】(実施例2)本例では、導電性部材からな
るセンサー部を設ける位置を、高比抵抗液体を取り出す
使用点近傍とした点が実施例1と異なる。高比抵抗液体
を取り出す使用点近傍とは、図1におけるd地点を指
す。他の点は実施例1と同様とした。
(Embodiment 2) This embodiment is different from Embodiment 1 in that the position of the sensor portion made of a conductive member is near the point of use for taking out the high resistivity liquid. The vicinity of the point of use for taking out the high specific resistance liquid refers to point d in FIG. The other points were the same as in Example 1.

【0027】図3は、使用点近傍超純水を流さず2時
間封止した後、超純水を60秒間噴出させた時の電圧値
を示した。超純水の流量は、430cc/分とした。横
軸は、超純水の噴出回数である。
[0027] Figure 3, after sealed 2 hours sealing without flowing ultrapure water in the vicinity of the point of use, showed the voltage value when the ultra-pure water is ejected 60 seconds. The flow rate of ultrapure water was 430 cc / min. The horizontal axis is the number of jets of ultrapure water.

【0028】図3から、噴出回数によって電圧値が変化
することが分かった。噴出回数が増すにつれて、電圧値
が−30mV程度に安定した。このことから、超純水の
封止によって使用点近傍は汚染されており、超純水を2
〜3回噴出させた後、超純水の利用を開始することによ
って、安定した純度で超純水を用いることが可能である
と判断した。
From FIG. 3, it was found that the voltage value changes depending on the number of ejections. As the number of ejections increased, the voltage value became stable at about -30 mV. From this fact, the vicinity of the point of use is contaminated by the sealing of ultrapure water and
It was judged that it is possible to use ultrapure water with a stable purity by starting to use ultrapure water after jetting 3 times.

【0029】また、従来測定できなかった配管部内が外
気と触れる使用点付近でも、本例のセンサー部を用いる
ことによって、超純水の純度管理が可能となった。
Further, the purity of ultrapure water can be controlled by using the sensor part of this example even in the vicinity of the point of use where the inside of the pipe part, which could not be measured conventionally, comes into contact with the outside air.

【0030】(実施例3)本例では、導電性部材からな
るセンサー部を設ける位置を、高比抵抗液体を取り出す
使用点端部とした点が実施例2と異なる。
(Embodiment 3) This embodiment is different from Embodiment 2 in that the position where the sensor portion made of a conductive member is provided is the end point at which the high resistivity liquid is taken out.

【0031】高比抵抗液体を取り出す使用点端部として
は、図4に示した構造体を用いた。図4の使用点端部で
は、SUS304からなるノズルがセンサー部401で
あり、該センサー部401には、超純水を導入する配管
部402と、窒素ガスを導入する配管部403を接続し
た。超純水と窒素ガスを同時に供給することによって、
センサー部401から噴霧状となった超純水を噴出させ
た。他の点は実施例2と同様とした。
The structure shown in FIG. 4 was used as the end of the point of use for taking out the high resistivity liquid. At the end of the point of use in FIG. 4, the nozzle made of SUS304 is the sensor unit 401, and a pipe unit 402 for introducing ultrapure water and a pipe unit 403 for introducing nitrogen gas were connected to the sensor unit 401. By supplying ultrapure water and nitrogen gas at the same time,
Ultrapure water in atomized form was ejected from the sensor unit 401. The other points were the same as in Example 2.

【0032】本例でも、実施例2と同様の結果が得られ
た。したがって、導電性部材からなるセンサー部を設け
る位置が、高比抵抗液体を取り出す使用点端部でもよい
ことから、センサー部の形状は任意に選択可能となり、
かつ、各使用点ごとに何時でも脱着可能となった。
Also in this example, the same results as in Example 2 were obtained. Therefore, since the position where the sensor section made of a conductive member is provided may be the end point of the point of use for taking out the high resistivity liquid, the shape of the sensor section can be arbitrarily selected,
Moreover, it is possible to attach and detach at any point of use.

【0033】(実施例4)本例では、実施例1にもすで
に示したように、センサー部と接地点との間に抵抗を配
置し、該抵抗にセンサー部を流れる高比抵抗液体の液質
に応じて発生する電荷を流し、該抵抗の両端にかかる電
圧値を測定した。
(Embodiment 4) In this embodiment, as already shown in Embodiment 1, a resistor is arranged between the sensor portion and the ground point, and a liquid of high resistivity liquid flowing in the sensor portion flows through the resistor. A charge generated according to the quality was flowed, and the voltage value applied across the resistance was measured.

【0034】本例では、従来の液質監視装置に比べ、安
価で容易な測定が可能となった。また、本例では、抵抗
の両端に発生する電圧を電圧計で測定する構成とした
が、センサー部と接地点との間に微小電流計を配置した
ものでも同様の結果が別途確認された。
In this example, compared to the conventional liquid quality monitoring device, inexpensive and easy measurement became possible. Further, in this example, the voltage generated across the resistance is measured by the voltmeter, but the same result was separately confirmed in the case where the minute ammeter is arranged between the sensor section and the grounding point.

【0035】(実施例5)本例では、センサー部の形状
を、該センサー内部を高比抵抗液体が通過するリング形
状とした点が実施例1と異なる。他の点は実施例1と同
様とした。
(Embodiment 5) This embodiment differs from Embodiment 1 in that the shape of the sensor portion is a ring shape through which the high resistivity liquid passes through the inside of the sensor. The other points were the same as in Example 1.

【0036】本例では、実施例1とほぼ同様の結果が得
られた。しかし、本例の場合、高比抵抗液体との接触面
積が大きいため、実施例1の形状よりも検出感度の安定
化が図れた。
In this example, almost the same results as in Example 1 were obtained. However, in the case of this example, since the contact area with the high-resistivity liquid was large, the detection sensitivity could be stabilized more than the shape of Example 1.

【0037】また、本例では、センサー部の形状をリン
グ形状としたが、リング形状内に導電性材料でメッシュ
を設けたものでも同様の結果が別途確認された。
Further, in this example, the shape of the sensor portion was a ring shape, but the same result was separately confirmed even when the mesh was provided with a conductive material in the ring shape.

【0038】(実施例6)本例では、前記使用点から噴
出された前記高比抵抗液体を、被洗浄物の表面を介さず
ファラディケージに接続された導電性電極に、直接的に
かけることにより該高比抵抗液体にのった電荷量を測定
した。図5は、本例における各測定機器の配置を示す概
略図である。
(Embodiment 6) In this embodiment, the high resistivity liquid ejected from the point of use is directly applied to the conductive electrode connected to the Faraday cage without passing through the surface of the object to be cleaned. The amount of charge on the high resistivity liquid was measured by. FIG. 5 is a schematic diagram showing the arrangement of the measuring devices in this example.

【0039】高比抵抗液体を取り出す使用点端部として
は、図4と同様にSUS304からなるノズルをセンサ
ー部501とした。該ノズルから噴出された超純水が照
射される位置に、導電性電極502を設けた。該導電性
電極502はファラデーゲージ503に接続されてお
り、噴出される超純水にのった電荷を、該導電性電極5
02を介して、ファラデーゲージ503で測定した。
As the end of the point of use for taking out the high specific resistance liquid, a nozzle made of SUS304 was used as the sensor section 501 as in FIG. The conductive electrode 502 was provided at a position where the ultrapure water ejected from the nozzle was irradiated. The conductive electrode 502 is connected to a Faraday gauge 503, and the charge on the jetted ultrapure water is transferred to the conductive electrode 5.
It was measured with a Faraday gauge 503 through 02.

【0040】図6は、使用点近傍に超純水を流さず2時
間封止した後、超純水を60秒間噴出させた時の噴出さ
れる超純水にのった電荷量を示した。超純水の流量は、
430cc/分とした。横軸は、超純水の噴出回数であ
る。
FIG. 6 shows the amount of charge on the jetted ultrapure water when the ultrapure water was spouted for 60 seconds after sealing for 2 hours without pouring the ultrapure water near the point of use. . The flow rate of ultrapure water is
It was set to 430 cc / min. The horizontal axis is the number of jets of ultrapure water.

【0041】図6から、噴出回数によって、噴出される
超純水にのった電荷量が変化することが分かった。特
に、噴出回数が4回以上になると、該電荷量は120n
C程度に安定した。また、この安定した電荷量と実施例
3で検出される電荷量とは極性が異なり、絶対値は±3
%のバラツキ内で同じであることも確かめられた。
From FIG. 6, it was found that the amount of charge on the jetted ultrapure water changes depending on the number of jets. In particular, when the number of ejections is four or more, the charge amount is 120n.
Stable to about C. Further, the stable charge amount and the charge amount detected in Example 3 have different polarities, and the absolute value is ± 3.
It was also confirmed to be the same within the variation of%.

【0042】一方、使用点近傍又は使用点端部に設けた
センサー部の結果(実施例2又は実施例3)では、噴出
回数が2回以上で超純水の純度は回復していた。
On the other hand, according to the results of the sensor section provided near the end of the use point or at the end of the use point (Example 2 or Example 3), the purity of the ultrapure water was recovered when the number of ejections was 2 or more.

【0043】この2つの結果から、本例の方がより多数
回噴出させないと超純水の純度が回復しないのは、該使
用点と該導電性電極との間にある空間内の汚れの影響と
判断した。この結果、本発明によって、該使用点と該導
電性電極との間にある空間内の清浄度管理が可能となっ
た。
From these two results, the purity of the ultrapure water cannot be recovered unless it is jetted more times in the present example, because of the influence of dirt in the space between the point of use and the conductive electrode. I decided. As a result, according to the present invention, it becomes possible to control the cleanliness in the space between the point of use and the conductive electrode.

【0044】(実施例7)本例では、前記使用点から噴
出された前記高比抵抗液体を、被洗浄物の表面を介して
ファラディケージに接続された導電性電極に、間接的に
かけることにより該高比抵抗液体にのった電荷量を測定
した。
(Embodiment 7) In this embodiment, the high resistivity liquid ejected from the point of use is indirectly applied to a conductive electrode connected to a Faraday cage through the surface of the object to be cleaned. The amount of charge on the high resistivity liquid was measured by.

【0045】図7は、本例における各測定機器の配置を
示す概略図である。高比抵抗液体を取り出す使用点端部
としては、図4と同様にSUS304からなるノズルを
センサー部701とした。該ノズルから噴出された超純
水が照射される位置に、被洗浄物としてガラスにAlを
成膜した基板704を設けた。該基板704は、真空チ
ャック機構を有する基板支持台705の上に載置され
た。該基板704を超純水で洗浄する際は、該基板支持
台705を自転させた。この自転によって、該基板70
4から飛散された超純水が照射される位置に、導電性電
極702を設けた。該導電性電極702はファラデーゲ
ージ703に接続されており、飛散される超純水にのっ
た電荷を、該導電性電極702を介して、ファラデーゲ
ージ703で測定した。
FIG. 7 is a schematic view showing the arrangement of the measuring instruments in this example. As the end of the point of use for taking out the high specific resistance liquid, a nozzle made of SUS304 was used as the sensor unit 701 as in FIG. A substrate 704 having Al film formed on glass as an object to be cleaned was provided at a position irradiated with the ultrapure water ejected from the nozzle. The substrate 704 was placed on a substrate support 705 having a vacuum chuck mechanism. When cleaning the substrate 704 with ultrapure water, the substrate support 705 was rotated. By this rotation, the substrate 70
A conductive electrode 702 was provided at a position where the ultrapure water scattered from No. 4 was irradiated. The conductive electrode 702 was connected to a Faraday gauge 703, and the electric charge on the scattered ultrapure water was measured by the Faraday gauge 703 via the conductive electrode 702.

【0046】図8は、使用点近傍に超純水を流さず2時
間封止した後、超純水を60秒間噴出させた時、基板か
ら飛散された超純水にのった電荷量を示した。超純水の
流量は、430cc/分とした。横軸は、超純水の噴出
回数である。
FIG. 8 shows the amount of electric charge on the ultrapure water scattered from the substrate when the ultrapure water was spouted for 60 seconds after sealing for 2 hours without flowing ultrapure water near the point of use. Indicated. The flow rate of ultrapure water was 430 cc / min. The horizontal axis is the number of jets of ultrapure water.

【0047】図8から、噴出回数によって、基板から飛
散された超純水にのった電荷量が変化することが分かっ
た。特に、噴出回数が10回以上になると、該電荷量は
120nC程度に安定した。この結果も、実施例6と同
様に実施例3で検出される電荷量と極性が異なり、絶対
値は±3%以内のバラツキで同じであった。
From FIG. 8, it was found that the amount of charge on the ultrapure water scattered from the substrate changed depending on the number of times of ejection. In particular, when the number of times of ejection was 10 or more, the charge amount became stable at about 120 nC. Also in this result, the amount of charge and the polarity detected in Example 3 were different, as in Example 6, and the absolute values were the same with variations within ± 3%.

【0048】一方、使用点から噴出された高比抵抗液体
を、被洗浄物の表面を介さずファラディケージに接続さ
れた導電性電極に、直接的にかけることにより該高比抵
抗液体にのった電荷量を測定した結果(実施例6)で
は、噴出回数が4回以上で超純水の純度は回復してい
た。
On the other hand, the high resistivity liquid ejected from the point of use is directly applied to the conductive electrode connected to the Faraday cage without passing through the surface of the object to be cleaned, so that the high resistivity liquid is deposited on the conductive electrode. As a result of measuring the amount of charge (Example 6), the purity of the ultrapure water was recovered when the number of ejections was 4 or more.

【0049】この2つの結果から、本例の方がより多数
回噴出させないと超純水の純度が回復しないのは、被洗
浄物である基板704の清浄度、すなわち洗浄された度
合いの影響と判断した。この結果、本発明によって、被
洗浄物の汚染度が異なっても、各被洗浄物ごとに最適な
洗浄条件等を順次決めることが可能となった。
From these two results, the reason why the purity of the ultrapure water does not recover unless it is jetted more times in the present example is that the cleanliness of the substrate 704 as the object to be cleaned, that is, the degree of cleaning. It was judged. As a result, according to the present invention, it becomes possible to sequentially determine the optimum cleaning conditions and the like for each object to be cleaned even if the degree of contamination of the object to be cleaned is different.

【0050】上述したとおり、実施例1〜7に示した高
比抵抗液体の液質監視方法は、既設の二次純水製造ライ
ンに容易に組み込むことが可能である。また、センサー
部の構造が単純で、かつ、汎用品の利用も可能であるこ
とから、従来より低コストな高比抵抗液体の液質監視装
置の提供が可能となった。
As described above, the method for monitoring the quality of high resistivity liquids shown in Examples 1 to 7 can be easily incorporated into an existing secondary pure water production line. Moreover, since the structure of the sensor unit is simple and a general-purpose product can be used, it is possible to provide a liquid quality monitoring device for a high-resistivity liquid at a lower cost than before.

【0051】さらに、前記帯電量又は前記電荷量の値が
変化した場合に、警告を発する警告手段を設けることに
よって、前記高比抵抗液体の液質監視をフィードバック
制御することができる高比抵抗液体の液質監視システム
の提供が可能となった。
Further, by providing a warning means for issuing a warning when the charge amount or the value of the charge amount changes, the high resistivity liquid capable of feedback controlling the liquid quality monitoring of the high resistivity liquid. It became possible to provide the liquid quality monitoring system of

【0052】[0052]

【発明の効果】【The invention's effect】

(請求項1)以上説明したように、請求項1に係る発明
によれば、多点測定を安価で、かつ容易に実現できる高
比抵抗液体の液質監視方法がえられる。
(Claim 1) As described above, according to the invention according to claim 1, there is provided a method for monitoring the quality of a high-resistivity liquid, which enables inexpensive and easy multipoint measurement.

【0053】(請求項2)請求項2に係る発明によれ
ば、高比抵抗液体を取り出す使用点近傍において検出可
能な高比抵抗液体の液質監視方法がえられる。
(Claim 2) According to the invention of claim 2, there is provided a method for monitoring the quality of a high resistivity liquid which can be detected near the point of use for taking out the high resistivity liquid.

【0054】(請求項3)請求項3に係る発明によれ
ば、センサー部の形状は任意に選択でき、かつ、センサ
ー部の脱着が何時でも可能な高比抵抗液体の液質監視方
法がえられる。
(Claim 3) According to the invention of claim 3, the shape of the sensor section can be arbitrarily selected, and the liquid quality monitoring method for a high resistivity liquid in which the sensor section can be detached at any time. To be

【0055】(請求項4)請求項4に係る発明によれ
ば、高比抵抗液体に影響を与えることのない高比抵抗液
体の液質監視方法がえられる。
(Claim 4) According to the invention of claim 4, there is provided a liquid quality monitoring method for a high resistivity liquid which does not affect the high resistivity liquid.

【0056】(請求項5)請求項5に係る発明によれ
ば、検出感度の安定な高比抵抗液体の液質監視方法がえ
られる。
(Claim 5) According to the invention of claim 5, there is provided a method for monitoring the quality of a high resistivity liquid with stable detection sensitivity.

【0057】(請求項6)請求項6に係る発明によれ
ば、広範囲な利用分野への適用ができる高比抵抗液体の
液質監視方法がえられる。
(Claim 6) According to the invention of claim 6, there is provided a liquid quality monitoring method for a high resistivity liquid which can be applied to a wide range of fields of use.

【0058】(請求項7)請求項7に係る発明によれ
ば、使用点と導電性電極との間にある空間内の清浄度管
理ができる高比抵抗液体の液質監視方法がえられる。
(Claim 7) According to the invention of claim 7, there is provided a liquid quality monitoring method for a high resistivity liquid capable of controlling cleanliness in a space between a point of use and a conductive electrode.

【0059】(請求項8)請求項8に係る発明によれ
ば、被洗浄物ごとに最適な洗浄条件等を順次決めること
ができる高比抵抗液体の液質監視方法がえられる。
(Invention 8) According to the invention of claim 8, there is provided a liquid quality monitoring method for a high-resistivity liquid capable of sequentially determining the optimum cleaning conditions and the like for each object to be cleaned.

【0060】(請求項9)請求項9に係る発明によれ
ば、汎用性が高く、かつ、安価な高比抵抗液体の液質監
視装置がえられる。
(Claim 9) According to the invention of claim 9, it is possible to obtain a liquid quality monitoring device for a high resistivity liquid which is highly versatile and inexpensive.

【0061】(請求項10)請求項10に係る発明によ
れば、信頼性の高い高比抵抗液体の液質監視システムが
えられる。
(Claim 10) According to the invention of claim 10, a highly reliable liquid quality monitoring system for a high resistivity liquid can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の二次純水製造ラインの一例を示す概略
図である。
FIG. 1 is a schematic view showing an example of a secondary pure water production line of the present invention.

【図2】図1の導電性部材からなるセンサー部(a地
点)付近の拡大図である。
FIG. 2 is an enlarged view of the vicinity of a sensor unit (point a) made of the conductive member of FIG.

【図3】実施例2に係る超純水の噴出回数と電圧値との
関係を示したグラフである。
FIG. 3 is a graph showing the relationship between the number of jets of ultrapure water and the voltage value according to the second embodiment.

【図4】実施例3に係る高比抵抗液体を取り出す使用点
端部の構造体を示した概略図である。
FIG. 4 is a schematic view showing a structure at a use point end portion for taking out a high resistivity liquid according to a third embodiment.

【図5】実施例6に係る各測定機器の配置を示す概略図
である。
FIG. 5 is a schematic diagram showing an arrangement of measuring devices according to a sixth embodiment.

【図6】実施例6に係る超純水の噴出回数と電荷量との
関係を示したグラフである。
FIG. 6 is a graph showing the relationship between the number of jets of ultrapure water and the amount of charge according to the sixth embodiment.

【図7】実施例7に係る各測定機器の配置を示す概略図
である。
FIG. 7 is a schematic diagram showing an arrangement of measuring devices according to a seventh embodiment.

【図8】実施例7に係る超純水の噴出回数と電荷量との
関係を示したグラフである。
FIG. 8 is a graph showing the relationship between the number of jets of ultrapure water and the amount of charge according to the seventh embodiment.

【符号の説明】[Explanation of symbols]

101 一次純水保管容器、 102 ポンプ、 103 熱交換器、 104 低圧UV酸化器、 105 アニオンデミナー、 106 デミナー、 107 UF、 108 分岐ポイント、 109 デベロッパ、 110 配管部、 111、401、501、701 センサー部、 112 抵抗、 402 超純水を導入する配管部、 403 窒素ガスを導入する配管部、 502、702 導電性電極、 503、703 ファラデーゲージ、 704 基板、 705 基板支持台。 101 Primary Pure Water Storage Container, 102 Pump, 103 Heat Exchanger, 104 Low Pressure UV Oxidizer, 105 Anion Deminer, 106 Deminer, 107 UF, 108 Branch Point, 109 Developer, 110 Piping Section, 111, 401, 501, 701 Sensor section, 112 resistance, 402 piping section for introducing ultrapure water, 403 piping section for introducing nitrogen gas, 502, 702 conductive electrode, 503, 703 Faraday gauge, 704 substrate, 705 substrate support.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 高比抵抗液体を流すために用いる配管部
において、該高比抵抗液体が接触する該配管部の一部
が、少なくとも該配管部と電気的に絶縁された導電性部
材から構成されており、該導電性部材からなるセンサー
部の帯電量を検出することを特徴とする高比抵抗液体の
液質監視方法。
1. In a pipe portion used for flowing a high resistivity liquid, at least a part of the pipe portion with which the high resistivity liquid comes into contact is made of a conductive member electrically insulated from the pipe portion. A method for monitoring the liquid quality of a high-resistivity liquid, which comprises detecting the charge amount of a sensor section made of the conductive member.
【請求項2】 高比抵抗液体を取り出す使用点近傍に、
前記センサー部を設けることを特徴とする請求項1に記
載の高比抵抗液体の液質監視方法。
2. Near the point of use where the high resistivity liquid is taken out,
The method for monitoring the quality of a high resistivity liquid according to claim 1, wherein the sensor unit is provided.
【請求項3】 高比抵抗液体を取り出す使用点端部に、
前記センサー部を設けることを特徴とする請求項1に記
載の高比抵抗液体の液質監視方法。
3. At the end of the point of use where the high resistivity liquid is taken out,
The method for monitoring the quality of a high resistivity liquid according to claim 1, wherein the sensor unit is provided.
【請求項4】 前記センサー部と接地点との電荷移動量
を測定することにより帯電量を検出することを特徴とす
る請求項1乃至3のいずれか1項に記載の高比抵抗液体
の液質監視方法。
4. The liquid of high specific resistance liquid according to claim 1, wherein the charge amount is detected by measuring a charge transfer amount between the sensor unit and a ground point. Quality monitoring method.
【請求項5】 前記センサー部は、該センサー内部を高
比抵抗液体が通過するリング形状であることを特徴とす
る請求項1乃至4のいずれか1項に記載の高比抵抗液体
の液質監視方法。
5. The liquid quality of the high resistivity liquid according to claim 1, wherein the sensor portion has a ring shape through which the high resistivity liquid passes through the inside of the sensor. Monitoring method.
【請求項6】 高比抵抗液体は、純水又は重水であるこ
とを特徴とする請求項1乃至5のいずれか1項に記載の
高比抵抗液体の液質監視方法。
6. The liquid quality monitoring method for a high specific resistance liquid according to claim 1, wherein the high specific resistance liquid is pure water or heavy water.
【請求項7】 前記使用点から噴出された前記高比抵抗
液体を、被洗浄物の表面を介さずファラディケージに接
続された導電性電極に、直接的にかけることにより該高
比抵抗液体にのった電荷量を測定することを特徴とする
請求項1乃至6のいずれか1項に記載の高比抵抗液体の
液質監視方法。
7. The high resistivity liquid is sprayed from the point of use directly onto a conductive electrode connected to a Faraday cage without passing through the surface of the object to be washed to thereby obtain the high resistivity liquid. 7. The method for monitoring the quality of a high resistivity liquid according to claim 1, wherein the amount of accumulated charge is measured.
【請求項8】 前記使用点から噴出された前記高比抵抗
液体を、被洗浄物の表面を介してファラディケージに接
続された導電性電極に、間接的にかけることにより該高
比抵抗液体にのった電荷量を測定することを特徴とする
請求項1乃至7のいずれか1項に記載の高比抵抗液体の
液質監視方法。
8. The high specific resistance liquid is obtained by indirectly applying the high specific resistance liquid ejected from the point of use to a conductive electrode connected to a Faraday cage through the surface of an object to be cleaned. The method for monitoring the liquid quality of a high-resistivity liquid according to any one of claims 1 to 7, wherein the amount of accumulated charge is measured.
【請求項9】 請求項1乃至8のいずれか1項に記載の
高比抵抗液体の液質監視方法を有することを特徴とする
高比抵抗液体の液質監視装置。
9. A liquid quality monitoring apparatus for a high resistivity liquid, comprising the liquid quality monitoring method for a high resistivity liquid according to claim 1.
【請求項10】 前記帯電量又は前記電荷量の値が変化
した場合に、警告を発する警告手段を有することを特徴
とする請求項1乃至9のいずれか1項に記載の高比抵抗
液体の液質監視システム。
10. The high specific resistance liquid according to claim 1, further comprising a warning unit for issuing a warning when the charge amount or the value of the charge amount changes. Liquid quality monitoring system.
JP28383094A 1994-11-17 1994-11-17 High resistivity liquid supply device Expired - Fee Related JP2721313B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP28383094A JP2721313B2 (en) 1994-11-17 1994-11-17 High resistivity liquid supply device
KR1019950041590A KR0157676B1 (en) 1994-11-17 1995-11-16 Liquid quality monitoring method for high specific resistance liquid, liquid quality monitor thereof and liquid quality monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28383094A JP2721313B2 (en) 1994-11-17 1994-11-17 High resistivity liquid supply device

Publications (2)

Publication Number Publication Date
JPH08145947A true JPH08145947A (en) 1996-06-07
JP2721313B2 JP2721313B2 (en) 1998-03-04

Family

ID=17670715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28383094A Expired - Fee Related JP2721313B2 (en) 1994-11-17 1994-11-17 High resistivity liquid supply device

Country Status (2)

Country Link
JP (1) JP2721313B2 (en)
KR (1) KR0157676B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022205432A1 (en) 2022-05-30 2023-11-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Device for determining at least one parameter of a liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022205432A1 (en) 2022-05-30 2023-11-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Device for determining at least one parameter of a liquid

Also Published As

Publication number Publication date
JP2721313B2 (en) 1998-03-04
KR0157676B1 (en) 1999-03-30

Similar Documents

Publication Publication Date Title
JP2010002417A (en) Method and device for measuring conductivity of highly pure or ultrapure liquid
CN101595238A (en) Detect the method and apparatus of the faulty condition of plasma processing reactor
JP2012234817A (en) Plasma probe and method for plasma diagnosis
TW201720528A (en) Treating solution supply device and its applied method and memory media provided through the conductive plate (74) and the covering electric conductor (76) of the support body (75)
KR101494462B1 (en) Washing method, washing apparatus for polycrystalline silicon and method of producing polycrystalline silicon
US4362994A (en) Self alarming five single electrodes conductivity cell
US11680972B2 (en) Method of monitoring static charge
JP2721313B2 (en) High resistivity liquid supply device
CN104162368A (en) Method and apparatus for detecting membrane damage based on electrochemistry and magnetic bead technology
US12020962B2 (en) Measuring system and method of measuring static charges
CN111103097A (en) Water leakage detection equipment and exposure machine with same
US11555730B2 (en) In-situ method and apparatus for measuring fluid resistivity
US6428681B1 (en) System and method for reversing electrolyte flow during an electropolishing operation
US20060103394A1 (en) Resistivity detector and resistivity detection apparatus
US20160139610A1 (en) Apparatus and method for metals free reduction and control of resistivity of deionized water
US20190204255A1 (en) Method and device for detection of metal and non-metal particle concentration of electrical discharge machining liquid
JPS5939030A (en) Pure-water washer
JPH0942600A (en) Chemical supply device
US11668639B2 (en) Method for processing a substrate by using fluid flowing through a particle detector
CN112017998B (en) Carbon dioxide supply system and semiconductor cleaning system with same
JP2002083853A (en) Evaluation method of semiconductor wafer and its apparatus
JP7390217B2 (en) Substrate processing equipment and conductive piping deterioration degree determination method
JPH11120910A (en) Washing device and washing method
JPH10199666A (en) Direct heating heater with liquid leakage sensor
KR200176966Y1 (en) Liquid coating device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20071121

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20081121

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees