JPH08144079A - Removal of residual voltage from water electrolytic cell and device therefor - Google Patents

Removal of residual voltage from water electrolytic cell and device therefor

Info

Publication number
JPH08144079A
JPH08144079A JP6293104A JP29310494A JPH08144079A JP H08144079 A JPH08144079 A JP H08144079A JP 6293104 A JP6293104 A JP 6293104A JP 29310494 A JP29310494 A JP 29310494A JP H08144079 A JPH08144079 A JP H08144079A
Authority
JP
Japan
Prior art keywords
pure water
electrolysis cell
anode
water
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6293104A
Other languages
Japanese (ja)
Other versions
JP2851544B2 (en
Inventor
Mamoru Nagao
衛 長尾
Takashi Sasaki
隆 佐々木
Seiji Hirai
清司 平井
Shinichi Yasui
信一 安井
Hiroko Kobayashi
宏子 小林
Michiyuki Harada
宙幸 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Shinko Pantec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Pantec Co Ltd filed Critical Shinko Pantec Co Ltd
Priority to JP6293104A priority Critical patent/JP2851544B2/en
Publication of JPH08144079A publication Critical patent/JPH08144079A/en
Application granted granted Critical
Publication of JP2851544B2 publication Critical patent/JP2851544B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

PURPOSE: To prevent a high voltage from remaining in a water electrolytic cell even when many cells are used by continuously supplying pure water on the anode and cathode sides after the power supply to the cell is stopped and removing the oxygen and hydrogen remaining respectively on the anode and cathode sides. CONSTITUTION: After the power supply to a water electrolytic cell 10 is stopped, a pure water feed valve 2 and flow control valves 3a are kept open to continuously supply pure water on the anode side of the cells 10 through water feed lines 3 and 3'. Meanwhile, flow control valves 4a are opened to continuously supply pure water on the cathode side of the cells 10 through pure water feed lines 4. In this case, the waste water valves 50 and 51 of the waste water lines connected to gas-liq. separators 20 and 30 are opened. Consequently, gaseous oxygen and hydrogen remaining on the anode and cathode sides of the cell 10 are discharged outside the system from the cell 10 respectively through the separators 20 and 30 and the waste water valves 50 and 51. Accordingly, the surroundings are not endangered, a current does not flow through a solid high molecular electrolyte membrane in the opposite direction to normal, and the membrane is not adversely affected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体の製造工程の際
の酸化被膜生成処理及び各種熱処理工程、ならびに、原
子力発電装置の冷却水配管の腐食防止用など各種工業分
野において必要とされる高純度の酸素ガス及び水素ガス
を製造するための酸素・水素発生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applicable to various industrial fields such as an oxide film forming process and various heat treatment processes in a semiconductor manufacturing process, and corrosion prevention of cooling water piping of a nuclear power plant. The present invention relates to an oxygen / hydrogen generator for producing pure oxygen gas and hydrogen gas.

【0002】より詳細には、酸素・水素発生装置の通電
停止後に、水電解セルに残留する電圧を除去するための
方法、及びそのための装置に関する。
More specifically, the present invention relates to a method for removing a voltage remaining in a water electrolysis cell after the deenergization of an oxygen / hydrogen generator, and an apparatus therefor.

【0003】[0003]

【従来の技術】従来より、前述した各種工業分野に使用
する酸素ガス及び水素ガスは、水素ガスについては、食
塩電解や石油精製の際に発生する副成ガスを、触媒燃焼
精製法などを用いてある程度の純度の水素ガスに精製し
た後、ガスボンベに高圧にして充填して、使用者に供給
され使用されている。
2. Description of the Related Art Conventionally, the oxygen gas and hydrogen gas used in the various industrial fields mentioned above have been produced by using a by-product gas generated during salt electrolysis or petroleum refining by a catalytic combustion refining method or the like. After being purified to a certain degree of purity of hydrogen gas, the gas cylinder is filled under high pressure and supplied to the user for use.

【0004】一方、酸素ガスについては、空気をジュー
ルトムソン法により液化し、深冷分離法により沸点差を
利用して分離し、ある程度の高純度の酸素ガスが作ら
れ、これを液体酸素の状態で工場のコールドエバポレー
タ(酸素ガス発生装置)に供給し、 これを気化してガス
に使用したり、ガスボンベに高圧にして充填して、使用
者に供給され使用されている。
On the other hand, with respect to oxygen gas, air is liquefied by the Joule-Thomson method and separated by the cryogenic separation method by utilizing the boiling point difference to produce oxygen gas with a certain degree of purity, which is in the state of liquid oxygen. It is supplied to the cold evaporator (oxygen gas generator) of the factory in order to be vaporized and used as gas, or it is supplied to the user after being filled into a gas cylinder at high pressure and filled.

【0005】しかしながら、このように供給される酸素
及び水素等のガスには、窒素、炭酸ガス、一酸化炭素、
炭化水素、水分等の不純物も含まれており、これらは完
全には除去されず、そのためにさらに不純物を除去・精
製するため、吸着材による吸着処理やパラジューム膜透
過法等のような高度の純化処理法により、個別に純化処
理して精製して使用しているのが実状である。ところ
が、このような純化処理法によっても除去が困難な窒素
等の不純物があり、例えば、半導体分野などにおいて
は、昨今の素子の高純度化においては、このような残存
不純物が問題となっていた。
However, the gases such as oxygen and hydrogen supplied in this manner include nitrogen, carbon dioxide, carbon monoxide,
Impurities such as hydrocarbons and water are also contained, and they are not completely removed.For that reason, in order to further remove and purify the impurities, high-level purification such as adsorption treatment with an adsorbent or palladium membrane permeation method is performed. According to the treatment method, it is actually used after being purified and individually purified. However, there are impurities such as nitrogen that are difficult to remove even by such a purification treatment method. For example, in the field of semiconductors and the like, such residual impurities pose a problem in the recent purification of elements. .

【0006】又、酸素や水素は、ボンベに高圧に充填し
て供給されたり、液体状態で保管されており、輸送や貯
蔵時、地震等の非常時に、ガス漏洩して引火、爆発する
おそれもあり、安全の面でも問題となっていた。
Further, oxygen and hydrogen are filled in a cylinder at a high pressure and supplied, or are stored in a liquid state, and there is a possibility that gas may leak and cause ignition or explosion during transportation, storage, or an emergency such as an earthquake. There was also a problem in terms of safety.

【0007】このような、従来における問題を解決する
ために、本発明者等は、特開平5-287570号において、図
2 に示したように、ポーラスな固体電解質、例えば、カ
チオン交換膜(フッ素樹脂系スルフォン酸カチオン交換
膜、例えば、デュポン社製「ナフィオン117」)の両
面に白金属族金属等からなる多孔質の陽極及び陰極を接
合した構造の固体高分子電解質膜を隔膜として用い、陽
極室と陰極室とに分離した構造の水電解セルを用いて、
陽極室に純水を供給しながら電気分解して、陽極室から
酸素ガスを、陰極室から水素ガスをそれぞれ発生するよ
うに構成した水電解セルを用いた酸素・水素発生装置を
提案した。
In order to solve such a conventional problem, the inventors of the present invention described in Japanese Patent Laid-Open No. 5-287570
As shown in 2, a porous solid electrolyte, for example, a cation exchange membrane (a fluororesin-based sulfonic acid cation exchange membrane, for example, “Nafion 117” manufactured by DuPont Co., Ltd.) is formed of a porous metal such as a white metal group metal on both sides. Using a solid polymer electrolyte membrane having a structure in which an anode and a cathode are joined as a diaphragm, using a water electrolysis cell having a structure separated into an anode chamber and a cathode chamber,
We have proposed an oxygen / hydrogen generator using a water electrolysis cell configured to generate oxygen gas from the anode chamber and hydrogen gas from the cathode chamber by electrolyzing while supplying pure water to the anode chamber.

【0008】[0008]

【発明が解決しようとする課題】ところで、水電解セル
に用いている固体高分子電解質膜の膜数が少なく、水電
解セルに印加する電圧が比較的低い場合には、水電解セ
ルへの通電停止後には、水電解セルに残留する電圧も低
く問題にならないが、大容量のガスを発生させるため、
固体高分子電解質膜を、直列に多数並設した構成の水電
解セルを用いられる場合には、下記のような問題があっ
た。
When the number of solid polymer electrolyte membranes used in the water electrolysis cell is small and the voltage applied to the water electrolysis cell is relatively low, the water electrolysis cell is energized. After the shutdown, the voltage remaining in the water electrolysis cell is low and does not pose a problem, but a large volume of gas is generated,
When a water electrolysis cell having a structure in which a large number of solid polymer electrolyte membranes are arranged in parallel is used, there are the following problems.

【0009】すなわち、この場合、水電解セルに印加す
る電圧が高いために、通電停止後にも、水電解セルには
高電圧が残留しており(印加電圧の60%程度の電圧)、
例えば、通電停止後に3Vの電圧が残留している場合、電
極板が短絡したとき、約12A程度の電流が流れるおそれ
があるため、周囲に危険を及ぼすだけでなく、固体高分
子電解質膜に、本来とは逆向きの電流が流れることとな
るために、固体高分子電解質膜に対して悪影響を及ぼす
こととなる。
That is, in this case, since the voltage applied to the water electrolysis cell is high, a high voltage remains in the water electrolysis cell even after the energization is stopped (a voltage of about 60% of the applied voltage).
For example, if the voltage of 3V remains after the stop of energization, when the electrode plate is short-circuited, a current of about 12A may flow, which not only poses a danger to the surroundings, but also to the solid polymer electrolyte membrane, Since the electric current flows in the opposite direction to the original one, the solid polymer electrolyte membrane is adversely affected.

【0010】すなわち、固体高分子電解質膜の陽極に使
用している白金電極では、陽極金属の酸化
That is, in the platinum electrode used for the anode of the solid polymer electrolyte membrane, the anode metal is oxidized.

【0011】[0011]

【化1】 Embedded image

【0012】若しくは、低級酸化物の酸化Alternatively, oxidation of lower oxide

【0013】[0013]

【化2】 Embedded image

【0014】の反応が進み、高級酸化物は、自ら分解し
て低級酸化物が再生成され、
As the reaction proceeds, the higher oxide is decomposed by itself to regenerate the lower oxide,

【0015】[0015]

【化3】 Embedded image

【0016】PtO n →PtO m →PtO n の変化を繰り返す
こととなる。
The change of PtO n → PtO m → PtO n is repeated.

【0017】ところが、前述したように逆向きに電流が
流れると、上記の反応の逆が生じて、陽極が陰極になっ
て還元され、永続的な白金酸化物が表面にできないため
に、白金が浸食されることになり、固体高分子電解質膜
が破損し、本来の機能を果たさなくなるため、結果とし
て、固体高分子電解質膜の寿命を縮めることになり好ま
しくなかった。
However, as described above, when a current flows in the opposite direction, the above reaction is reversed, and the anode serves as a cathode and is reduced, so that permanent platinum oxide cannot be formed on the surface. Since the solid polymer electrolyte membrane is eroded and the solid polymer electrolyte membrane is damaged and the original function is not fulfilled, as a result, the life of the solid polymer electrolyte membrane is shortened, which is not preferable.

【0018】[0018]

【課題を解決するための手段】本発明は、このような現
状に鑑みて、大容量のガスを発生させるため、固体高分
子電解質膜を、直列に多数並設した構成の水電解セルを
用いた場合にも、通電停止後に、水電解セルに高電圧が
残留することなく、周囲に危険を及ぼすことなく、固体
高分子電解質膜に、本来とは逆向きの電流が流れること
なく、固体高分子電解質膜に対して悪影響を及ぼすこと
のない酸素・水素発生装置及びその水電解セルに残留す
る電圧を除去するための方法を提供することを目的とす
る。
In view of the above situation, the present invention uses a water electrolysis cell in which a large number of solid polymer electrolyte membranes are arranged in parallel in order to generate a large amount of gas. In the case where the power supply was stopped, the high voltage did not remain in the water electrolysis cell, the surroundings did not pose a danger, the solid polymer electrolyte membrane did not flow the current in the opposite direction, and An object of the present invention is to provide an oxygen / hydrogen generator that does not adversely affect the molecular electrolyte membrane and a method for removing the voltage remaining in the water electrolysis cell.

【0019】ところで、水電解セルにおいては、水を陽
極側に供給しながら電気分解することにより、図2 に示
したように、陽極側では、2H2 O →O 2 +4H+ +4e-
ような反応が起こり酸素ガスが発生し、陰極側では、4H
+ +4e- →2H2 の反応が起こり水素ガスが発生するもの
である。従って、通電停止後にも、陽極側に酸素が残留
し、陰極側に水素が残留することとなるために、水電解
セルに電圧、電流が残存することとなる。
By the way, in a water electrolysis cell, by electrolyzing while supplying water to the anode side, as shown in FIG. 2, on the anode side, such as 2H 2 O → O 2 + 4H + + 4e A reaction occurs and oxygen gas is generated.
+ + 4e - → the reaction of 2H 2 is what happens hydrogen gas is generated. Therefore, even after the energization is stopped, oxygen remains on the anode side and hydrogen remains on the cathode side, so that voltage and current remain in the water electrolysis cell.

【0020】本発明者等は、このような水電解セルの陽
極側に残留する酸素、及び陰極側に残留する水素を、純
水を陽極側及び陰極側に供給し続けることにより、残存
酸素及び水素を除去することにより、容易に水電解セル
の残留電圧を除去可能であることを知見して、本発明を
完成するに至ったものである。
The inventors of the present invention continue to supply pure water to the anode side and the cathode side of oxygen remaining on the anode side and hydrogen remaining on the cathode side of such a water electrolysis cell. The inventors have found that the residual voltage of the water electrolysis cell can be easily removed by removing hydrogen, and have completed the present invention.

【0021】すなわち、本発明は、前述したような従来
技術における課題及び目的を達成するために発明なされ
たものであって、その構成要旨とするところは、下記の
(1)〜(2)である。
That is, the present invention has been made in order to achieve the problems and objects in the prior art as described above, and the gist of the constitution is the following (1) to (2). is there.

【0022】(1)電解質膜を隔膜として用いて、陽極
側と陰極側とに分離して、陽極側に純水を供給しながら
純水を電気分解して、陽極側から酸素ガスを、陰極側か
ら水素ガスをそれぞれ発生するように構成した水電解セ
ルの残留電圧除去方法であって、前記水電解セルの通電
停止後に、陽極側及び陰極側に純水を供給し続けて、陽
極側に残留する酸素、及び陰極側に残留する水素を水電
解セルより除去することによって、水電解セルの残留電
圧を除去することを特徴とする水電解セルの残留電圧除
去方法。
(1) Using an electrolyte membrane as a diaphragm, the anode side and the cathode side are separated, and pure water is electrolyzed while supplying pure water to the anode side, and oxygen gas is supplied from the anode side to the cathode side. A method for removing a residual voltage of a water electrolysis cell configured to generate hydrogen gas from the respective sides, after stopping the energization of the water electrolysis cell, continuously supplying pure water to the anode side and the cathode side, to the anode side. A residual voltage removing method for a water electrolysis cell, comprising removing residual oxygen and hydrogen remaining on the cathode side from the water electrolysis cell to remove the residual voltage of the water electrolysis cell.

【0023】(2)純水供給装置と、電解質膜を隔膜と
して用いて、陽極側と陰極側とに分離して、前記純水供
給装置から陽極側純水供給経路を介して、純水を陽極側
に供給しながら純水を電気分解して、陽極側から酸素ガ
スを、陰極側から水素ガスをそれぞれ発生するように構
成した水電解セルとを備えた酸素・水素発生装置におい
て、前記純水供給装置から水電解セルの陰極側に至る陰
極側純水供給経路を配設して、水電解セルの通電停止後
に、陽極側純水供給経路から陽極側に、及び陰極側純水
供給経路から陰極側に、それぞれ純水を供給し続けて、
陽極側に残留する酸素、及び陰極側に残留する水素を水
電解セルより除去することによって、水電解セルの残留
電圧を除去可能に構成したことを特徴とする酸素・水素
発生装置。
(2) A pure water supply device and an electrolyte membrane are used as diaphragms to separate the anode side and the cathode side, and pure water is supplied from the pure water supply device through the anode side pure water supply path. Pure water is electrolyzed while being supplied to the anode side to generate oxygen gas from the anode side, and a water electrolysis cell configured to generate hydrogen gas from the cathode side. A cathode side deionized water supply path is provided from the water supply device to the cathode side of the water electrolysis cell, and after deenergization of the water electrolysis cell, from the anode side deionized water supply path to the anode side, and the cathode side deionized water supply path. From the cathode side to the cathode side,
An oxygen / hydrogen generator characterized in that the residual voltage of the water electrolysis cell can be removed by removing oxygen remaining on the anode side and hydrogen remaining on the cathode side from the water electrolysis cell.

【0024】[0024]

【実施例】以下、本発明の実施例を図面に基づいてより
詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0025】図1は、本発明の酸素・水素発生装置の一
実施例の全体構成を示す図であり、1は全体で、本発明
の酸素・水素発生装置を示している。図3 は、その水電
解セルの部分を拡大した状態を示す概略図である。
FIG. 1 is a diagram showing the overall construction of an embodiment of the oxygen / hydrogen generator of the present invention. Reference numeral 1 denotes the overall oxygen / hydrogen generator of the present invention. FIG. 3 is a schematic view showing an enlarged state of the water electrolysis cell part.

【0026】本酸素・水素発生装置1では、純水供給系
(図示せず)が、純水供給バルブ2、純水供給経路3 を
介して、純水供給経路3 より分岐した流量調整バルブ3
a、 3a、陽極純水供給経路3'、 3'を介して、複数の水電
解セル10、 10の陽極側に接続されている。一方、陽極純
水供給経路3'、 3'には、それぞれ流量調節バルブ4a、 4a
を有するバイパスされた陰極純水供給経路4 、 4 が配設
され、水電解セル10、 10の陰極側に接続されている。
In the present oxygen / hydrogen generator 1, a pure water supply system (not shown) has a flow rate adjusting valve 3 branched from the pure water supply path 3 via the pure water supply valve 2 and the pure water supply path 3.
It is connected to the anode side of a plurality of water electrolysis cells 10, 10 via a, 3a and anode pure water supply paths 3 ', 3'. On the other hand, in the anode pure water supply paths 3'and 3 ', flow rate control valves 4a and 4a, respectively.
Bypassed cathode pure water supply paths 4, 4 are provided and are connected to the cathode side of the water electrolysis cells 10, 10.

【0027】そして、この水電解セル10、 10では、その
陽極側に供給された純水を電気分解して、陽極室から酸
素ガスを、陰極室から水素ガスをそれぞれ発生するよう
に、例えば、図2に示したような構造を有するものであ
る。具体的には、ポーラスな固体電解質28、例えば、カ
チオン交換膜(フッ素樹脂系スルフォン酸カチオン交換
膜、例えば、デュポン社製「ナフィオン117 」)の両面
に白金族金属等からなる多孔質の陽極22及び陰極23を化
学的に無電解メッキで接合した構造の固体高分子電解質
膜21を隔膜として用いた陽極室24と陰極室25とに分離し
た構造の水電解セル10によって、陽極室24に純水を供給
しながら電気分解して、陽極室24から酸素ガスを、陰極
室25から水素ガスをそれぞれ発生するように構成したも
のである。
In the water electrolysis cells 10, 10, the pure water supplied to the anode side is electrolyzed to generate oxygen gas from the anode chamber and hydrogen gas from the cathode chamber. It has a structure as shown in FIG. Specifically, a porous solid electrolyte 28, for example, a cation exchange membrane (a fluororesin sulfonic acid cation exchange membrane, for example, “Nafion 117” manufactured by DuPont) “a porous anode 22 made of a platinum group metal or the like is provided on both sides. And the water electrolysis cell 10 having a structure in which the cathode 23 and the solid polymer electrolyte membrane 21 having a structure in which the cathode 23 is chemically bonded by electroless plating are separated into the anode chamber 24 and the cathode chamber 25. It is configured to generate oxygen gas from the anode chamber 24 and hydrogen gas from the cathode chamber 25 by electrolyzing while supplying water.

【0028】なお、この水電解セル10は、図3に示した
ように、陽極室24には、純水供給口24a と酸素ガス排出
口24b が、陰極室25には、純水供給口25a と水素ガス排
出口25b が設けられた構造をしている。
As shown in FIG. 3, this water electrolysis cell 10 has a pure water supply port 24a and an oxygen gas discharge port 24b in the anode chamber 24 and a pure water supply port 25a in the cathode chamber 25. And a hydrogen gas discharge port 25b are provided.

【0029】この水電解セル10の陽極側には、水電解セ
ル10の陽極室で発生した酸素を気液分離するための酸素
ガス用気液分離装置20が接続される一方、水電解セル10
の陰極側には、水電解セル10の陰極室で発生した水素を
気液分離するための水素ガス用気液分離装置30が接続さ
れている。
On the anode side of this water electrolysis cell 10 is connected a gas-liquid separator 20 for oxygen gas for gas-liquid separation of oxygen generated in the anode chamber of the water electrolysis cell 10, while the water electrolysis cell 10 is connected.
A gas-liquid separator 30 for hydrogen gas for gas-liquid separating hydrogen generated in the cathode chamber of the water electrolysis cell 10 is connected to the cathode side of the.

【0030】そして、この両気液分離装置20,30 におい
て気液分離された酸素ガス及び水素ガスはそれぞれ、例
えば、モレキュラーシーブなどから構成される除湿装置
40、41に導入され、ガスに含まれる水分がそれぞれ除去
された後、酸素ガス及び水素ガス利用施設(図示せず)
に適宜供給されるようになっている。なお、両気液分離
装置20,30 において気液分離された水分は、それぞれ排
水バルブ50、 51を介して、系外に適宜排水されるように
なっている。なお、図1中、P は圧力センサー、LCはレ
ベル制御装置を示している。
The oxygen gas and the hydrogen gas, which have been separated into gas and liquid by the two gas-liquid separation devices 20 and 30, respectively, are, for example, dehumidifiers composed of molecular sieves.
Oxygen gas and hydrogen gas utilization facility (not shown) after being introduced into 40 and 41 and removing water contained in the gas, respectively.
It will be supplied as needed. The water separated in the gas-liquid separators 20 and 30 is appropriately drained out of the system via drain valves 50 and 51, respectively. In FIG. 1, P is a pressure sensor and LC is a level control device.

【0031】このように構成される本発明の酸素・水素
発生装置の運転方法について、以下に説明する。
A method of operating the oxygen / hydrogen generator of the present invention thus constructed will be described below.

【0032】先ず、酸素・水素発生装置1 の通常の運転
時においては、純水供給バルブ2 を開放して、例えば、
逆浸透膜装置などから構成される純水供給系より純水
が、純水供給経路3 に供給するとともに、流量調整バル
ブ3a、 3aを開放して、純水供給経路3 より分岐した陽極
純水供給経路3'、 3'を介して、複数の水電解セル10、 10
の陽極側に供給される。そして、この水電解セル10、 10
では、その陽極側に供給された純水が電気分解されて、
陽極室から酸素ガスを、陰極室から水素ガスがそれぞれ
発生される。なお、この際、流量調節バルブ4a、 4aは閉
じられており、陰極純水供給経路4 、 4 を介して、水電
解セル10、 10の陰極側には純水が供給されないようにな
っている。
First, during normal operation of the oxygen / hydrogen generator 1, the pure water supply valve 2 is opened to
Pure water is supplied to the pure water supply path 3 from the pure water supply system composed of a reverse osmosis membrane device, and the flow rate control valves 3a, 3a are opened to branch the pure water supply path 3 from the anode pure water. A plurality of water electrolysis cells 10, 10 are provided via the supply paths 3 ', 3'.
Is supplied to the anode side of. And this water electrolysis cell 10, 10
Then, the pure water supplied to the anode side is electrolyzed,
Oxygen gas is generated from the anode chamber and hydrogen gas is generated from the cathode chamber. At this time, the flow rate control valves 4a, 4a are closed so that pure water is not supplied to the cathode side of the water electrolysis cells 10, 10 via the cathode pure water supply paths 4, 4. .

【0033】そして、水電解セル10の陽極室で発生した
水を含んだ酸素ガスは、経路20a を介して、酸素ガス用
気液分離装置20に供給され、該気液分離装置20内で気液
分離される。気液分離された酸素ガスは、経路40a を介
して、除湿装置40に導入され、ガスに含まれる水分がそ
れぞれ除去された後、酸素ガス利用施設に適宜供給され
る。一方、気液分離装置20において気液分離された水分
は、気液分離タンクに付設された光センサーなどの液面
レベル制御装置(LC )によって、ある一定の液面レベル
に達した際に、排水バルブ50が開放されて、系外に適宜
排水されるようになっている。
Then, the oxygen gas containing water generated in the anode chamber of the water electrolysis cell 10 is supplied to the gas-liquid separator 20 for oxygen gas through the path 20a, and the gas is separated in the gas-liquid separator 20. Liquid is separated. The gas-liquid separated oxygen gas is introduced into the dehumidifier 40 via the path 40a to remove water contained in the gas, and then appropriately supplied to the oxygen gas utilization facility. On the other hand, the water that has been gas-liquid separated in the gas-liquid separation device 20, when the liquid level control device (LC) such as an optical sensor attached to the gas-liquid separation tank reaches a certain level, The drain valve 50 is opened so that the drain can be appropriately discharged to the outside of the system.

【0034】一方、水電解セル10の陰極室で発生した水
を含んだ水素ガスも同様にして、経路30a を介して、水
素ガス用気液分離装置30に供給され、該気液分離装置30
内で気液分離される。気液分離された水素ガスは、経路
41a を介して、除湿装置41に導入され、ガスに含まれる
水分がそれぞれ除去された後、水素ガス利用施設に適宜
供給される。一方、気液分離装置30において気液分離さ
れた水分は、気液分離タンクに付設された光センサーな
どの液面レベル制御装置(LC )によって、ある一定の液
面レベルに達した際に、排水バルブ51が開放されて、系
外に適宜排水されるようになっている。
On the other hand, hydrogen gas containing water generated in the cathode chamber of the water electrolysis cell 10 is similarly supplied to the gas-liquid separator 30 for hydrogen gas through the path 30a, and the gas-liquid separator 30 is supplied.
Gas-liquid separation inside. Hydrogen gas separated into gas and liquid
After being introduced into the dehumidifying device 41 via 41a to remove water contained in the gas, the water is appropriately supplied to the hydrogen gas utilization facility. On the other hand, the water that has been gas-liquid separated in the gas-liquid separation device 30, when the liquid level control device (LC) such as an optical sensor attached to the gas-liquid separation tank reaches a certain level, The drainage valve 51 is opened so that the drainage can be appropriately performed outside the system.

【0035】次に、酸素・水素発生装置1 の運転を停止
する場合には、水電解セル10への通電を停止した後、純
水供給バルブ2 、及び流量調整バルブ3a、 3aを開放し続
けて、純水供給系より純水を、純水供給経路3 、純水供
給経路3'、 3'を介して、水電解セル10、 10の陽極側に供
給し続ける一方、流量調節バルブ4a、 4aを開放すること
により、陰極純水供給経路4 、 4 を介して、水電解セル
10、 10の陰極側には純水を供給し続ける。なお、この
際、気液分離装置20、 30に接続された排水経路の排水バ
ルブ50、 51は開放されている。これにより、水電解セル
10への通電停止後に、セル内の陽極側、陰極側に残留す
る、酸素ガス、水素ガスが水電解セル10から、それぞれ
気液分離装置20,30 を介して、排水バルブ50、 51を介し
て系外に適宜排水される。従って、水電解セル10に残留
する電圧が除去できるので、周囲に危険を及ぼすおそれ
もなく、固体高分子電解質膜に、本来とは逆向きの電流
が流れることなく、固体高分子電解質膜に対して悪影響
を及ぼすことがない。
Next, when the operation of the oxygen / hydrogen generator 1 is stopped, the deionized water supply valve 2 and the flow rate adjusting valves 3a, 3a are kept open after the energization of the water electrolysis cell 10 is stopped. Then, pure water is continuously supplied from the pure water supply system to the anode side of the water electrolysis cells 10 and 10 via the pure water supply path 3 and the pure water supply paths 3'and 3 ', while the flow rate control valve 4a, By opening 4a, the water electrolysis cell is connected via the cathode pure water supply paths 4, 4.
Continue to supply pure water to the cathode side of 10 and 10. At this time, the drain valves 50 and 51 of the drain paths connected to the gas-liquid separators 20 and 30 are opened. This allows the water electrolysis cell
Oxygen gas and hydrogen gas remaining on the anode side and the cathode side in the cell after the power supply to 10 was stopped from the water electrolysis cell 10 via the gas-liquid separators 20 and 30, respectively, and via the drain valves 50 and 51. Drained outside the system. Therefore, since the voltage remaining in the water electrolysis cell 10 can be removed, there is no danger of causing a danger to the surroundings, the solid polymer electrolyte membrane does not flow a current in the opposite direction to the original, with respect to the solid polymer electrolyte membrane. There is no adverse effect.

【0036】なお、この場合、水電解セル10への通電停
止後に、水電解セル10の陽極側及び陰極側にそれぞれ供
給する純水の流量、供給時間、供給水圧は、水電解セル
内の残存ガスを除去することができれば、特に限定され
るものではない。
In this case, after the energization of the water electrolysis cell 10 is stopped, the flow rate of pure water supplied to the anode side and the cathode side of the water electrolysis cell 10, the supply time, and the supply water pressure are the remaining in the water electrolysis cell. There is no particular limitation as long as the gas can be removed.

【0037】最後に、本酸素・水素発生装置1 の運転を
完全に停止する場合には、純水供給バルブ2 を閉じれば
良い。
Finally, to completely stop the operation of the oxygen / hydrogen generator 1, the pure water supply valve 2 may be closed.

【0038】(実施例1 )フッ素樹脂系スルフォン酸カ
チオン交換膜(デュポン社製「ナフィオン117 」)厚さ
180 μm の両面に、白金からなる多孔質の陽極及び陰極
を化学的に無電解メッキで接合(厚さ数μm )した構造
の固体高分子電解質膜を、2 枚並設した構造の水電解セ
ルに対して、水電解セルの陽極側に純水(比抵抗17.3M
Ω・ cm(25℃換算)、水温35.6℃)を1.0 l/min の流量
で供給するとともに、5V、300Aで数時間通電した。その
後、水電解セルへの通電を停止した後、水電解セルの陽
極側に純水を供給し続けた(供給量1.0 l/min )場合
と、本願のように、水電解セルの陽極側と陰極側に純水
を供給し続けた(陽極側、陰極側とも供給量1.0 l/mi
n)場合について、水電解セルに残留する電圧と時間経
過との関係を測定した。その結果を、添付の図4 に示し
た。
(Example 1) Thickness of fluororesin sulfonic acid cation exchange membrane ("Nafion 117" manufactured by DuPont)
Water electrolysis cell with a structure in which two solid polymer electrolyte membranes with a structure in which a porous anode and cathode made of platinum are chemically bonded by electroless plating (thickness: several μm) on both sides of 180 μm In contrast, pure water (specific resistance 17.3M
Ω · cm (25 ° C conversion, water temperature 35.6 ° C) was supplied at a flow rate of 1.0 l / min and energized at 5 V and 300 A for several hours. Then, after stopping the energization of the water electrolysis cell, the pure water was continuously supplied to the anode side of the water electrolysis cell (supply amount of 1.0 l / min), and the case of the anode side of the water electrolysis cell as in the present application. Continued to supply pure water to the cathode side (supply volume of 1.0 l / mi for both anode side and cathode side)
For the case n), the relationship between the voltage remaining in the water electrolysis cell and the passage of time was measured. The results are shown in Figure 4 attached.

【0039】図4 から明らかなように、本発明のよう
に、水電解セルの通電停止後にも、純水を陽極側及び陰
極側に供給し続けた方が、水電解セルに残留する電圧が
非常に少ないことが分かる。
As is apparent from FIG. 4, as in the present invention, the voltage remaining in the water electrolysis cell is further improved by continuously supplying pure water to the anode side and the cathode side even after the power supply to the water electrolysis cell is stopped. It turns out that there are very few.

【0040】(実施例2 )実施例1 と同様の固体高分子
電解質膜を2 枚並設した構造の水電解セルと、固体高分
子電解質膜を240 枚並設した構造の水電解セルについ
て、水電解セル停止後に水電解セルに残留する電圧と、
実施例1 と同様に、水電解セルの通電停止後にも、純水
を陽極側及び陰極側に30分間供給し続けた場合について
比較した。その結果を下記の表1 に示した。この表1 の
結果から明らかなように、本発明によれば、固体高分子
電解質膜の枚数が多く、初期残留電圧が高い場合におい
ても、その残留電圧の除去効果が認められることがわか
る。
Example 2 With respect to a water electrolysis cell having a structure in which two solid polymer electrolyte membranes are arranged in parallel as in Example 1 and a water electrolysis cell having a structure in which 240 solid polymer electrolyte membranes are arranged in parallel, The voltage remaining in the water electrolysis cell after the water electrolysis cell is stopped,
Similar to Example 1, a comparison was made in the case where pure water was continuously supplied to the anode side and the cathode side for 30 minutes even after the energization of the water electrolysis cell was stopped. The results are shown in Table 1 below. As is clear from the results shown in Table 1, according to the present invention, even when the number of solid polymer electrolyte membranes is large and the initial residual voltage is high, the effect of removing the residual voltage is recognized.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【発明の作用効果】本発明の酸素・水素発生装置及びそ
の水電解セルに残留する電圧を除去するための方法によ
れば、水電解セルの陽極側に残留する酸素、及び陰極側
に残留する水素を、純水を陽極側及び陰極側に供給し続
けることにより、残存酸素及び水素を除去するので、下
記に示したような顕著で特有な作用効果を奏する極めて
優れた発明である。
According to the oxygen / hydrogen generator and the method for removing the voltage remaining in the water electrolysis cell of the present invention, the oxygen remaining on the anode side and the cathode side of the water electrolysis cell remain. By continuing to supply pure water to the anode side and the cathode side of hydrogen, residual oxygen and hydrogen are removed, and this is an extremely excellent invention that exhibits the remarkable and unique action and effect as shown below.

【0043】(1)大容量のガスを発生させるために、
固体高分子電解質膜を、直列に多数並設した構成の水電
解セルを用いた場合にも、通電停止後に、水電解セルに
高電圧が残留することなく、周囲に危険を及ぼすことが
ない。
(1) In order to generate a large volume of gas,
Even when using a water electrolysis cell in which a large number of solid polymer electrolyte membranes are arranged side by side in series, a high voltage does not remain in the water electrolysis cell after energization is stopped, and there is no danger to the surroundings.

【0044】(2)固体高分子電解質膜に、本来とは逆
向きの電流が流れることとなく、白金などの電極が浸食
されないために、固体高分子電解質膜が破損し悪影響を
及ぼさず、固体高分子電解質膜としての本来の機能を果
たせ、結果として、高純度の酸素、水素ガスが永続的に
得られることが可能である。
(2) In the solid polymer electrolyte membrane, an electric current in the opposite direction does not flow, and the electrodes such as platinum are not eroded, so that the solid polymer electrolyte membrane is not damaged and has no adverse effect. The polymer electrolyte membrane can perform its original function, and as a result, high-purity oxygen and hydrogen gas can be permanently obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 図1は、本発明の酸素・水素発生装置の一実
施例の全体構成を示す概略図である。
FIG. 1 is a schematic diagram showing the overall configuration of an embodiment of an oxygen / hydrogen generator of the present invention.

【図2】 図2は、従来の水電解セルの概略図である。FIG. 2 is a schematic view of a conventional water electrolysis cell.

【図3】 図3は、図1 の水電解セルの部分を拡大した
状態を示す概略図である。
FIG. 3 is a schematic view showing an enlarged state of a portion of the water electrolysis cell of FIG.

【図4】 図4は、水電解セルに残留する電圧と時間経
過との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the voltage remaining in the water electrolysis cell and the passage of time.

【符号の説明】[Explanation of symbols]

1…酸素・水素発生装置 2…純水供給バルブ 3…純水供給経路 3a…流量調整バルブ 3'…陽極純水供給経路 4…陰極純水供給経路 4a…流量調節バルブ 10…水電解セル 20…酸素ガス用気液分離装置 20a 、 30a 、40a 、 41a …経路 21…固体高分子電解質膜 22…陽極 23…陰極 24…陽極室 25…陰極室 28…固体高分子電解質 30…水素ガス用気液分離装置 40、 41…除湿装置 50、 51…排水バルブ50、 51 P …圧力センサー LC…レベル制御装置 1 ... Oxygen / hydrogen generator 2 ... Pure water supply valve 3 ... Pure water supply path 3a ... Flow control valve 3 '... Anode pure water supply path 4 ... Cathode pure water supply path 4a ... Flow control valve 10 ... Water electrolysis cell 20 ... Gas-liquid separator for oxygen gas 20a, 30a, 40a, 41a ... Route 21 ... Solid polymer electrolyte membrane 22 ... Anode 23 ... Cathode 24 ... Anode chamber 25 ... Cathode chamber 28 ... Solid polymer electrolyte 30 ... Hydrogen gas gas Liquid separator 40, 41… Dehumidifier 50, 51… Drain valve 50, 51 P… Pressure sensor LC… Level controller

フロントページの続き (72)発明者 安井 信一 兵庫県加古郡播磨町野添4丁目108 タウ ニーS A202 (72)発明者 小林 宏子 兵庫県神戸市長田区名倉町5丁目8番11号 (72)発明者 原田 宙幸 東京都練馬区西大泉2−25−43Front Page Continuation (72) Inventor Shinichi Yasui 4-chome Nozoe 108, Harima-cho, Kako-gun, Hyogo Prefecture Tawny SA202 (72) Hiroko Kobayashi 5-8-11 Nagura-cho, Nagata-ku, Kobe-shi, Hyogo (72) Inventor Hiroyuki Harada 2-25-43 Nishioizumi, Nerima-ku, Tokyo

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電解質膜を隔膜として用いて、陽極側と
陰極側とに分離して、陽極側に純水を供給しながら純水
を電気分解して、陽極側から酸素ガスを、陰極側から水
素ガスをそれぞれ発生するように構成した水電解セルの
残留電圧除去方法であって、 前記水電解セルの通電停止後に、陽極側及び陰極側に純
水を供給し続けて、陽極側に残留する酸素、及び陰極側
に残留する水素を水電解セルより除去することによっ
て、水電解セルの残留電圧を除去することを特徴とする
水電解セルの残留電圧除去方法。
1. An electrolyte membrane is used as a diaphragm to separate an anode side and a cathode side, and pure water is electrolyzed while supplying pure water to the anode side, and oxygen gas is supplied from the anode side to the cathode side. Is a method for removing residual voltage of a water electrolysis cell configured to generate hydrogen gas from, respectively, after the energization of the water electrolysis cell is stopped, the pure water is continuously supplied to the anode side and the cathode side, and remains on the anode side. A residual voltage removing method for a water electrolysis cell, comprising removing the residual oxygen of the water electrolysis cell by removing oxygen and hydrogen remaining on the cathode side from the water electrolysis cell.
【請求項2】 純水供給装置と、電解質膜を隔膜として
用いて、陽極側と陰極側とに分離して、前記純水供給装
置から陽極側純水供給経路を介して、純水を陽極側に供
給しながら純水を電気分解して、陽極側から酸素ガス
を、陰極側から水素ガスをそれぞれ発生するように構成
した水電解セルとを備えた酸素・水素発生装置におい
て、 前記純水供給装置から水電解セルの陰極側に至る陰極側
純水供給経路を配設して、水電解セルの通電停止後に、
陽極側純水供給経路から陽極側に、及び陰極側純水供給
経路から陰極側に、それぞれ純水を供給し続けて、陽極
側に残留する酸素、及び陰極側に残留する水素を水電解
セルより除去することによって、水電解セルの残留電圧
を除去可能に構成したことを特徴とする酸素・水素発生
装置。
2. A pure water supply device and an electrolyte membrane are used as diaphragms to separate the anode side and the cathode side, and the pure water is supplied from the pure water supply device through the anode side pure water supply path to the pure water anode. In the oxygen / hydrogen generator comprising a water electrolysis cell configured to generate electrolysis of pure water while supplying oxygen to the anode side and oxygen gas from the anode side, and hydrogen gas from the cathode side. A cathode side deionized water supply path from the supply device to the cathode side of the water electrolysis cell is provided, and after energization of the water electrolysis cell is stopped,
Continuing to supply pure water from the anode-side pure water supply path to the anode side and from the cathode-side pure water supply path to the cathode side, oxygen remaining on the anode side and hydrogen remaining on the cathode side are supplied to the water electrolysis cell. An oxygen / hydrogen generator characterized in that the residual voltage of the water electrolysis cell can be removed by further removing it.
JP6293104A 1994-11-28 1994-11-28 Method and apparatus for removing residual voltage from water electrolysis cell Expired - Fee Related JP2851544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6293104A JP2851544B2 (en) 1994-11-28 1994-11-28 Method and apparatus for removing residual voltage from water electrolysis cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6293104A JP2851544B2 (en) 1994-11-28 1994-11-28 Method and apparatus for removing residual voltage from water electrolysis cell

Publications (2)

Publication Number Publication Date
JPH08144079A true JPH08144079A (en) 1996-06-04
JP2851544B2 JP2851544B2 (en) 1999-01-27

Family

ID=17790484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6293104A Expired - Fee Related JP2851544B2 (en) 1994-11-28 1994-11-28 Method and apparatus for removing residual voltage from water electrolysis cell

Country Status (1)

Country Link
JP (1) JP2851544B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124772A (en) * 2004-10-28 2006-05-18 Kobelco Eco-Solutions Co Ltd Gaseous hydrogen generator and operation method therefor
JP2006131957A (en) * 2004-11-05 2006-05-25 Kobelco Eco-Solutions Co Ltd Gaseous hydrogen-oxygen generator and method for operating the same
JP2010236089A (en) * 2009-03-11 2010-10-21 Honda Motor Co Ltd Method of shutting down water electrolysis apparatus
JP2011149074A (en) * 2010-01-25 2011-08-04 Honda Motor Co Ltd Method of operating water-electrolyzing system
US20160194769A1 (en) * 2015-01-06 2016-07-07 Chlorine Engineers Corp., Ltd. Method of preventing reverse current flow through an ion exchange membrane electrolyzer
JP2016222955A (en) * 2015-05-28 2016-12-28 株式会社TrアンドK Simple type electrolytic hydrogen gas generator
WO2017056277A1 (en) * 2015-09-30 2017-04-06 株式会社 東芝 Device and system for producing hydrogen
JP2017203218A (en) * 2017-06-20 2017-11-16 株式会社東芝 Hydrogen production device and hydrogen production system
JP2018135580A (en) * 2017-02-23 2018-08-30 川崎重工業株式会社 Water electrolysis system and method for operating the same
EP3460100A4 (en) * 2016-05-18 2020-02-26 Doosan Corporation Alkaline water electrolysis device and operation method thereof
JP2020186418A (en) * 2019-05-10 2020-11-19 株式会社神鋼環境ソリューション Device of generating hydrogen/oxygen, and method of producing hydrogen gas
JP2022002846A (en) * 2018-06-06 2022-01-11 株式会社日本トリム Hydrogen gas dissolution device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124772A (en) * 2004-10-28 2006-05-18 Kobelco Eco-Solutions Co Ltd Gaseous hydrogen generator and operation method therefor
JP2006131957A (en) * 2004-11-05 2006-05-25 Kobelco Eco-Solutions Co Ltd Gaseous hydrogen-oxygen generator and method for operating the same
JP2010236089A (en) * 2009-03-11 2010-10-21 Honda Motor Co Ltd Method of shutting down water electrolysis apparatus
JP2011149074A (en) * 2010-01-25 2011-08-04 Honda Motor Co Ltd Method of operating water-electrolyzing system
US10472723B2 (en) 2015-01-06 2019-11-12 Thyssenkrupp Uhde Chlorine Engineers (Japan) Ltd. Method of preventing reverse current flow through an ion exchange membrane electrolyzer
US20160194769A1 (en) * 2015-01-06 2016-07-07 Chlorine Engineers Corp., Ltd. Method of preventing reverse current flow through an ion exchange membrane electrolyzer
JP2016222955A (en) * 2015-05-28 2016-12-28 株式会社TrアンドK Simple type electrolytic hydrogen gas generator
US10590552B2 (en) 2015-09-30 2020-03-17 Kabushiki Kaisha Toshiba Hydrogen production apparatus and hydrogen production system
JP6165972B1 (en) * 2015-09-30 2017-07-19 株式会社東芝 Hydrogen production apparatus and hydrogen production system
WO2017056277A1 (en) * 2015-09-30 2017-04-06 株式会社 東芝 Device and system for producing hydrogen
US11162181B2 (en) 2015-09-30 2021-11-02 Kabushiki Kaisha Toshiba Hydrogen production apparatus and hydrogen production system
EP3460100A4 (en) * 2016-05-18 2020-02-26 Doosan Corporation Alkaline water electrolysis device and operation method thereof
JP2018135580A (en) * 2017-02-23 2018-08-30 川崎重工業株式会社 Water electrolysis system and method for operating the same
WO2018155308A1 (en) * 2017-02-23 2018-08-30 川崎重工業株式会社 Water electrolysis system and method for operating water electrolysis system
CN110023543A (en) * 2017-02-23 2019-07-16 川崎重工业株式会社 The operation method of water electrolysis system and water electrolysis system
AU2018223580B2 (en) * 2017-02-23 2020-03-12 Kawasaki Jukogyo Kabushiki Kaisha Water electrolysis system and method for operating water electrolysis system
CN110023543B (en) * 2017-02-23 2021-05-25 川崎重工业株式会社 Water electrolysis system and method for operating water electrolysis system
JP2017203218A (en) * 2017-06-20 2017-11-16 株式会社東芝 Hydrogen production device and hydrogen production system
JP2022002846A (en) * 2018-06-06 2022-01-11 株式会社日本トリム Hydrogen gas dissolution device
JP2020186418A (en) * 2019-05-10 2020-11-19 株式会社神鋼環境ソリューション Device of generating hydrogen/oxygen, and method of producing hydrogen gas

Also Published As

Publication number Publication date
JP2851544B2 (en) 1999-01-27

Similar Documents

Publication Publication Date Title
US5484512A (en) Methods and apparatuses for producing high purity oxygen and hydrogen
JP2905705B2 (en) Reactor water oxygen concentration control device
US6168705B1 (en) Electrochemical gas purifier
JP2851544B2 (en) Method and apparatus for removing residual voltage from water electrolysis cell
JP5192001B2 (en) Operation method of water electrolysis system
KR20140138193A (en) Apparatus for production of high purity carbon monoxide
US20100219066A1 (en) Water electrolysis system
JPH09143779A (en) Hydrogen and oxygen generator
JP4751594B2 (en) Hydrogen / oxygen gas generator and operation method thereof
JP4562103B2 (en) Water recovery device for fuel cell
JP6419790B2 (en) Hydrogen recycling apparatus and operation method
JPH093680A (en) Hydrogen/oxygen generator
JP3132594B2 (en) High-purity oxygen and hydrogen production equipment
JP3091389B2 (en) Dissolved hydrogen removing method for electrolysis apparatus and dissolved hydrogen removing apparatus therefor
JP2911376B2 (en) Hydrogen / oxygen generator
US11492275B2 (en) Water treatment device and water treatment method
JP3080859B2 (en) Method for generating high-purity oxygen and apparatus therefor
JP2971779B2 (en) Pure water supply system for hydrogen / oxygen generator
JP2006112488A (en) Concentrating method and storing device of methane derived from sewage sludge
JP4662277B2 (en) Electrodeionization equipment
JP2006124772A (en) Gaseous hydrogen generator and operation method therefor
KR20000018557A (en) Method for generating electricity in anaerobic sewage disposal.
JPH07284772A (en) Apparatus for producing electrolytic water
JP2013049907A (en) Water electrolysis system
JP2004281268A (en) Operating method of fuel cell and fuel cell system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091113

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091113

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091113

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101113

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101113

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111113

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111113

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111113

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees