JPH081354U - Fresh water equipment - Google Patents

Fresh water equipment

Info

Publication number
JPH081354U
JPH081354U JP001505U JP150596U JPH081354U JP H081354 U JPH081354 U JP H081354U JP 001505 U JP001505 U JP 001505U JP 150596 U JP150596 U JP 150596U JP H081354 U JPH081354 U JP H081354U
Authority
JP
Japan
Prior art keywords
water
infrared ray
fresh water
far
ray generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP001505U
Other languages
Japanese (ja)
Other versions
JP2575863Y2 (en
Inventor
八郎 吉澤
Original Assignee
八郎 吉澤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 八郎 吉澤 filed Critical 八郎 吉澤
Priority to JP1996001505U priority Critical patent/JP2575863Y2/en
Publication of JPH081354U publication Critical patent/JPH081354U/en
Application granted granted Critical
Publication of JP2575863Y2 publication Critical patent/JP2575863Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Physical Water Treatments (AREA)

Abstract

(57)【要約】 【課題】 水中の塩素その他の有害又は不用物質の除
去。 【解決手段】 給水手段と、取水手段を有する淨水槽の
内側下部に、無数の極微細孔を有する散気盤を設置し、
散気盤に給気手段を設けると共に、前記散気盤の上方に
遠赤外線発生部材を架設し前記淨水槽内に上下方向対流
を生成させる手段を付設させた淨水装置。
(57) [Abstract] [PROBLEMS] Removal of chlorine and other harmful or unnecessary substances from water. SOLUTION: An air diffuser having innumerable ultrafine holes is installed in the inner lower part of a fresh water tank having a water supply means and a water intake means,
A fresh water device in which an air supply means is provided on the air diffuser, and a far infrared ray generating member is installed above the air diffuser to attach means for generating vertical convection in the fresh water tank.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【考案の属する技術分野】[Technical field to which the device belongs]

この考案は、給水を逐次淨水して取水することを目的とした淨水装置に関する 。 The present invention relates to a fresh water device for the purpose of successively freshening the water supply and collecting the water.

【0002】[0002]

【従来の技術】[Prior art]

従来大量水の淨水には曝気方法及び装置、微生物使用する装置が知られており 、飲料水などの淨水には、吸着剤を使用したり、濾過層を通過させる装置が知ら れていた。 Conventionally, aeration methods and devices and devices that use microorganisms have been known for large amounts of fresh water, and devices that use an adsorbent or pass through a filtration layer have been known for fresh water such as drinking water. .

【0003】[0003]

【考案により解決すべき課題】[Problems to be solved by devising]

前記曝気方法及び装置は、ダム、湖、沼などの大量水の溶存酸素量を改善し、 有機固形物の微生物処理については著しい効果をあげているが、飲用に供する為 の塩素、トリハロメタン、赤さび、アオコ等の除去について、飲用に適する程の 淨水効果は期待できない。 Although the aeration method and device improve dissolved oxygen content in large amounts of water in dams, lakes, swamps, etc. and have a remarkable effect on microbial treatment of organic solids, chlorine, trihalomethane, red rust for drinking are provided. As for the removal of blue-green algae, it is not possible to expect a drinking water effect that is suitable for drinking.

【0004】 また近来多用されている吸着剤使用による淨水又は濾過を主体とする淨水につ いても、相当の効果を示すものもあるが、塩素、トリハロメタンなどの除去が不 十分であったり、重金属の除去ができなかったりする問題点があるのみならず、 吸着剤等へ微生物が付着繁殖する為に障害を生じたり、目詰りその他により吸着 剤の効力が失われる為に短期の交換を必要とするなどの問題点があった。また濾 過層を主体とする場合においても、濾過層の目詰りその他、前記各問題点を免れ ることはできなかった。In addition, there are some that show a considerable effect on the fresh water mainly using the adsorbent which has been widely used in recent years or the fresh water mainly composed of filtration, but the removal of chlorine, trihalomethane, etc. is insufficient. In addition to the problem that heavy metals cannot be removed, short-term replacement is required due to the fact that microorganisms adhere to and propagate on the adsorbent, which causes damage, and the effectiveness of the adsorbent is lost due to clogging. There was a problem such as the need. Even when the filter layer is mainly used, the above problems such as clogging of the filter layer cannot be avoided.

【0005】[0005]

【課題を解決するための手段】[Means for Solving the Problems]

この考案は、微細気泡と遠赤外線とを作用させることにより塩素、トリハロメ タン、重金属、赤さび、アオコ等を著しい高率で除去し得ると共に、自己淨化に より遠赤外線発生部材の交換の必要がなく、その上溶存酸素量の改善と、PH調 整できる他、温水に使用し得るなど、前記従来の問題点を悉く解除することに成 功したのである。 This device can remove chlorine, trihalometane, heavy metals, red rust, water-bloom, etc. at a very high rate by the action of fine bubbles and far-infrared rays. In addition to improving the dissolved oxygen content and adjusting the pH, it can be used for hot water, and it has succeeded in eliminating the above-mentioned conventional problems.

【0006】 この考案は、給水手段と取水手段を有する淨水槽の内側下部に無数の極微細孔 を有する散気盤を設置し、該散気盤に給気手段を付与すると共に、前記散気盤の 上方に遠赤外線発生部材を架設したことを特徴とする淨水装置である。次に散気 盤と遠赤外線発生部材とを同一淨水筒に設置し、該淨水筒を給水手段と取水手段 を有する淨水槽内へ着脱自在に設置したことを特徴とする淨水装置である。更に 遠赤外線発生部材を、遠赤外線発生粒子層及び遠赤外線発生連通孔層としたもの である。According to the present invention, an air diffuser having a myriad of microscopic holes is installed in the inner lower part of a fresh water tank having a water supply means and a water intake means, and the air supply means is provided to the air diffuser and This is a water discharge device characterized in that a far infrared ray generating member is installed above the board. Next, the air diffuser and the far-infrared ray generating member are installed in the same water tank, and the water tank is detachably installed in a water tank having water supply means and water intake means. Is. Further, the far-infrared ray-generating member is a far-infrared ray-generating particle layer and a far-infrared ray-generating communicating hole layer.

【0007】 前記における散気盤の微小孔の大きさは、例えば100μ以下、好ましくは5 0μ以下を用い、30μ〜40μが好適である。また空気圧は、所定の空気量を 微細孔から噴出できればよいので、通常0.3kg/cm2 位を用いる。また遠赤外 線発生部材中粒子の大きさは、通過抵抗、接触時間などとの関係で、直径20mm 〜5mmの球状粒子を混合して使用するが必ずしも球状に限定するものではない。 例えば砕石状、粗砂状、網状、棒状などが考えられる。またハニカム状または連 続連通孔の場合には通過抵抗、接触時間との関係で孔径2mm〜5mm程度が好適と される。The size of the micropores of the air diffuser is, for example, 100 μ or less, preferably 50 μ or less, and preferably 30 μ to 40 μ. The air pressure is usually 0.3 kg / cm 2 or so, as long as a predetermined amount of air can be ejected from the fine holes. The size of the particles in the far-infrared ray generating member may be spherical particles having a diameter of 20 mm to 5 mm, which are mixed but used in consideration of passage resistance, contact time, etc., but are not necessarily limited to spherical particles. For example, crushed stones, coarse sands, nets, rods and the like are possible. Further, in the case of a honeycomb shape or a continuous communication hole, a hole diameter of about 2 mm to 5 mm is suitable in view of the passage resistance and the contact time.

【0008】 前記遠赤外線発生部材と、微細気泡量とは、求める淨水能力により異なるが、 毎分1,800ccの淨水する場合に、1kg(比重2.0〜3.0)の遠赤外線発 生部材を用い、平均径40μの無数の微小孔を用いた(例えば10万個/20cm2 )散気盤から、毎分3,000ccの微細気泡を噴出させた所、塩素及び重金属 をほぼ100%除去できた。[0008] The far-infrared ray generating member and the amount of fine bubbles differ depending on the required water-removal capacity, but in the case of 1,800 cc / minute of water-replenishment, far-infrared ray of 1 kg (specific gravity 2.0 to 3.0) When a 3,000 cc minute bubble was ejected from a diffuser using a generation member and a myriad of micropores with an average diameter of 40 μ (eg 100,000 / 20 cm 2 ), chlorine and heavy metals were almost eliminated. 100% could be removed.

【0009】 前記装置において、淨水槽の内壁に重金属その他の折出物が付着するので、1 ヶ月〜3ヶ月に1回水洗することが好ましい。またPH調整については、原水の PHにより多少異なるが、例えばPH7.0の原水が、この考案の淨水槽を通過 することでPH7.3となった。また溶存酸素量は飽和状態になることが認めら れた。In the above apparatus, since heavy metals and other protrusions adhere to the inner wall of the fresh water tank, it is preferable to wash with water once every 1 to 3 months. Regarding the pH adjustment, although it differs slightly depending on the pH of the raw water, for example, the raw water of pH 7.0 passed to the fresh water tank of this invention to reach pH 7.3. It was also found that the amount of dissolved oxygen was saturated.

【0010】 前記遠赤外線発生部材の設置位置と、散気盤の設置位置とに、特別の関係はな いが対流生成上、上下関係位置が良好である。There is no special relationship between the installation position of the far-infrared ray generating member and the installation position of the air diffuser, but the vertical position is favorable in terms of convection generation.

【0011】 この考案でいう遠赤外線発生連通孔層は、例えば、プラスチック性の線織体を 網目状にからみ合せて、直径1mm〜3mmの連続孔を無数に形成する。この保持体 を石膏型内に入れた後、セラミックス泥漿を、前記型内にし込み、一定時間放置 すると、保持体表面にセラミックス泥漿が付着する。ついで付着しないセラミッ クス泥漿を取り除き(型を倒にする)、前記型を外して乾燥後、施紬焼等の工程 を経て焼結すれば(特公平1−23435号)、この考案にいう遠赤外線発生連 通孔層ができる。In the far-infrared ray generating communication hole layer according to the present invention, for example, a plastic wire woven material is entangled in a mesh to form an infinite number of continuous holes having a diameter of 1 mm to 3 mm. After the holder is put in a plaster mold, the ceramic slurry is put into the mold and left for a certain period of time, and the ceramic slurry adheres to the surface of the holder. Then, the ceramic slurry which does not adhere is removed (the mold is turned over), the mold is removed and dried, and then the powder is sintered through a process such as pomegranate firing (Japanese Patent Publication No. 1-23435). An infrared ray generating hole layer is formed.

【0012】 前記の外、セラミックス泥漿と、可燃性繊維との混合物より盤状物を成形し、 この盤状物を焼成して、前記可燃繊維を消失させれば、多孔性セラミックス盤が できる。[0012] In addition to the above, if a plate-like material is formed from a mixture of ceramic sludge and combustible fibers, and the plate-like material is fired to eliminate the combustible fibers, a porous ceramic disk can be obtained.

【0013】 更にセラミックス泥漿に発泡剤を混入し、成形固化後焼成することにより、連 続孔成形物を得ることができる。Further, a continuous-hole molded product can be obtained by mixing a foaming agent in the ceramic slurry, molding and solidifying and firing the mixture.

【0014】[0014]

【考案の実施の形態】[Embodiment of device]

この考案は、給水手段と取水手段を有する淨水槽の内側下部に無数の極微細孔 を有する散気盤を設置し、該散気盤に給気手段を付与すると共に、前記散気盤の 上方に遠赤外線発生部材を架設し、前記淨水槽内に上下方向対流を生成させたも のである。他の考案は散気盤と遠赤外線発生部材とを同一淨水筒に設置し、該淨 水筒を給水手段と取水手段を有する淨水槽内へ着脱自在に設置したものである。 This invention installs an air diffuser having innumerable ultrafine holes in the inner lower part of a fresh water tank having a water supply means and a water intake means, and provides the air supply means to the air diffuser and above the air diffuser. A far-infrared ray generating member was installed on the above to generate vertical convection in the fresh water tank. In another invention, the air diffuser and the far-infrared ray generating member are installed in the same water tank, and the water tank is detachably installed in a water tank having water supply means and water intake means.

【0015】 更に他の考案は、遠赤外線発生部材を、直径20mm〜5mmの球状の遠赤外線発 生粒子層及び孔径2mm〜5mmの連通孔の遠赤外線発生連通孔層としたものである 。Still another invention is that the far-infrared ray generating member is a spherical far-infrared ray generating particle layer having a diameter of 20 mm to 5 mm and a far-infrared ray generating communicating hole layer having a communicating hole having a hole diameter of 2 mm to 5 mm.

【0016】[0016]

【作用】[Action]

この考案は遠赤外線と極微細気泡を共に作用させるので、塩素、赤さび、アオ コその他の重金属などの有害物質を除去乃至激減させる。またPHと溶存酸素量 を改善する。更に遠赤外線発生部材は極微細気泡を受ける為に目詰りと汚損を防 止される。 This device uses far-infrared rays and ultrafine bubbles together to remove or drastically reduce harmful substances such as chlorine, red rust, blue water and other heavy metals. It also improves PH and dissolved oxygen content. Further, the far-infrared ray generating member receives extremely fine bubbles, so that clogging and contamination are prevented.

【0017】[0017]

【実施例1】 容量10リットルの円筒状の淨水槽1の内側へ、淨水筒2を設置し、淨水筒2 の上部内側へ、直径20mm〜5mmの遠赤外線発生球体3、3を1kg充填して積層 し、その下方に5,500個/cm2 の極微小孔を有する散気盤4を設置し、散気 盤4の下部に0.3kg/cm2 の圧力で3,000cc/分の空気を給送した所、3 0分で残留塩素0となり、溶存酸素量を増加した。Example 1 A water tank 2 is installed inside a cylindrical water tank 1 having a capacity of 10 liters, and 1 kg of far infrared ray generating spheres 3 and 3 having a diameter of 20 mm to 5 mm are placed inside the upper part of the water tank 2. After filling and stacking, a diffuser board 4 with 5,500 micro holes / cm 2 is installed underneath it, and below the diffuser board 4 at a pressure of 0.3 kg / cm 2 at 3,000 cc / When the minute air was fed, residual chlorine became 0 in 30 minutes, and the amount of dissolved oxygen increased.

【0018】 前記におけるPHは7.0から7.3に変った。この場合の水温20℃であっ た(越谷市の水道水を用いて実験した)。The pH in the above was changed from 7.0 to 7.3. The water temperature in this case was 20 ° C (experiment using tap water from Koshigaya City).

【0019】[0019]

【実施例2】 図1において、淨水槽1の内側中央部に淨水筒2を脚片5、5により立設し、 前記淨水筒2の下部に支板6を固定し、支板6上へ散気盤4の嵌挿筒7を固定す る。この嵌挿筒7は有底であって、上部開口部に、無数の微小孔(例えば30μ 、5,500個/cm2 )を有する散気盤4を密嵌してある(ゴムパッキンを介在 し、気密にする)。前記嵌挿筒7の底板7aと、散気盤4の下面との間の空間8 に、送気管9が開口し、送気管9には、送気ホース10の一端が連結され送気ホ ース10の他端はエアポンプ11の吐出口に連結してある。前記エアポンプ11 は、前記淨水槽1の本体カバー12上へ設置されている。Embodiment 2 In FIG. 1, a fresh water cylinder 2 is erected by leg pieces 5 and 5 at the center of the inside of the fresh water tank 1, and a support plate 6 is fixed to the lower part of the fresh water cylinder 2 to support the support plate 6. The fitting tube 7 of the air diffuser 4 is fixed to the top. The fitting / inserting cylinder 7 has a bottom, and an air diffuser plate 4 having innumerable minute holes (for example, 30 μ, 5,500 / cm 2 ) is tightly fitted in an upper opening (a rubber packing is interposed). And make it airtight). An air supply pipe 9 is opened in a space 8 between the bottom plate 7a of the fitting tube 7 and the lower surface of the air diffuser 4, and one end of an air supply hose 10 is connected to the air supply pipe 9 to connect the air supply hoses. The other end of the space 10 is connected to the discharge port of the air pump 11. The air pump 11 is installed on the main body cover 12 of the fresh water tank 1.

【0020】 前記散気盤4の上方には、網体13(又はパンチングメタル板)を横に張設し 、網板13の上へ遠赤外線発生球体3(直径15mm、5mm、混用、遠赤ボール、 日本板硝子株式会社製)を多数充填する。前記遠赤外線発生球体3は大球と小球 を混用して、間隙を小さくする。A net 13 (or a punching metal plate) is laterally stretched above the air diffuser 4, and the far-infrared ray generating spheres 3 (diameter 15 mm, 5 mm, mixed, far-red) are placed on the net plate 13. Balls, made by Nippon Sheet Glass Co., Ltd.) are filled. The far-infrared ray generating sphere 3 mixes a large sphere and a small sphere to reduce the gap.

【0021】 前記遠赤外線発生球体3の上部には、押えとして網板13aを載置する。前記 淨水槽1の一側上部には取水管14を連結し、他側上部から給水管15を内装し 、給水管15の先端は前記散気盤4の下方に開口させてある。図中16はエアポ ンプカバー、17はスイッチ、18は給水管15のバルブである。On the upper part of the far-infrared ray generating sphere 3, a mesh plate 13a is placed as a presser. An intake pipe 14 is connected to the upper part of one side of the fresh water tank 1, and a water supply pipe 15 is installed from the upper part of the other side. The tip of the water supply pipe 15 is opened below the air diffuser plate 4. In the figure, 16 is an air pump cover, 17 is a switch, and 18 is a valve of the water supply pipe 15.

【0022】 前記実施例の動作について説明する。The operation of the above embodiment will be described.

【0023】 先づバルブ18を開くと、水は矢示19のように供給され、矢示20のように 淨水槽1内へ放出される。このようにして水位が21に達し(又は相当の水位に なったならば)スイッチ17を入れてエアポンプ11を始動すると共に、バルブ 18を閉にする。エアポンプ11の始動により、加圧エアが矢示22のように送 気ホース10を介して嵌挿筒7の空間8に入るので、加圧空気は矢示23のよう に散気盤4を通過し、微細気泡となって矢示24のように上昇し、更に矢示25 のように遠赤外線発生層(球体の充填による層)を通過する。このように気泡が 上昇すると、必然的に付近の水も矢示24と同方向へ上昇するので、淨水槽の下 側内壁部の水は矢示26の方向へ流動し、全体として矢示24、25、27、2 8、26と対流を開始する。このようにして数分〜30分間に全ての水が処理さ れる。When the valve 18 is opened first, water is supplied as shown by an arrow 19 and is discharged into the fresh water tank 1 as shown by an arrow 20. In this way, when the water level reaches 21 (or when the water level reaches a considerable level), the switch 17 is turned on to start the air pump 11, and the valve 18 is closed. When the air pump 11 is started, the pressurized air enters the space 8 of the fitting tube 7 through the air supply hose 10 as indicated by the arrow 22, so that the pressurized air passes through the air diffuser 4 as indicated by the arrow 23. Then, it becomes fine bubbles and rises as shown by the arrow 24, and further passes through the far-infrared ray generating layer (layer formed by filling the sphere) as shown by the arrow 25. When the bubbles rise in this way, the water in the vicinity also inevitably rises in the same direction as the arrow 24, so that the water on the lower inner wall of the fresh water tank flows in the direction of arrow 26, and as a whole, the arrow 24 shows. , 25, 27, 28, 26 start convection. In this way, all the water is treated within a few minutes to 30 minutes.

【0024】 処理能力により異なるけれども、10リットルの水に対し、遠赤外線発生球体 1kg、加圧空気3,000cc/分の場合には、20分程度で完全淨化(塩素0) の状態となるので、スイッチを切る。前記において分離した塩素ガスは水面上の 空間に上昇し、ついで取水栓14その他の空隙から外界へ排出される。次に水を 必要とする場合には、バルブ18を開くことにより(この場合には手動又は連動 でスイッチを入れ、又はスイッチを切らないでおく)。水は送水管15より淨水 槽1内へ放出され、淨水済の水と混入しつつ上昇し、気泡と混合すると共に、遠 赤外線発生層を通過して処理され、矢示29、30のように取水栓から供給され る。Although it depends on the treatment capacity, if 10 liters of water produce far infrared ray generating spheres of 1 kg and pressurized air of 3,000 cc / min, it takes about 20 minutes to completely clean (zero chlorine). ,turn off the switch. The chlorine gas separated in the above rises to the space above the water surface and is then discharged to the outside through the water intake plug 14 and other voids. The next time water is needed, by opening valve 18 (in this case manually or interlockingly switched on or not switched off). The water is discharged from the water pipe 15 into the fresh water tank 1, rises while mixing with the fresh water, mixes with the bubbles, and is processed through the far-infrared ray generation layer. Is supplied from the water tap.

【0025】 前記のように大部分の淨水済の中へ新しく送水された水は混入し、速かに淨水 されるので、必然的にほぼ完全淨水された水が取り出される。As described above, most of the fresh water is mixed with the freshly sent water, and the fresh water is swiftly supplied. Therefore, the almost completely freshened water is necessarily taken out.

【0026】 前記において、通常の水道水は、PH7.0位であるが、前記装置の処理によ りPH7.3位に変化し、かつ溶存酸素量も増加するので必然的に美味しい水と なる。In the above description, ordinary tap water has a pH of 7.0, but it is inevitably delicious because the pH of the tap water changes to 7.3 and the amount of dissolved oxygen increases due to the treatment of the device. .

【0027】 前記は水道水について説明したが加温水(例えば温水器を介し50℃〜70℃ )であっても同様の処理ができる。加温水の場合には遠赤外線発生球体の活性化 が進み淨化効率の向上も認められた。Although tap water has been described above, the same treatment can be performed with heated water (for example, 50 ° C. to 70 ° C. through a water heater). In the case of heated water, activation of far-infrared ray generating spheres proceeded, and improvement in cleaning efficiency was also observed.

【0028】[0028]

【実施例3】 図2について説明する。Third Embodiment FIG. 2 will be described.

【0029】 図2の実施例は、前記実施例2における淨水筒、送気ホース、送気管を本体カ バー12及び取付板31に固定し、淨水槽1と前記本体カバー12とを止ねじ3 2、32で固定し、淨水槽1のみを容易に取外し得るようにしたものである。In the embodiment shown in FIG. 2, the fresh water cylinder, the air supply hose, and the air supply pipe in the second embodiment are fixed to the main body cover 12 and the mounting plate 31, and the fresh water tank 1 and the main body cover 12 are fixed with a set screw. It is fixed with 32 and 32 so that only the fresh water tank 1 can be easily removed.

【0030】 この実施例における淨水操作は全て実施例2と同一につきその説明を省略する 。The operation of the fresh water in this embodiment is the same as that of the second embodiment, and the description thereof is omitted.

【0031】 前記実施例において、止ねじ32、32を外すと、淨水槽1のみ取外すことが できるので、これを取外し、その内側を自由且つ完全に洗淨することができる。In the above-mentioned embodiment, when the set screws 32, 32 are removed, only the fresh water tank 1 can be removed. Therefore, this can be removed and the inside can be washed freely and completely.

【0032】 この考案の装置を使用すると水中の塩素を除去する外、赤さび、アオコ、重金 属類を分離し、その分離物が淨水槽1の内壁へ付着するので1ヶ月〜3ヶ月毎に 清掃することが好ましい。従って実施例3の構造にすれば、清掃が容易となり、 淨水筒を取外す手間も不必要となる。When the device of the present invention is used to remove chlorine in water, red rust, water-bloom, and heavy metal are separated, and the separated substances adhere to the inner wall of the fresh water tank 1, so cleaning is performed every 1 to 3 months. Preferably. Therefore, with the structure of the third embodiment, cleaning is facilitated, and labor for removing the water bottle is unnecessary.

【0033】[0033]

【実施例4】 図3、4について説明する。Fourth Embodiment A description will be given of FIGS.

【0034】 この実施例は、前記各実施例の遠赤外線発生球体3の層に代えて、遠赤外線ハ ニカム層33(図3)又は遠赤外線連通孔層34を用いたものである。前記遠赤 外線発生ハニカム層33又は遠赤外線発生連通孔層34の外周は、共にセラミッ クス製外筒35であって、遠赤外線を発生する。In this embodiment, a far infrared ray honeycomb layer 33 (FIG. 3) or a far infrared ray communicating hole layer 34 is used in place of the layer of the far infrared ray generating sphere 3 of each of the above examples. The outer periphery of the far infrared ray generating honeycomb layer 33 or the far infrared ray communicating hole layer 34 is an outer cylinder 35 made of ceramics, and generates far infrared rays.

【0035】 この実施例は、遠赤外線発生球体に代えて遠赤外線発生ハニカム層33又は遠 赤外線発生連通孔層34を用いたもので、他の構造は総て実施例1と同一につき 、淨水態様についての説明を省略した。この遠赤外線発生ハニカム等は、小球体 より通水抵抗が少なく、かつ接触面積が著しく多くなるので、淨水効率が頗る良 好である。例えば直径5mm〜15mmの球体混合層の厚さ100mmに対し、同一平 面積ハニカム層はほぼ50mmで同一作用効果を奏する。図中36、36aは止リ ングである。In this embodiment, a far infrared ray generating honeycomb layer 33 or a far infrared ray generating communicating hole layer 34 is used in place of the far infrared ray generating sphere, and the other structures are all the same as those in the first embodiment. The description of the embodiment is omitted. This far-infrared ray-generating honeycomb or the like has a lower water resistance than the small spheres and has a remarkably large contact area, so that it is preferable that the drainage efficiency is outstanding. For example, the thickness of the spherical mixed layer having a diameter of 5 mm to 15 mm is 100 mm, and the honeycomb layer having the same plane area has a thickness of about 50 mm. In the figure, 36 and 36a are stop rings.

【0036】[0036]

【考案の効果】[Effect of device]

この考案によれば、処理すべき水に極微細気泡を散気させると共に、遠赤外線 を作用させるので、水中に溶解又は混入している塩素、赤さび、アオコその他の 有害又は不用物を除去し得る効果がある。 According to this invention, the ultra-fine bubbles are diffused into the water to be treated and the far-infrared rays act on it, so that it is possible to remove chlorine, red rust, water-bloom and other harmful or unnecessary substances dissolved or mixed in the water. effective.

【0037】 又この考案の装置によれば、淨水槽内へ、極微細気泡発生手段と、遠赤外線発 生手段とを供えた淨水筒を設置したので、一旦淨水槽内全部の水を淨化しておけ ば、爾後の送水は極めて効率よく淨化できる効果がある。Further, according to the device of this invention, since the fresh water cylinder provided with the ultrafine bubble generating means and the far-infrared ray generating means is installed in the fresh water tank, once the water in the fresh water tank is completely filled. If the wastewater is sterilized, it is effective to sew water after the sewage treatment very efficiently.

【0038】 この考案で用いる淨化手段は、遠赤外線発生粒子又は遠赤外線発生連通孔層と 、極微細気泡発生の散気盤とを結合させたものであるから、長期の使用に際して も淨水能力を低減するおそれがない。従って短期(例えば3ヶ月、6ヶ月毎)の 取換えを要しない効果がある。更に遠赤外線処理した水は、長く変質しない効果 もある。また遠赤外線発生粒子を直径20mm〜5mmとし、遠赤外線発生連通層の 孔径を2mm〜5mmとし水、空気の通過抵抗、接触時間を最適としたので、淨水効 率を高める効果がある。The sterilization means used in the present invention is a combination of the far-infrared ray-generating particles or the far-infrared ray-generating communicating hole layer and the diffuser disc for generating ultrafine bubbles, and therefore has the ability to rectify water even during long-term use. There is no fear of reducing Therefore, there is an effect that replacement in a short period (for example, every 3 months or 6 months) is not required. Further, the water treated with far infrared rays has an effect of not deteriorating for a long time. Further, the far-infrared ray-generating particles have a diameter of 20 mm to 5 mm, the far-infrared ray-generating communicating layer has a pore diameter of 2 mm to 5 mm, and water, air passage resistance, and contact time are optimized, which has the effect of increasing the water efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】この考案の実施装置の縦断正面図。FIG. 1 is a vertical sectional front view of a device for carrying out the present invention.

【図2】同じく他の実施装置の縦断正面図。FIG. 2 is a vertical sectional front view of another embodying apparatus.

【図3】同じく他の実施装置の縦断正面図。FIG. 3 is a vertical sectional front view of another embodiment of the same.

【図4】同じく遠赤外線発生連続通気層の実施例の断面
拡大図。
FIG. 4 is an enlarged cross-sectional view of an example of a far-infrared ray generating continuous ventilation layer.

【符号の説明】[Explanation of symbols]

1 淨水槽 2 淨水筒 3 遠赤外線発生球体 4 散気盤 5 脚片 6 支板 7 嵌挿筒 8 空間 9 送気管 10 送気ホース 11 エアポンプ 12 本体カバー 13、13a 網板 14 取水栓 15 給水管 16 エアポンプカバー 17 スイッチ 18 バルブ 1 Water tank 2 Water tank 3 Far-infrared ray generating sphere 4 Air diffuser 5 Leg piece 6 Support plate 7 Fitting tube 8 Space 9 Air supply pipe 10 Air supply hose 11 Air pump 12 Main body cover 13, 13a Net plate 14 Water tap 15 Water supply Pipe 16 Air pump cover 17 Switch 18 Valve

Claims (3)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 給水手段と取水手段を有する淨水槽の内
側下部に無数の極微細孔を有する散気盤を設置し、該散
気盤に給気手段を付与すると共に、前記散気盤の上方に
遠赤外線発生部材を架設し、前記淨水槽内に上下方向対
流を生成させる手段を付設させたことを特徴とする淨水
装置。
1. An air diffuser having innumerable extra fine holes is installed in the lower inner part of a fresh water tank having a water supply means and a water intake means, and the air supply means is attached to the air diffuser and at the same time, A fresh water device characterized in that a far infrared ray generating member is installed above and a means for generating vertical convection is additionally provided in the fresh water tank.
【請求項2】 散気盤と遠赤外線発生部材とを同一淨水
筒に設置し、該淨水筒を給水手段と取水手段を有する淨
水槽内へ着脱自在に設置したことを特徴とする請求項1
記載の淨水装置。
2. An air diffuser and a far-infrared ray generating member are installed in the same fresh water cylinder, and the fresh water cylinder is detachably installed in a fresh water tank having a water supply means and a water intake means. Claim 1
The described fresh water device.
【請求項3】 遠赤外線発生部材を、直径20mm〜5mm
の球状の遠赤外線発生粒子層及び孔径2mm〜5mmの遠赤
外線発生連通孔層とした請求項1又は2記載の淨水装
置。
3. The far infrared ray generating member has a diameter of 20 mm to 5 mm.
3. The water discharge device according to claim 1, wherein the spherical far-infrared ray generating particle layer and the far-infrared ray generating communication hole layer having a hole diameter of 2 mm to 5 mm are used.
JP1996001505U 1991-10-07 1996-03-08 Water purifier Expired - Lifetime JP2575863Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1996001505U JP2575863Y2 (en) 1991-10-07 1996-03-08 Water purifier

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-287147 1991-10-07
JP28714791 1991-10-07
JP1996001505U JP2575863Y2 (en) 1991-10-07 1996-03-08 Water purifier

Publications (2)

Publication Number Publication Date
JPH081354U true JPH081354U (en) 1996-09-03
JP2575863Y2 JP2575863Y2 (en) 1998-07-02

Family

ID=26480139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1996001505U Expired - Lifetime JP2575863Y2 (en) 1991-10-07 1996-03-08 Water purifier

Country Status (1)

Country Link
JP (1) JP2575863Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5172618U (en) * 1974-12-05 1976-06-08

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0316688A (en) * 1989-06-15 1991-01-24 Toshiba Ceramics Co Ltd Circulating and cleaning device for hot water
JPH03137985A (en) * 1989-10-23 1991-06-12 Takumi Kawada Air feeder for keeping activity of water

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0316688A (en) * 1989-06-15 1991-01-24 Toshiba Ceramics Co Ltd Circulating and cleaning device for hot water
JPH03137985A (en) * 1989-10-23 1991-06-12 Takumi Kawada Air feeder for keeping activity of water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5172618U (en) * 1974-12-05 1976-06-08

Also Published As

Publication number Publication date
JP2575863Y2 (en) 1998-07-02

Similar Documents

Publication Publication Date Title
FI3552679T3 (en) Horizontal-flow sand filtration basin and water treatment process thereof
US3587861A (en) Apparatus and method of filtering solids from a liquid effluent
JP2000343095A5 (en) Activated sludge treatment apparatus and activated sludge treatment method
KR101794743B1 (en) Filtration System By Use Of Powdered Activated Carbon
TW201440642A (en) Liquid and bubble separator of water circulation system
JPH05200382A (en) Method and device for clarifying water
JPH081354U (en) Fresh water equipment
JPH0677650B2 (en) Upflow filtration method and device
US6306304B1 (en) Aerobic treatment of septic tank effluent
JPH0728955Y2 (en) Water purifier
JPH09164304A (en) Filter water purifier
TWI225801B (en) High-speed horizontal filtering device using fiber filter medium
US3881700A (en) Water treatment plant
US3442387A (en) Filtering apparatus
JPH06218381A (en) Generating apparatus for purified water and activated water
JPH0111357Y2 (en)
CN208916964U (en) A kind of enterprise's sewage purification recycling processing unit
JP3025051U (en) Sewage purification device
CN208532542U (en) Domestic sewage processing system associated with a kind of MBR and MAR
JP3374252B2 (en) Input water purifier and water purification method using the same
JPH0663593A (en) Water purifying method and device for closed water area
JPH08215693A (en) Waste water treatment apparatus
JP3569978B2 (en) Aerobic treatment method for wastewater containing organic matter and its aerobic treatment device
JPS6314959Y2 (en)
JP3164138B2 (en) Purification equipment for pond water, etc.