JP3080859B2 - Method for generating high-purity oxygen and apparatus therefor - Google Patents

Method for generating high-purity oxygen and apparatus therefor

Info

Publication number
JP3080859B2
JP3080859B2 JP07128130A JP12813095A JP3080859B2 JP 3080859 B2 JP3080859 B2 JP 3080859B2 JP 07128130 A JP07128130 A JP 07128130A JP 12813095 A JP12813095 A JP 12813095A JP 3080859 B2 JP3080859 B2 JP 3080859B2
Authority
JP
Japan
Prior art keywords
water
gas
electrolysis cell
pure water
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07128130A
Other languages
Japanese (ja)
Other versions
JPH08325771A (en
Inventor
衛 長尾
隆 佐々木
清司 平井
信一 安井
宏子 小林
宙幸 原田
Original Assignee
神鋼パンテツク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神鋼パンテツク株式会社 filed Critical 神鋼パンテツク株式会社
Priority to JP07128130A priority Critical patent/JP3080859B2/en
Publication of JPH08325771A publication Critical patent/JPH08325771A/en
Application granted granted Critical
Publication of JP3080859B2 publication Critical patent/JP3080859B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体の製造工程の際
の酸化被膜生成処理及び各種熱処理工程、ならびに、原
子力発電装置の冷却水配管の腐食防止用など各種工業分
野において必要とされる高純度の酸素ガス及び水素ガス
を製造するための水素・酸素発生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a process for forming an oxide film in a semiconductor manufacturing process and various heat treatment processes, and a process for preventing corrosion of cooling water piping of a nuclear power plant, which is required in various industrial fields. The present invention relates to a hydrogen / oxygen generator for producing pure oxygen gas and hydrogen gas.

【0002】より詳細には、前述した水素・酸素発生装
置において、不純物濃度の極めて低い高純度の酸素を得
る方法及びそのための装置に関する。
More specifically, the present invention relates to a method for obtaining high-purity oxygen having an extremely low impurity concentration in the above-mentioned hydrogen / oxygen generator and an apparatus therefor.

【0003】[0003]

【従来の技術】従来より、前述した各種工業分野に使用
する酸素ガス及び水素ガスは、水素ガスについては、食
塩電解や石油精製の際に発生する副成ガスを、触媒燃焼
精製法などを用いてある程度の純度の水素ガスに精製し
た後、ガスボンベに高圧にして充填して、使用者に供給
され使用されている。
2. Description of the Related Art Conventionally, oxygen gas and hydrogen gas used in the various industrial fields mentioned above have been used for hydrogen gas. After being purified to a certain degree of hydrogen gas, the gas cylinder is filled at a high pressure and supplied to a user for use.

【0004】一方、酸素ガスについては、空気をジュー
ルトムソン法により液化し、深冷分離法により沸点差を
利用して分離し、ある程度の高純度の酸素ガスが作ら
れ、これを液体酸素の状態で工場のコールドエバポレー
タ(酸素ガス発生装置)に供給し、 これを気化してガス
に使用したり、ガスボンベに高圧にして充填して、使用
者に供給され使用されている。
On the other hand, as for oxygen gas, air is liquefied by the Joule-Thomson method and separated by a cryogenic separation method utilizing a boiling point difference to produce oxygen gas of a certain degree of purity. It is supplied to a cold evaporator (oxygen gas generator) at the factory and is used as gas by vaporizing it, or filled into a gas cylinder at high pressure and supplied to the user for use.

【0005】しかしながら、このように供給される酸素
及び水素等のガスには、表1に示すように、窒素、炭酸
ガス、一酸化炭素、炭化水素、アルゴン等の不純物も含
まれており、これらは完全には除去されず、そのために
さらに不純物を除去・精製するため、吸着剤による吸着
処理やパラジューム膜透過法等のような高度の純化処理
法により、個別に純化処理して精製して使用しているの
が実状である。ところが、このような純化処理法によっ
ても除去が困難な窒素等の不純物があり、例えば、半導
体分野などにおいては、昨今の素子の高純度化において
は、このような残存不純物が問題となっていた。
However, the gases such as oxygen and hydrogen supplied as described above contain impurities such as nitrogen, carbon dioxide, carbon monoxide, hydrocarbons, and argon as shown in Table 1. Is not completely removed.For this reason, in order to further remove and purify impurities, it is necessary to purify and purify it separately using advanced purification methods such as adsorption treatment with an adsorbent and the permeation method of palladium membrane. The fact is that they are doing. However, there are impurities such as nitrogen, which are difficult to remove even by such a purification treatment method. For example, in the field of semiconductors, such a residual impurity has been a problem in recent high-purity devices. .

【0006】このような、従来における問題を解決する
ために、本発明者等は、特開平5-287570号において、図
3に示したように、ポーラスな固体電解質120 、例え
ば、カチオン交換膜(フッ素樹脂系スルフォン酸カチオ
ン交換膜、例えば、デュポン社製「ナフィオン117 」)
の両面に白金族金属等からなる多孔質の陽極122 及び陰
極124 を接合した構造の固体高分子電解質膜121 を隔膜
として用い、陽極室112と陰極室114 とに分離した構造
の水電解セルを用いて、陽極室に純水を供給しながら電
気分解して、陽極室から酸素ガスを、陰極室から水素ガ
スをそれぞれ発生するように構成した水電解セルを用い
た水素・酸素発生装置を提案した。
In order to solve such a conventional problem, the present inventors disclosed in Japanese Patent Application Laid-Open No. 5-287570 a porous solid electrolyte 120 such as a cation exchange membrane as shown in FIG. Fluorine resin sulfonic acid cation exchange membrane, for example, "Nafion 117" manufactured by DuPont)
A water electrolysis cell having a structure in which an anode chamber 112 and a cathode chamber 114 are separated by using a solid polymer electrolyte membrane 121 having a structure in which a porous anode 122 and a cathode 124 made of a platinum group metal or the like are joined on both surfaces thereof as a diaphragm. A hydrogen / oxygen generator using a water electrolysis cell configured to generate electrolysis while supplying pure water to the anode chamber to generate oxygen gas from the anode chamber and hydrogen gas from the cathode chamber. did.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、このよ
うな水素・酸素発生装置においても、陰極室から発生す
る水素ガスは窒素、炭酸ガスなどの不純物ガスは数ppm
以下と高純度であるのに対し、陽極室から発生する酸素
ガスには、窒素ガス、アルゴンガス等の不純物が含まれ
ていたため、完全に不純物を除去するまでには至ってい
なかった。
However, even in such a hydrogen / oxygen generator, the hydrogen gas generated from the cathode chamber contains several ppm of impurity gas such as nitrogen and carbon dioxide.
Although the purity was as high as below, oxygen gas generated from the anode chamber contained impurities such as nitrogen gas and argon gas, so that the impurities were not completely removed.

【0008】なお、水素を製造する方法において、電解
工程へ供給する水を予め脱気する方法が、特公平3−2
237号に開示されているが、この方法では、脱気装置
が大きいものが必要となり、また高純度の酸素を製造す
る方法ではなかった。
In the method of producing hydrogen, a method of previously degassing water supplied to an electrolysis step is disclosed in Japanese Patent Publication No. 3-2 / 1990.
As disclosed in Japanese Patent No. 237, this method requires a large deaerator and is not a method for producing high-purity oxygen.

【0009】[0009]

【課題を解決するための手段】本発明は、このような現
状に鑑みて、窒素、炭酸ガス、一酸化炭素、炭化水素、
アルゴン等の不純物、特に、窒素などの不純物の極めて
低い、半導体分野などにおける素子の高純度化にも十分
適用可能な高純度の酸素を発生する方法、及びそのため
の装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has been developed in view of such circumstances as nitrogen, carbon dioxide, carbon monoxide, hydrocarbon,
An object of the present invention is to provide a method for generating high-purity oxygen which is sufficiently low in impurities such as argon and, in particular, impurities such as nitrogen and is sufficiently applicable to high-purity of devices in a semiconductor field and the like, and an apparatus therefor. I do.

【0010】ところで、水電解セルにおいては、水を陽
極側に供給しながら電気分解することにより、図3に示
したように、陽極側では、2H2 O →O 2 +4H+ +4e-
ような反応が起こり酸素ガスが発生し、陰極側では、4H
+ +4e- →2H2 の反応が起こり水素ガスが発生するもの
である。従って、陽極側の出口水には、水中のガス溶解
量が、ヘンリーの法則によって、周囲の発生酸素ガス中
のそのガスの分圧に比例するために、酸素以外の溶存ガ
スがほとんど含まれていないため、本発明者等は、この
出口水を、水電解セルの陽極室に循環、供給することに
よって、含まれる不純物ガス、特に、窒素ガスの濃度が
極めて低減できる高純度の酸素発生方法及びそのための
装置を提供したものである。
By the way, in the water electrolysis cell, by electrolyzing while supplying water to the anode side, as shown in FIG. 3, on the anode side, 2H 2 O → O 2 + 4H + + 4e A reaction occurs and oxygen gas is generated.On the cathode side, 4H
+ + 4e - → the reaction of 2H 2 is what happens hydrogen gas is generated. Therefore, since the amount of dissolved gas in the water is proportional to the partial pressure of the gas in the generated oxygen gas according to Henry's law, dissolved water other than oxygen is almost contained in the outlet water on the anode side. Therefore, the present inventors circulate and supply this outlet water to the anode chamber of the water electrolysis cell, thereby containing a high-purity oxygen generation method capable of extremely reducing the concentration of impurity gas contained therein, particularly nitrogen gas. An apparatus for that purpose is provided.

【0011】また、この場合、水電解セルの陽極に最初
に供給した純水の約3%程度が水電解に消費されるため
に、電解に際しては、これを補充するために補充水が必
要であるが、この補充水を予め、膜脱気モジュールなど
の脱気装置で脱気することによって、含まれる不純物ガ
ス、特に、窒素ガスの濃度が極めて低減できる高純度の
酸素発生方法及びそのための装置を提供できることを知
見して、本発明を完成するに至ったものである。
In this case, since about 3% of the pure water initially supplied to the anode of the water electrolysis cell is consumed in the water electrolysis, replenishment water is required to replenish the water during electrolysis. However, a high-purity oxygen generation method and an apparatus therefor, in which the concentration of impurity gas, particularly nitrogen gas, can be extremely reduced by previously degassing this replenishing water with a degassing device such as a membrane degassing module. It has been found that the present invention can be provided, and the present invention has been completed.

【0012】すなわち、本発明は、前述したような従来
技術における課題及び目的を達成するためになされたも
のであって、その構成要旨とするところは、下記の
(1)および(2)である。
Namely, the present invention, which is Do to achieve the aim and objects in the prior art as described above, and has an arrangement gist, in the following (1) and (2) is there.

【0013】(1)固体電解質膜を隔膜として用いて、
陽極側と陰極側とに分離して、陽極側に純水を供給しな
がら純水を電気分解して、陽極側から酸素ガスを、陰極
側から水素ガスをそれぞれ発生するように構成した水電
解セルからなる水素・酸素発生装置において高純度の酸
素を発生させる方法であって、該水素・酸素発生装置の
起動時に、予め膜脱気モジュールによって脱気した純水
を水電解セルの陽極室に供給し、 水電解操作中に、水電
解セルの陽極室で生じた溶存不純物ガス濃度の極めて低
い出口水を水電解セルの陽極室に循環して供給し、且
つ、予め膜脱気モジュールによって脱気した純水を補充
水として水電解セルの陽極室に供給することによって、
不純物濃度の極めて低い高純度の酸素を得ることを特徴
とする高純度酸素の発生方法。
(1) Using a solid electrolyte membrane as a diaphragm,
A water electrolysis system that is separated into an anode side and a cathode side, and is configured to electrolyze pure water while supplying pure water to the anode side to generate oxygen gas from the anode side and hydrogen gas from the cathode side, respectively. A method for generating high-purity oxygen in a hydrogen / oxygen generator comprising a cell, comprising the steps of:
Pure water degassed by the membrane degassing module before startup
Is supplied to the anode chamber of the water electrolysis cell , and during the water electrolysis operation, outlet water having a very low concentration of dissolved impurity gas generated in the anode chamber of the water electrolysis cell is circulated and supplied to the anode chamber of the water electrolysis cell , and
Replenish pure water degassed by membrane degassing module
By supplying it to the anode chamber of the water electrolysis cell as water ,
A method for generating high-purity oxygen, characterized by obtaining high-purity oxygen having an extremely low impurity concentration.

【0014】[0014]

【0015】(2)固体電解質膜を隔膜として用いて、
陽極側と陰極側とに分離して、陽極側に純水を供給しな
がら純水を電気分解して、陽極側から酸素ガスを、陰極
側から水素ガスをそれぞれ発生するように構成した水電
解セルからなる水素・酸素発生装置において、純水を脱
気して溶存不純物ガス濃度の極めて低い純水を得るため
の膜脱気モジュールを備えた脱気装置と、 予め該脱気装
置によって脱気した純水を水電解セルの陽極室に供給す
る純水供給経路と、水電解セルの陽極室で生じた溶存不
純物ガス濃度の極めて低い出口水を、水電解セルの陽極
室に循環する循環経路を設けたことを特徴とする高純
度酸素の発生装置。
(2) Using a solid electrolyte membrane as a diaphragm,
A water electrolysis system that is separated into an anode side and a cathode side, and is configured to electrolyze pure water while supplying pure water to the anode side to generate oxygen gas from the anode side and hydrogen gas from the cathode side, respectively. Pure water is removed from the hydrogen / oxygen generator consisting of cells.
To obtain pure water with extremely low dissolved impurity gas concentration
A deaeration apparatus equipped with a membrane degassing module, pre dehydration KiSo
The pure water degassed by the water supply is supplied to the anode chamber of the water electrolysis cell.
A pure water supply path that, the very low outlet water of dissolved impurity gas concentration generated in the anode chamber of the water electrolytic cell, high purity oxygen, characterized in that a circulation path for circulating the anode compartment of the water electrolysis cell Generator.

【0016】[0016]

【0017】[0017]

【実施例】以下、本発明の実施例を図面に基づいてより
詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0018】図1は、本発明の高純度酸素の発生装置の
一実施例の全体構成を示す図であり、1は全体で、本発
明の高純度酸素の発生装置を示している。図2は、その
水電解セルの部分を拡大した状態を示す概略図である。
FIG. 1 is a diagram showing the entire configuration of an embodiment of the high-purity oxygen generating apparatus according to the present invention. Reference numeral 1 denotes the whole high-purity oxygen generating apparatus according to the present invention. FIG. 2 is a schematic diagram showing a state in which the portion of the water electrolysis cell is enlarged.

【0019】本高純度酸素の発生装置1では、純水供給
系(図示せず)から純水が、気体分離膜を用いて透過側
を真空にすることにより液中の溶存ガスを除去する膜脱
気方式の膜脱気モジュールから構成される脱気装置2に
供給される。前記膜脱気モジュールとしては、テトラフ
ルオロエチレン系の疎水性の高分子膜やフッ素樹脂ある
いはポリオレフィン等の平膜または中空糸膜を用いた、
旭硝子、宇部興産社製のものを使用することが望まし
い。それは、簡便で、連続型で、コンパクトであるから
である。この脱気装置2においては、窒素ガス、炭酸ガ
ス、一酸化炭素、炭化水素、アルゴン等の不純物が、ほ
とんど除去されるようになっている。このように、不純
物をほとんど含まない純水は、純水供給経路4を介し
て、水電解セル10の陽極室12側に供給されるようになっ
ている。
In the high-purity oxygen generator 1, pure water is supplied from a pure water supply system (not shown) to a membrane for removing dissolved gas in the liquid by evacuating the permeate side using a gas separation membrane. It is supplied to the deaerator 2 composed of a deaeration type membrane deaeration module. As the membrane degassing module, using a flat membrane or hollow fiber membrane such as a tetrafluoroethylene-based hydrophobic polymer membrane or fluororesin or polyolefin,
It is desirable to use Asahi Glass or Ube Industries. It is simple, continuous and compact. In the deaerator 2, impurities such as nitrogen gas, carbon dioxide gas, carbon monoxide, hydrocarbons, and argon are almost removed. Thus, pure water containing almost no impurities is supplied to the anode chamber 12 side of the water electrolysis cell 10 via the pure water supply path 4.

【0020】そして、この水電解セル10では、その陽極
側に供給された純水Aを電気分解して、陽極室12から酸
素ガスを、陰極室14から水素ガスをそれぞれ発生するよ
うに、例えば、図2に示したような構造を有するもので
ある。具体的には、ポーラスな固体電解質20、例えば、
カチオン交換膜(フッ素樹脂系スルフォン酸カチオン交
換膜、例えば、デュポン社製「ナフィオン117 」)の両
面に白金族金属等からなる多孔質の陽極22及び陰極24を
化学的に無電解メッキで接合した構造の固体高分子電解
質膜21を隔膜として用いた陽極室12と陰極室14とに分離
した構造の水電解セル10によって、陽極室12に純水を供
給しながら電気分解して、陽極室12から酸素ガスを、陰
極室14から水素ガスをそれぞれ発生するように構成した
ものである。
In the water electrolysis cell 10, for example, pure water A supplied to the anode side is electrolyzed to generate oxygen gas from the anode chamber 12 and hydrogen gas from the cathode chamber 14, for example. , Having a structure as shown in FIG. Specifically, the porous solid electrolyte 20, for example,
A porous anode 22 and a cathode 24 made of a platinum group metal or the like were chemically bonded to both surfaces of a cation exchange membrane (fluororesin sulfonic acid cation exchange membrane, for example, "Nafion 117" manufactured by DuPont) by electroless plating. A water electrolysis cell 10 having a structure in which a solid polymer electrolyte membrane 21 having a structure is used as a diaphragm and having an anode chamber 12 and a cathode chamber 14 which are separated from each other is electrolyzed while supplying pure water to the anode chamber 12. , And a hydrogen gas from the cathode chamber 14, respectively.

【0021】さらに、この水電解セル10の陽極室12で生
じた出口水Bは、出口水循環経路5を介して、純水供給
経路4に導入されて、水電解セル10の陽極室12側に循
環、供給されるようになっている。
Further, the outlet water B generated in the anode chamber 12 of the water electrolysis cell 10 is introduced into the pure water supply path 4 via the outlet water circulation path 5 and is directed to the anode chamber 12 side of the water electrolysis cell 10. It is circulated and supplied.

【0022】この場合、本装置の始動時には、純水供給
経路4に設けられたバルブ6を開けて、脱気装置2にお
いて窒素ガス、炭酸ガス、一酸化炭素、炭化水素、アル
ゴン等の不純物がほとんど除去された純水が、水電解セ
ル10の陽極室12に供給され、電気分解が行われるが、電
解操作時には、バルブ6を閉じて、水電解セル10の陽極
室12で生じた出口水Bが、出口水循環経路5を介して、
純水供給経路4に導入されて、水電解セル10の陽極室12
側に循環、供給され、電気分解が継続される。
In this case, when the apparatus is started, the valve 6 provided in the pure water supply path 4 is opened, and impurities such as nitrogen gas, carbon dioxide gas, carbon monoxide, hydrocarbons, and argon are removed in the deaerator 2. Almost removed pure water is supplied to the anode chamber 12 of the water electrolysis cell 10 and electrolysis is performed. During electrolysis operation, the valve 6 is closed and the outlet water generated in the anode chamber 12 of the water electrolysis cell 10 is closed. B, via the outlet water circulation path 5,
After being introduced into the pure water supply path 4, the anode chamber 12 of the water electrolysis cell 10 is
Circulation and supply to the side, the electrolysis is continued.

【0023】ところで、水電解セルの陽極に最初に供給
した純水の約3%程度が水電解に消費されるために、電
解に際しては、これを補充するために補充水が必要であ
るが、この補充水は、出口水循環経路5に設けられた水
量センサー7の検知結果に基づいて、予め定められた一
定値より低下した場合に、バルブ6を開けるように構成
して、脱気装置2において窒素ガス、炭酸ガス、一酸化
炭素、炭化水素、アルゴン等の不純物がほとんど除去さ
れた純水が、補充水として再び純水供給経路4を介して
水電解セル10の陽極室12に供給されるようになってい
る。
By the way, about 3% of the pure water initially supplied to the anode of the water electrolysis cell is consumed in the water electrolysis, and in the electrolysis, supplementary water is required to replenish the water. The replenishing water is configured to open the valve 6 when it falls below a predetermined value based on the detection result of the water amount sensor 7 provided in the outlet water circulation path 5. Pure water from which impurities such as nitrogen gas, carbon dioxide, carbon monoxide, hydrocarbons, and argon have been almost completely removed is supplied again to the anode chamber 12 of the water electrolysis cell 10 via the pure water supply path 4 as supplementary water. It has become.

【0024】なお、この水電解セル10の陽極側には、水
電解セル10の陽極室で発生した酸素を気液分離するため
の酸素ガス用気液分離装置(図示せず)が接続される一
方、水電解セル10の陰極側には、水電解セル10の陰極室
で発生した水素を気液分離するための水素ガス用気液分
離装置(図示せず)が接続されている。
The anode side of the water electrolysis cell 10 is connected to a gas-liquid separation device (not shown) for oxygen gas for gas-liquid separation of oxygen generated in the anode chamber of the water electrolysis cell 10. On the other hand, a gas-liquid separator for hydrogen gas (not shown) for gas-liquid separation of hydrogen generated in the cathode chamber of the water electrolysis cell 10 is connected to the cathode side of the water electrolysis cell 10.

【0025】そして、この両気液分離装置において気液
分離された酸素ガス及び水素ガスはそれぞれ、例えば、
モレキュラーシーブなどから構成される除湿装置(図示
せず)に導入され、ガスに含まれる水分がそれぞれ除去
された後、酸素ガス及び水素ガス利用施設(図示せず)
に適宜供給されるようになっている。
The oxygen gas and the hydrogen gas separated by gas and liquid in the two gas-liquid separation device are, for example,
After being introduced into a dehumidifying device (not shown) composed of molecular sieves and the like, and the water contained in the gas is removed, oxygen gas and hydrogen gas utilization facilities (not shown)
As needed.

【0026】(実施例1 )従来例として、フッ素樹脂系
スルフォン酸カチオン交換膜(デュポン社製「ナフィオ
ン117 」)厚さ180 μm の両面に、白金からなる多孔質
の陽極及び陰極を化学的に無電解メッキで接合(厚さ数
μm )した構造の固体高分子電解質膜を用いた水電解セ
ルを具備した装置を用いて、純水(水温35.6℃)を1.0
l/min の流量で水電解セルの陽極側に供給して、5V、30
0Aで数時間通電し、水電解セルの陽極側から発生した酸
素ガスを、ガスクロマトグラフあるいはガスクロマトグ
ラフ質量分析計にかけ分析した。なお、従来例では、純
水を脱気装置を介さずに用いた。すなわち、多くの溶存
ガス(主に窒素ガス)を含んだ状態の純水を用いてい
る。
(Example 1) As a conventional example, a porous anode and a cathode made of platinum are chemically formed on both sides of a fluororesin sulfonic acid cation exchange membrane ("Nafion 117" manufactured by DuPont) having a thickness of 180 µm. Pure water (water temperature 35.6 ° C) was applied to an apparatus equipped with a water electrolysis cell using a solid polymer electrolyte membrane with a structure joined by electroless plating (thickness of several μm).
l / min to the anode side of the water electrolysis cell,
Electric current was applied for several hours at 0 A, and oxygen gas generated from the anode side of the water electrolysis cell was analyzed by a gas chromatograph or a gas chromatograph mass spectrometer. In the conventional example, pure water was used without passing through a deaerator. That is, pure water containing a large amount of dissolved gas (mainly nitrogen gas) is used.

【0027】また、本発明の実施例として、フッ素樹脂
系スルフォン酸カチオン交換膜(デュポン社製「ナフィ
オン117 」)厚さ180 μm の両面に、白金からなる多孔
質の陽極及び陰極を化学的に無電解メッキで接合(厚さ
数μm )した構造の固体高分子電解質膜2枚を組み込ん
だ水電解セルを具備した本発明の装置を用いて、中空糸
状の膜モジュールと真空ポンプからなる脱気装置に純水
(水温35.6℃)を1.0l/min の流量で供給して予め脱気
した純水を、水電解セルの陽極側に供給した後、供給を
停止して、5V、300Aで数時間通電した。その際、水電解
セルの陽極側出口水を水電解セルの陽極側に循環して供
給し続けた。なお、この場合、補充水として、上記脱気
装置で脱気した純水を1.0 l/min の3 %にあたる30 ml/
min の量供給した。その結果、水電解セルの陽極側から
発生した酸素ガスを、ガスクロマトグラフあるいはガス
クロマトグラフ質量分析計にかけ分析した。
Further, as an embodiment of the present invention, a porous anode and a cathode made of platinum are chemically coated on both sides of a 180 μm-thick fluororesin sulfonic acid cation exchange membrane (“Nafion 117” manufactured by DuPont). Using the apparatus of the present invention equipped with a water electrolysis cell incorporating two solid polymer electrolyte membranes having a structure joined by electroless plating (thickness of several μm), deaeration comprising a hollow fiber membrane module and a vacuum pump Pure water (water temperature 35.6 ° C) is supplied to the device at a flow rate of 1.0 l / min, and pure water that has been degassed in advance is supplied to the anode side of the water electrolysis cell. The supply is stopped, and the supply is stopped at 5 V, 300 A. Energized for hours. At that time, the outlet water on the anode side of the water electrolysis cell was continuously circulated and supplied to the anode side of the water electrolysis cell. In this case, pure water deaerated by the above deaerator was used as replenishing water in an amount of 30 ml / 1.0% / min, which is 3%.
Min amount supplied. As a result, oxygen gas generated from the anode side of the water electrolysis cell was analyzed using a gas chromatograph or a gas chromatograph mass spectrometer.

【0028】尚、空気をジュールトムソン法により液化
し、深冷分離法により沸点差を利用して分離して得られ
た液体酸素ガスについても同様にして分析した。
The liquid oxygen gas obtained by liquefying the air by the Joule-Thomson method and separating it by the cryogenic separation method utilizing the boiling point difference was analyzed in the same manner.

【0029】これらの結果を下記の表1に示した。The results are shown in Table 1 below.

【0030】表1から明らかなように、本発明のよう
に、水電解セルの陽極側の出口水を循環し、予め脱気し
た純水を補充水として、前記陽極室側出口水とともに水
電解セルの陽極室に供給する方法の方が、発生する酸素
ガスに含まれる不純物ガス、特に窒素ガスの濃度が極め
て低いことがわかる。
As is clear from Table 1, as in the present invention, the outlet water on the anode side of the water electrolysis cell is circulated, and pure water that has been degassed in advance is used as replenishing water, and water electrolysis is performed together with the outlet water on the anode chamber side. It can be seen that the method of supplying the oxygen gas to the anode chamber of the cell has a much lower concentration of impurity gas, particularly nitrogen gas, contained in the generated oxygen gas.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【発明の作用効果】本発明の高純度酸素の発生方法及び
そのための装置によれば、水電解セルの陽極室で生じた
溶存不純物ガス濃度の極めて低い出口水を、水電解セル
の陽極室に循環して供給することによって、不純物濃度
の極めて低い高純度の酸素を得るようにし、さらに、純
水を予め脱気装置によって脱気した溶存不純物ガス濃度
の極めて低い純水を補充水として、前記水電解セルの陽
極室に、前記陽極室側出口水とともに水電解セルの陽極
室に供給するようにしたので、下記に示したような顕著
で特有な作用効果を奏する極めて優れた発明である。
According to the method for generating high-purity oxygen of the present invention and the apparatus therefor, the outlet water having a very low concentration of dissolved impurity gas generated in the anode chamber of the water electrolysis cell is supplied to the anode chamber of the water electrolysis cell. By circulating and supplying, high-purity oxygen having an extremely low impurity concentration is obtained, and pure water having a very low concentration of dissolved impurity gas, which has been degassed by a deaerator in advance, is used as replenishment water. Since the anode water of the water electrolysis cell is supplied to the anode chamber of the water electrolysis cell together with the outlet water on the anode chamber side, the present invention is an extremely excellent invention which has the following remarkable and unique effects.

【0033】(1)このように構成することによって、
水電解セル10の陽極室12で生じた出口水Bは、水中のガ
ス溶解量が、ヘンリーの法則によって、周囲の発生酸素
ガス中のそのガスの分圧に比例するために、酸素以外の
溶存ガスがほとんど含まれていないため、この出口水B
が、出口水循環経路5を介して、純水供給経路4に導入
して、水電解セル10の陽極室12側に循環、供給され電気
分解が継続されるため、陽極室12において発生する酸素
ガスに含まれる不純物ガス、特に、窒素ガス、アルゴン
ガスの濃度が極めて低減できる。
(1) With this configuration,
The outlet water B generated in the anode chamber 12 of the water electrolysis cell 10 contains dissolved gas other than oxygen because the dissolved amount of gas in the water is proportional to the partial pressure of the gas in the generated oxygen gas around according to Henry's law. Since almost no gas is contained, this outlet water B
Is introduced into the pure water supply path 4 via the outlet water circulation path 5 and circulated and supplied to the anode chamber 12 side of the water electrolysis cell 10 to continue the electrolysis, so that oxygen gas generated in the anode chamber 12 , Especially the concentration of nitrogen gas and argon gas can be extremely reduced.

【0034】(2)また、装置始動時の供給水及び補充
が必要になった際の補充水として、水電解セル10の陽極
室12に供給される純水が、脱気装置2において窒素ガ
ス、炭酸ガス、一酸化炭素、炭化水素、アルゴン等の不
純物がほとんど除去された純水であるので、水電解セル
10の陽極室12において発生する酸素ガスには、これらの
成分がほとんど含まれない極めて高純度の酸素ガスを得
ることが可能である。
(2) Pure water supplied to the anode chamber 12 of the water electrolysis cell 10 is supplied with nitrogen gas in the deaerator 2 as supply water at the start of the apparatus and replenishment water when replenishment is required. Pure water from which impurities such as carbon dioxide, carbon monoxide, hydrocarbons, and argon have been almost completely removed.
The oxygen gas generated in the ten anode chambers 12 can obtain extremely high-purity oxygen gas containing almost no such components.

【0035】(3)さらに、水電解セル10の陽極室12で
生じた出口水Bを出口水循環経路5を介して、純水供給
経路4に導入して、水電解セル10の陽極室12側に循環、
供給され電気分解が継続されるため、脱気装置2が小型
でコンパクトなものでよく、設置施設のスペースが少な
くてすむ。
(3) Further, the outlet water B generated in the anode chamber 12 of the water electrolysis cell 10 is introduced into the pure water supply path 4 through the outlet water circulation path 5, and the water B is supplied to the anode chamber 12 side of the water electrolysis cell 10. Circulation,
Since the supply and the electrolysis are continued, the deaerator 2 may be small and compact, and the space for the installation facility is small.

【0036】従って、素子の高集積化が要求されている
半導体製造におけるウェハの酸化、CVD 、エッチングな
どにおいても、製品性能に及ぼす影響が少なく、また、
その他の高純度の酸素が要求されている様々な産業分野
に使用することができ、その産業び貢献するところが非
常に大きい極めて優れた発明である。
Accordingly, even in the case of wafer oxidation, CVD, etching, etc., in semiconductor manufacturing where high integration of elements is required, there is little influence on product performance.
It is an extremely excellent invention that can be used in various other industrial fields where high-purity oxygen is required, and greatly contributes to such industries.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1は、本発明の高純度酸素の発生装置の一
実施例の全体構成を示す概略図である。
FIG. 1 is a schematic diagram showing the entire configuration of an embodiment of the high-purity oxygen generator of the present invention.

【図2】 図3は、図1の水電解セルの部分を拡大した
状態を示す概略図である。
FIG. 2 is a schematic view showing an enlarged state of a portion of the water electrolysis cell of FIG.

【図3】 図3は、従来の水電解セルの概略図である。FIG. 3 is a schematic diagram of a conventional water electrolysis cell.

【符号の説明】[Explanation of symbols]

1…高純度酸素の発生装置 2…脱気装置 4…純水供給経路 5…出口水循環経路 6…バルブ 10…水電解セル 12…陽極室 14…陰極室 20…固体電解質 21…固体高分子電解質膜 22…陽極 24…陰極 DESCRIPTION OF SYMBOLS 1 ... High-purity oxygen generator 2 ... Deaerator 4 ... Pure water supply path 5 ... Outlet water circulation path 6 ... Valve 10 ... Water electrolysis cell 12 ... Anode chamber 14 ... Cathode chamber 20 ... Solid electrolyte 21 ... Solid polymer electrolyte Membrane 22… Anode 24… Cathode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安井 信一 兵庫県加古郡播磨町野添4丁目108 タ ウニーS A−202号 (72)発明者 小林 宏子 兵庫県神戸市長田区名倉町5丁目8番11 号 (72)発明者 原田 宙幸 東京都練馬区西大泉2−25−43 (56)参考文献 特開 昭61−199087(JP,A) 特開 昭56−127781(JP,A) 特開 昭54−69574(JP,A) 特開 平7−126883(JP,A) 実開 平4−64569(JP,U) (58)調査した分野(Int.Cl.7,DB名) C25B 1/00 - 15/08 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shinichi Yasui 4-108 Nozoe, Harima-cho, Kako-gun, Hyogo Pref. No. 11 (72) Inventor, Hiroyuki Harada 2-25-43, Nishi-Oizumi, Nerima-ku, Tokyo (56) References JP-A-61-199087 (JP, A) JP-A-56-127781 (JP, A) JP-A-54-69574 (JP, A) JP-A-7-126883 (JP, A) JP-A-4-64569 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) C25B 1 / 00-15/08

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 固体電解質膜を隔膜として用いて、陽極
側と陰極側とに分離して、陽極側に純水を供給しながら
純水を電気分解して、陽極側から酸素ガスを、陰極側か
ら水素ガスをそれぞれ発生するように構成した水電解セ
ルからなる水素・酸素発生装置において高純度の酸素を
発生させる方法であって、該水素・酸素発生装置の起動時に、予め膜脱気モジュー
ルによって脱気した純水を水電解セルの陽極室に供給
し、 水電解操作中に、 水電解セルの陽極室で生じた溶存不純
物ガス濃度の極めて低い出口水を水電解セルの陽極室に
循環して供給し、且つ、予め膜脱気モジュールによって
脱気した純水を補充水として水電解セルの陽極室に供給
することによって、不純物濃度の極めて低い高純度の酸
素を得ることを特徴とする高純度酸素の発生方法。
1. A solid electrolyte membrane is used as a diaphragm, separated into an anode side and a cathode side, and pure water is electrolyzed while supplying pure water to the anode side. A method for generating high-purity oxygen in a hydrogen / oxygen generator composed of a water electrolysis cell configured to generate hydrogen gas from the side, wherein a membrane degassing module is prepared in advance when the hydrogen / oxygen generator is started.
Pure water degassed by water to the anode chamber of the water electrolysis cell
Then, during the water electrolysis operation, the outlet water having a very low concentration of dissolved impurity gas generated in the anode chamber of the water electrolysis cell is circulated and supplied to the anode chamber of the water electrolysis cell , and the membrane deaeration module is used in advance.
A method for generating high-purity oxygen, characterized in that high-purity oxygen having an extremely low impurity concentration is obtained by supplying the degassed pure water as replenishment water to an anode chamber of a water electrolysis cell .
【請求項2】 固体電解質膜を隔膜として用いて、陽極
側と陰極側とに分離して、陽極側に純水を供給しながら
純水を電気分解して、陽極側から酸素ガスを、陰極側か
ら水素ガスをそれぞれ発生するように構成した水電解セ
ルからなる水素・酸素発生装置において、純水を脱気して溶存不純物ガス濃度の極めて低い純水を
得るための膜脱気モジュールを備えた脱気装置と、 予め該脱気装置によって脱気した純水を水電解セルの陽
極室に供給する純水供給経路と、 水電解セルの陽極室で生じた溶存不純物ガス濃度の極め
て低い出口水を、水電解セルの陽極室に循環する循環経
を設けたことを特徴とする高純度酸素の発生装置。
2. Using a solid electrolyte membrane as a diaphragm, separating into an anode side and a cathode side, electrolyzing pure water while supplying pure water to the anode side, oxygen gas from the anode side and cathode gas In a hydrogen / oxygen generator consisting of a water electrolysis cell configured to generate hydrogen gas from the sides, pure water is degassed and purified water with extremely low dissolved impurity gas concentration
A deaeration device provided with a membrane deaeration module for obtaining the pure water, which has been deaerated by the deaeration device in advance.
A pure water supply path for supplying to the electrode chamber, and characterized in that the very low outlet water of dissolved impurity gas concentration generated in the anode chamber of the water electrolytic cell, provided a circulation path for circulating the anode compartment of the water electrolysis cell High purity oxygen generator.
JP07128130A 1995-05-26 1995-05-26 Method for generating high-purity oxygen and apparatus therefor Expired - Lifetime JP3080859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07128130A JP3080859B2 (en) 1995-05-26 1995-05-26 Method for generating high-purity oxygen and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07128130A JP3080859B2 (en) 1995-05-26 1995-05-26 Method for generating high-purity oxygen and apparatus therefor

Publications (2)

Publication Number Publication Date
JPH08325771A JPH08325771A (en) 1996-12-10
JP3080859B2 true JP3080859B2 (en) 2000-08-28

Family

ID=14977144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07128130A Expired - Lifetime JP3080859B2 (en) 1995-05-26 1995-05-26 Method for generating high-purity oxygen and apparatus therefor

Country Status (1)

Country Link
JP (1) JP3080859B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4537547B2 (en) * 2000-07-26 2010-09-01 株式会社神鋼環境ソリューション Hydrogen and oxygen supply system
JP6734621B2 (en) * 2014-02-20 2020-08-05 オルガノ株式会社 Ozone water supply method and ozone water supply device
CN110965069B (en) * 2019-12-25 2022-07-12 乔治洛德方法研究和开发液化空气有限公司 Apparatus and method for producing high-purity hydrogen and/or oxygen by electrolyzing water

Also Published As

Publication number Publication date
JPH08325771A (en) 1996-12-10

Similar Documents

Publication Publication Date Title
US5484512A (en) Methods and apparatuses for producing high purity oxygen and hydrogen
JP2905705B2 (en) Reactor water oxygen concentration control device
KR102461892B1 (en) Method and apparatus for providing high-purity diatomic molecules of hydrogen isotopes
JP5192001B2 (en) Operation method of water electrolysis system
US3401100A (en) Electrolytic process for concentrating carbon dioxide
US9487874B2 (en) Method for operating the water electrolysis system
JP3037121B2 (en) Hydrogen / oxygen generator
US5290406A (en) Method for producing ozone
US20180071678A1 (en) Apparatus and method for concentrating hydrogen isotopes
US20200346927A1 (en) In situ apparatus and method for providing deuterium oxide or tritium oxide in an industrial apparatus or method
JP2851544B2 (en) Method and apparatus for removing residual voltage from water electrolysis cell
JP4751594B2 (en) Hydrogen / oxygen gas generator and operation method thereof
JP3080859B2 (en) Method for generating high-purity oxygen and apparatus therefor
JP3132594B2 (en) High-purity oxygen and hydrogen production equipment
US20070007147A1 (en) Multiple phase SO3/SO2/H2O/H2SO4 electrolyzer
JPH093680A (en) Hydrogen/oxygen generator
JP2006131942A (en) Hydrogen feeding system and hydrogen feeding method
TW202319587A (en) Alkaline electrolysis arrangement with deaerator and method therefor
JP2911376B2 (en) Hydrogen / oxygen generator
JP2971779B2 (en) Pure water supply system for hydrogen / oxygen generator
JP3432136B2 (en) Ozone and hydrogen generation method and generator
US11492275B2 (en) Water treatment device and water treatment method
WO1981003035A1 (en) Method of concentrating alkali metal hydroxide in a cascade of hybrid cells
JPS6036302A (en) Separation of hydrogen from gaseous mixture containing hydrogen
JPH08311676A (en) Method for removing dissolved hydrogen of electrolyzer and device therefor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080623

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term