JPH081345B2 - Ultrafine frozen particle generator - Google Patents

Ultrafine frozen particle generator

Info

Publication number
JPH081345B2
JPH081345B2 JP62313667A JP31366787A JPH081345B2 JP H081345 B2 JPH081345 B2 JP H081345B2 JP 62313667 A JP62313667 A JP 62313667A JP 31366787 A JP31366787 A JP 31366787A JP H081345 B2 JPH081345 B2 JP H081345B2
Authority
JP
Japan
Prior art keywords
frozen
vapor
ultrafine
cooling
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62313667A
Other languages
Japanese (ja)
Other versions
JPH01155168A (en
Inventor
益太 多田
隼明 福本
寿朗 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62313667A priority Critical patent/JPH081345B2/en
Priority to DE3844648A priority patent/DE3844648C2/de
Priority to DE3804694A priority patent/DE3804694A1/en
Priority to DE3844649A priority patent/DE3844649C2/de
Priority to US07/177,784 priority patent/US4932168A/en
Publication of JPH01155168A publication Critical patent/JPH01155168A/en
Priority to US07/470,226 priority patent/US5025597A/en
Priority to US07/470,372 priority patent/US5035750A/en
Publication of JPH081345B2 publication Critical patent/JPH081345B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はブラスト、クリーニング等の表面処理用の
砥粒、研摩材等として用いられる極微細な氷粒等の凍結
粒子を生成し、物質の被処理面に噴射するための超微細
凍結粒子の生成装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention produces frozen particles such as extremely fine ice particles used as abrasives for surface treatment such as blasting and cleaning, and abrasives, and The present invention relates to a device for producing ultrafine frozen particles for injection onto a surface to be processed.

〔従来の技術〕[Conventional technology]

従来から、ブラスト、クリーニング等の表面処理用の
砥粒、研摩材等として用いられる微細凍結粒子の生成装
置として種々の構造のものが提案されているが、一般的
には、第4図に示すように、凍結粒子生成容器111の下
部に液体窒素等の冷媒112を収容するとともに、凍結粒
子生成容器111の上部に、水等の被凍結液を供給する供
給管113及び噴霧用のガス導入管114とを接続した噴霧器
115を配設し、被凍結液をガス導入管114から導入した噴
霧用ガスと混合した状態で噴霧器115から冷媒112の液面
に向けて噴霧することにより、微粒子化された被凍結液
すなわち微粒液116aを冷媒112との熱交換により凍結さ
せて微細な凍結粒子116bを生成させた後、スクリューコ
ンベア等の搬送手段120により回収容器117へ移送し、こ
の凍結粒子116bを噴射ガス118とともに噴射ノズル119よ
り非処理物121の表面に噴射するように構成している。
第5図は、このようにして生成された凍結粒子の状態を
示す顕微鏡写真であり、この顕微鏡写真から粒径が不均
一で平均して略100μmであることが確認された。
Conventionally, various structures have been proposed as an apparatus for producing fine frozen particles used as abrasive grains for surface treatment such as blasting and cleaning, as an abrasive, etc., but generally, it is shown in FIG. As described above, a refrigerant 112 such as liquid nitrogen is stored in the lower portion of the frozen particle generation container 111, and a supply pipe 113 for supplying a liquid to be frozen such as water and a gas introduction pipe for spraying are provided in the upper portion of the frozen particle generation container 111. A sprayer connected to 114
115 is provided, and the liquid to be frozen is sprayed from the atomizer 115 toward the liquid surface of the refrigerant 112 in a state where the liquid to be frozen is mixed with the spray gas introduced from the gas introduction pipe 114, whereby the liquid to be frozen, that is, fine particles After the liquid 116a is frozen by heat exchange with the refrigerant 112 to generate fine frozen particles 116b, it is transferred to the recovery container 117 by the transport means 120 such as a screw conveyor, and the frozen particles 116b are injected together with the injection gas 118 into an injection nozzle. It is configured so as to be sprayed from the surface 119 onto the surface of the unprocessed material 121.
FIG. 5 is a photomicrograph showing the state of the frozen particles thus produced, and it was confirmed from this photomicrograph that the particle size was non-uniform and about 100 μm on average.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

以上のように構成された従来の微細凍結粒子の生成装
置では、噴霧ガスによる噴霧作用によって微粒液116aを
生成しているので、その微粒液116aの粒子の微小化には
限界があり、せいぜい20μm程度の粒径の凍結粒子を生
成し得るに過ぎなかった。ところが、特に近年、超微細
化した凍結粒子を被処理物の表面に噴射することによ
り、従来では困難とされていた各種の物質表面に付着す
る微細な異物、塵埃、破砕片、バリ等の除去や、特に華
奢な物品、精密加工を要する物品或は微細な凹凸を有す
る物品等のクリーニング、ブラスト処理等も良好に行い
うる可能性がひらけてきた。このため、粒径が数μm程
度以下の超微細凍結粒子の生成が強く要請されるように
なってきたが、上記したような従来装置ではこのような
要請に応えることができなかった。
In the conventional apparatus for producing fine frozen particles configured as described above, since the fine particle liquid 116a is produced by the atomizing action of the atomizing gas, there is a limit to the miniaturization of the particles of the fine particle liquid 116a, and at most 20 μm. Only frozen particles of moderate size could be produced. However, particularly in recent years, by spraying ultrafine frozen particles onto the surface of the object to be treated, it has been possible to remove fine foreign matter, dust, crushed pieces, burrs, etc. adhering to the surface of various substances, which has been difficult in the past. In addition, there has been a possibility that cleaning, blasting and the like of particularly delicate articles, articles requiring precision processing or articles having fine irregularities can be favorably performed. Therefore, there has been a strong demand for generation of ultrafine frozen particles having a particle diameter of about several μm or less, but the above-described conventional apparatus cannot meet such demand.

また、被凍結液を噴霧器115により噴霧して凍結粒子
を生成した場合、その粒径分布はバラツキが大きいた
め、クリーニングやブラスト等の効果にもバラツキがで
きることになり、特に、華奢な物品や精密加工を要する
物品に対しては、凍結粒子を噴射した際に、粒径が比較
的大きな粒子により被処理面が損傷される等の悪影響を
及ぼす恐れがあった。
Further, when the liquid to be frozen is sprayed by the sprayer 115 to generate frozen particles, the particle size distribution has a large variation, and therefore the effects such as cleaning and blasting can also vary, and particularly, delicate articles and precision When frozen particles are sprayed on an article requiring processing, there is a possibility that particles having a relatively large particle size may adversely affect the surface to be processed.

この発明は上記のような問題点を解決するためになさ
れたもので、被凍結液を略均一の粒径で超微粒化して凍
結させて、均一な超微細凍結粒子を得ることができると
ともに、その超微細凍結粒子を被処理面に効果的に噴射
することのできる、超微細凍結粒子の生成装置を提供す
ることを目的とするものである。
The present invention has been made to solve the above problems, and freezes the liquid to be frozen into ultrafine particles with a substantially uniform particle size, and can obtain uniform ultrafine frozen particles, It is an object of the present invention to provide a device for producing ultrafine frozen particles, which can effectively inject the ultrafine frozen particles onto a surface to be processed.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る超微細凍結粒子の生成装置は、被凍結
液の蒸気を発生させる蒸気発生手段と、前記蒸気発生手
段から供給される被凍結液の蒸気を冷媒との熱交換によ
り凍結させて超微細凍結粒子を生成する冷却手段とから
構成される。
The apparatus for producing ultra-fine frozen particles according to the present invention comprises a steam generating means for generating a vapor of a liquid to be frozen and a vapor of the liquid to be frozen supplied from the vapor generating means to be frozen by heat exchange with a refrigerant. Cooling means for producing fine frozen particles.

〔作用〕 この発明における超微細凍結粒子の生成装置は、蒸気
発生手段により発生された被凍結液の蒸気を冷媒と熱交
換することによって、被凍結液から略均一な粒径を有す
る超微細な凍結粒子を生成させて、この超微細凍結粒子
を被処理物に噴射することによって、華奢な物品、精密
加工を要する物品、或は微細な凹凸を有する物品の表面
に、損傷を与えることなく均一且つ効果的にクリーニン
グやブラスト処理等を施すことができる。
[Operation] The apparatus for producing ultra-fine frozen particles according to the present invention is such that the vapor of the liquid to be frozen generated by the vapor generating means is heat-exchanged with the refrigerant to obtain an ultra-fine particle having a substantially uniform particle size from the liquid to be frozen. By producing frozen particles and spraying these ultra-fine frozen particles onto the object to be treated, the surface of delicate articles, articles that require precision processing, or articles with fine irregularities can be evenly distributed without damage. In addition, it is possible to effectively carry out cleaning and blasting.

〔実施例〕〔Example〕

以下、この発明の一実施例を図面を参照して説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

第1図には、この発明による超微細凍結粒子の生成装
置の一実施例が概略的に示されている。この図におい
て、超微細凍結粒子の生成装置は、被凍結液の蒸気を発
生させる蒸気発生手段Vと、その蒸気発生手段Vから供
給される被凍結液の蒸気を冷媒との熱交換により凍結さ
せて超微細凍結粒子を生成する冷却手段Cとから構成さ
れる。また、冷却手段Cには、該冷却手段Cで生成され
た超微細凍結粒子を被処理物に向けて噴射する噴射弁等
の噴射手段Iが接続されている。
FIG. 1 schematically shows an embodiment of an apparatus for producing ultrafine frozen particles according to the present invention. In this figure, a device for producing ultrafine frozen particles freezes a vapor generating means V for generating vapor of a liquid to be frozen and vapor of the liquid to be frozen supplied from the vapor generating means V by heat exchange with a refrigerant. And a cooling means C for generating ultrafine frozen particles. Further, the cooling means C is connected to an injection means I such as an injection valve for injecting the ultrafine frozen particles generated by the cooling means C toward the object to be processed.

蒸気発生手段Vは、被凍結液1を収容する密閉容器2
と、その密閉容器2内の被凍結液1を加熱して蒸気を発
生させる加熱手段3とからなり、加熱手段3は、例えば
密閉容器2の近傍、図示例では底部に配置されたヒータ
ーである。また、密閉容器2の被凍結液1の上方には、
蒸気の温度及び圧力を測定する温度計2a及び圧力計2bが
それぞれ設けられている。密閉容器2内の飽和蒸気量は
密閉容器2の内部圧力及び温度に依存するので、温度計
2a及び圧力計2bの指示値によりヒーター3の出力を制御
して飽和蒸気量を調節する。
The steam generating means V is a closed container 2 containing the liquid to be frozen 1.
And heating means 3 for heating the liquid to be frozen 1 in the closed container 2 to generate steam. The heating means 3 is a heater arranged in the vicinity of the closed container 2, for example, at the bottom in the illustrated example. . In addition, above the liquid to be frozen 1 in the closed container 2,
A thermometer 2a and a pressure gauge 2b for measuring the temperature and pressure of steam are provided, respectively. Since the amount of saturated vapor in the closed container 2 depends on the internal pressure and temperature of the closed container 2, a thermometer
The output of the heater 3 is controlled by the indicated values of 2a and the pressure gauge 2b to adjust the saturated vapor amount.

冷却手段Cは一端を蒸気発生手段Vの上部に接続され
るとともに、他端を噴射手段Iに接続された漏斗状の冷
却容器5と、その冷却容器5内に冷媒を供給する冷媒供
給手段6とからなり、冷媒供給手段6から冷却容器5へ
供給される冷媒は、例えば液体成分と気体成分の混合物
である。このような冷媒の一例としては、液体窒素と気
体窒素の混合物が挙げられる。また、冷却容器5にはそ
の内部の圧力を測定するための圧力計7が接続されてい
る。
The cooling means C has one end connected to the upper part of the steam generation means V and the other end connected to the injection means I, and a refrigerant supply means 6 for supplying a refrigerant into the cooling container 5. The refrigerant supplied from the refrigerant supply means 6 to the cooling container 5 is, for example, a mixture of a liquid component and a gas component. An example of such a refrigerant is a mixture of liquid nitrogen and gaseous nitrogen. A pressure gauge 7 for measuring the pressure inside the cooling container 5 is connected to the cooling container 5.

蒸気発生手段Vと冷却手段Cとの間には、該蒸気発生
手段Vから冷却手段Cへ供給される被凍結液1の蒸気の
圧力を制御する蒸気圧制御手段Pが介装されており、こ
の蒸気圧制御手段Pは蒸気発生手段Vから冷却手段Cへ
供給される被凍結液1の蒸気の流量を制御する流量制御
手段8と、蒸気発生手段Vから冷却手段Cへ供給される
被凍結液1の蒸気の温度を制御する温度制御手段9とを
有する。
Between the steam generating means V and the cooling means C, a steam pressure control means P for controlling the pressure of the steam of the frozen liquid 1 supplied from the steam generating means V to the cooling means C is interposed. The vapor pressure control means P controls the flow rate of the vapor of the liquid to be frozen 1 supplied from the vapor generating means V to the cooling means C, and the frozen target supplied from the vapor generating means V to the cooling means C. And a temperature control means 9 for controlling the temperature of the vapor of the liquid 1.

流量制御手段8は例えば流量制御弁からなり、その流
量制御弁の流入口は密閉容器2の上部に接続され、また
その流出口は截頭円錐形状のリヂューサ10を介して冷却
容器5に接続されており、リヂューサ10の内径は流量制
御弁8側から冷却容器5へ向かって次第に縮小し密閉容
器2と冷却容器5との間の圧力差を維持しうるようにな
っている。従って、リヂューサ10の最小内径を適当に設
定することにより密閉容器2から冷却容器5へ流れる蒸
気の最大流量を規制することができとともに、流量制御
弁8の開度を適当に調節することによって、密閉容器2
から冷却容器5へ流れる蒸気の流量を可変に制御するこ
とができ、これによって該蒸気の圧力を調節することだ
できる。
The flow control means 8 comprises, for example, a flow control valve, the flow control valve has an inflow port connected to the upper portion of the closed container 2, and an outflow port connected to the cooling container 5 via a frustoconical reducer 10. The inner diameter of the reducer 10 is gradually reduced from the flow control valve 8 side toward the cooling container 5 so that the pressure difference between the closed container 2 and the cooling container 5 can be maintained. Therefore, by appropriately setting the minimum inner diameter of the reducer 10, the maximum flow rate of steam flowing from the closed container 2 to the cooling container 5 can be regulated, and by appropriately adjusting the opening degree of the flow control valve 8, Closed container 2
It is possible to variably control the flow rate of the steam flowing from the cooling container 5 to the cooling container 5, whereby the pressure of the steam can be adjusted.

また、温度制御手段9は流量制御弁8及びリヂューサ
10の近傍に配置されたヒーター11からなり、このヒータ
ー11の加熱により流量制御弁8やリヂューサ10を通過す
る蒸気の凝結を防止するとともに、流量制御弁8を通過
する蒸気を適当に加熱して該蒸気の温度を制御すること
により、その圧力を調節することもできる。このよう
に、密閉容器2から冷却容器5へ供給される蒸気の圧力
を調節するには、蒸気の流量及び温度のうち少なくとも
いずれか一方を調節すればよいので、場合によっては、
流量制御手段8及び温度制御手段9のいずれか一方を省
略してもよい。
Further, the temperature control means 9 includes a flow control valve 8 and a reducer.
It consists of a heater 11 arranged in the vicinity of 10. The heating of the heater 11 prevents condensation of steam passing through the flow control valve 8 and the reducer 10 and also appropriately heats steam passing through the flow control valve 8. The pressure can also be adjusted by controlling the temperature of the steam. In this way, in order to adjust the pressure of the steam supplied from the closed container 2 to the cooling container 5, at least one of the flow rate and the temperature of the steam may be adjusted.
Either one of the flow rate control means 8 and the temperature control means 9 may be omitted.

尚、符号11は噴射手段Iにより超微細凍結粒子を噴射
される物品すなわち被処理物である。
Reference numeral 11 is an article, that is, an object to be processed, in which the ultrafine frozen particles are jetted by the jetting means I.

次に、この実施例の作用について説明する。 Next, the operation of this embodiment will be described.

まず、加熱手段3を作動させて密閉容器2内の被凍結
液1を加熱して蒸発させ、温度計2a及び圧力計2bにより
該蒸気の温度及び圧力を測定しながらそれら温度計2a及
び圧力計2bの指示値が適当な値になるまで、すなわち密
閉容器2内の蒸気圧が適当な値になるまで被凍結液1を
加熱する。密閉容器2内の蒸気圧が適当な値となったと
ころで、流量制御弁8を開くとともに、温度制御手段9
を作動させて流量制御弁8及びリヂューサ10を適当な温
度に暖める。流量制御弁8の開放により密閉容器2内の
被凍結液1の蒸気が流量制御弁8及びリヂューサ10を通
って冷却容器5に流入し、そこで冷媒供給手段6から供
給される冷媒により急速に冷却されて凍結粒子となる。
この凍結粒子の粒径は冷却速度すなわち凝結速度に依存
し、急速に冷却を行うほど超微細な凍結粒子が得られ
る。第2図には、凍結粒子の粒径と冷却速度との関係に
ついて本発明装置を用いて行った実験結果が示されてお
り、このことからも上記事実、すなわち凍結粒子の粒径
は冷却容器5の内部温度に依存することが、裏付けられ
る。また、凍結粒子の粒径は冷却容器5内への蒸気の噴
射速度と噴射量、すなわち噴射圧力にも依存しており、
従って、流量制御弁8の開度や加熱手段3及び温度制御
手段9の出力を適当に制御することによって、密閉容器
2から冷却容器5への蒸気の噴射圧力を調節して凍結粒
子の粒径を変えることができる。蒸気の冷却のため、本
実施例では、液体窒素と気体窒素とを混合してガス化さ
せたものを冷媒として使用した。
First, the heating means 3 is operated to heat and evaporate the liquid to be frozen 1 in the closed container 2, and while measuring the temperature and pressure of the vapor by the thermometer 2a and the pressure gauge 2b, the thermometer 2a and the pressure gauge are measured. The liquid to be frozen 1 is heated until the indicated value of 2b becomes an appropriate value, that is, the vapor pressure in the closed container 2 becomes an appropriate value. When the vapor pressure in the closed container 2 reaches an appropriate value, the flow control valve 8 is opened and the temperature control means 9 is opened.
To heat the flow control valve 8 and the reducer 10 to an appropriate temperature. When the flow control valve 8 is opened, the vapor of the frozen liquid 1 in the closed container 2 flows into the cooling container 5 through the flow control valve 8 and the reducer 10, and is rapidly cooled by the refrigerant supplied from the refrigerant supply means 6 there. It becomes frozen particles.
The particle size of the frozen particles depends on the cooling rate, that is, the condensation rate, and the faster the cooling, the finer the frozen particles can be obtained. FIG. 2 shows the result of an experiment conducted using the apparatus of the present invention regarding the relationship between the particle size of frozen particles and the cooling rate. From this fact, the above fact, that is, the particle size of frozen particles is determined by the cooling container. The dependence on the internal temperature of 5 is supported. Further, the particle size of the frozen particles depends on the injection speed and injection amount of the steam into the cooling container 5, that is, the injection pressure,
Therefore, by appropriately controlling the opening degree of the flow rate control valve 8 and the outputs of the heating means 3 and the temperature control means 9, the injection pressure of the steam from the closed container 2 to the cooling container 5 is adjusted and the particle size of the frozen particles is adjusted. Can be changed. In order to cool the vapor, in this embodiment, a mixture of liquid nitrogen and gaseous nitrogen and gasified was used as a refrigerant.

冷却容器5中で凍結した超微細粒子は噴射手段Iから
冷媒と同時に、クリーニングやブラスト処理を施すべき
被処理物11の表面に噴射される。ここで、被処理物11の
表面に噴射される超微細凍結粒子の噴射圧力は、冷媒を
ガス化する際に使用する気体成分、すなわち本実施例で
は気体窒素の供給量と噴射手段Iの開度とによって決ま
る。但し、密閉容器2内の被凍結液1の蒸気の冷却容器
5への供給は、密閉容器2と冷却容器5との間の差圧に
より行うため、噴射手段Iからの噴射圧力を上げる場合
には、密閉容器2内の蒸気圧力を十分に上げておくこと
が望ましい。また、密閉容器2内の圧力は被凍結液1の
蒸気圧によって決まるため、例えば、被凍結液1が水の
場合には、流量制御弁8を閉じると、密閉容器2内の蒸
気は温度190℃で約13Kg/cm2の蒸気圧を持つため、冷却
容器5内の圧力すなわち噴射手段Iの噴射圧力は5〜8K
g/cm2程度までは十分に取ることができる。また、蒸気
圧が低い被凍結液の場合には、流量制御弁8の開度及び
リヂューサ10の吐出口径すなわち最小内径を大きくすれ
ば密閉容器2内の蒸気圧が低下して噴射圧力が低下して
しまうし、一方流量制御弁8の開度及びリヂューサ10の
吐出口径を小さくすれば密閉容器2内の蒸気圧を高くす
ることができるが、冷却容器5に供給される蒸気量が減
少して十分な量の凍結粒子が得られないので、この場合
にも噴射圧力は低下する。そこで、このような場合に
は、密閉容器2を複数個設けて、それらの各密閉容器2
の流量制御弁8の開度及びリヂューサ10の吐出口径を小
さくすれば、各密閉容器2内の蒸気圧をある程度高い値
に保持しながら、冷却容器5に供給される蒸気量を増大
させることができるので、噴射圧力を大きくすることが
できる。
The ultrafine particles frozen in the cooling container 5 are jetted from the jetting means I simultaneously with the refrigerant onto the surface of the object to be treated 11 to be cleaned or blasted. Here, the injection pressure of the ultrafine frozen particles injected onto the surface of the object to be treated 11 is the gas component used when the refrigerant is gasified, that is, the supply amount of gaseous nitrogen and the opening of the injection means I in this embodiment. It depends on the degree. However, since the vapor of the liquid to be frozen 1 in the closed container 2 is supplied to the cooling container 5 by the pressure difference between the closed container 2 and the cooling container 5, when the injection pressure from the injection means I is increased. It is desirable that the vapor pressure in the closed container 2 be sufficiently raised. Further, since the pressure in the closed container 2 is determined by the vapor pressure of the liquid to be frozen 1, for example, when the liquid to be frozen 1 is water, when the flow rate control valve 8 is closed, the steam in the closed container 2 has a temperature of 190. Since it has a vapor pressure of about 13 Kg / cm 2 at ℃, the pressure in the cooling container 5, that is, the injection pressure of the injection means I is 5 to 8 K.
It can take up to about g / cm 2 . Further, in the case of a liquid to be frozen having a low vapor pressure, if the opening of the flow control valve 8 and the discharge port diameter of the reducer 10, that is, the minimum inner diameter, are increased, the vapor pressure in the closed container 2 decreases and the injection pressure decreases. On the other hand, if the opening degree of the flow rate control valve 8 and the discharge port diameter of the reducer 10 are reduced, the vapor pressure in the closed container 2 can be increased, but the amount of vapor supplied to the cooling container 5 decreases. Since a sufficient amount of frozen particles cannot be obtained, the injection pressure also drops in this case. Therefore, in such a case, a plurality of closed containers 2 are provided and each closed container 2 is provided.
By reducing the opening of the flow control valve 8 and the discharge port diameter of the reducer 10, the amount of steam supplied to the cooling container 5 can be increased while maintaining the steam pressure in each closed container 2 at a relatively high value. Therefore, the injection pressure can be increased.

本実施例においては、被凍結液1として水を使用し、
冷却容器5の内部温度を−100℃に設定した条件で、約
1〜2μmの均一な粒径の氷の超微細粒子を得ることが
できた。第3図はこの結果を顕微鏡写真で示している。
この第3図と、第4図の従来装置により生成された氷粒
子の顕微鏡写真を示す第5図とを比較すると、本発明装
置と従来装置とにより生成された氷粒子の粒径の相違が
一見して明らかである。
In this embodiment, water is used as the liquid to be frozen 1,
Under the condition that the internal temperature of the cooling container 5 was set to −100 ° C., it was possible to obtain ultrafine particles of ice having a uniform particle size of about 1 to 2 μm. FIG. 3 shows the result as a micrograph.
Comparing FIG. 3 with FIG. 5 showing a micrograph of ice particles produced by the conventional apparatus of FIG. 4, it can be seen that the particle size of the ice particles produced by the apparatus of the present invention is different from that of the conventional apparatus. At first glance it is clear.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明によれば、被凍結液の蒸気を
発生させ、この蒸気を冷媒中に噴射することにより冷媒
との熱交換により凍結させて超微細凍結粒子を生成させ
るように構成したので、凍結粒子を略均一の粒径で超微
細化することができる。特に、蒸気圧制御手段により、
蒸気圧発生手段から冷却手段へ供給される被冷凍液の蒸
気の圧力を適宜調整することにより、蒸気の冷却速度を
適当に制御して凍結粒子の粒径を、0.1乃至10μm程度
の範囲で簡単に変えることができる。しかも、冷媒は被
凍結液と熱交換した後、超微細凍結粒子の噴射キャリア
として作用し、すなわち噴射ガスとして利用されるの
で、冷媒のロスが少なくなるばかりでなく、冷却手段と
噴射手段との構成を著しく簡略化することができ、装置
全体をコンパクトにまとめて小型化し得る効果がある。
As described above, according to the present invention, it is configured to generate the vapor of the liquid to be frozen and to inject the vapor into the refrigerant to freeze it by heat exchange with the refrigerant to generate ultrafine frozen particles. Therefore, it is possible to make the frozen particles ultrafine with a substantially uniform particle size. In particular, by the vapor pressure control means,
By appropriately adjusting the pressure of the vapor of the liquid to be frozen that is supplied from the vapor pressure generating means to the cooling means, the cooling rate of the vapor can be appropriately controlled and the particle size of the frozen particles can be easily set within the range of 0.1 to 10 μm. Can be changed to Moreover, after the refrigerant exchanges heat with the liquid to be frozen, it acts as an injection carrier for the ultrafine frozen particles, that is, it is used as an injection gas, so that not only the loss of the refrigerant is reduced, but also the cooling means and the injection means. The configuration can be remarkably simplified, and there is an effect that the entire device can be compactly assembled and downsized.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る超微細凍結粒子の生成装置の一実
施例を示す概略図、第2図は本発明装置により実験した
結果を示す、凍結粒子径と冷却温度の関係を表すグラ
フ、第3図は本発明装置により生成された超微細凍結粒
子の顕微鏡写真、第4図は従来装置を示す概略図、第5
図は従来装置により生成された凍結粒子の顕微鏡写真で
ある。 (1)は被凍結液、(2)は密閉容器、(3)は加熱手
段、(5)は冷却容器、(6)は冷媒供給手段、(8)
は流量制御弁、(9)は温度制御手段、(10)はリヂュ
ーサ、(11)は被処理物、(C)は冷却手段、(I)は
噴射手段、(P)は蒸気圧制御手段、(V)は蒸気発生
手段である。
FIG. 1 is a schematic view showing an embodiment of an apparatus for producing ultrafine frozen particles according to the present invention, and FIG. 2 is a graph showing the relationship between frozen particle diameter and cooling temperature, showing the results of experiments conducted by the apparatus according to the present invention, FIG. 3 is a micrograph of ultrafine frozen particles produced by the device of the present invention, FIG. 4 is a schematic view showing a conventional device, and FIG.
The figure is a micrograph of frozen particles produced by a conventional apparatus. (1) is the liquid to be frozen, (2) is a closed container, (3) is a heating means, (5) is a cooling container, (6) is a refrigerant supply means, and (8).
Is a flow rate control valve, (9) is temperature control means, (10) is a reducer, (11) is an object to be treated, (C) is cooling means, (I) is injection means, (P) is vapor pressure control means, (V) is a steam generating means.

フロントページの続き (72)発明者 大森 寿朗 兵庫県伊丹市瑞原4丁目1番地 三菱電機 株式会社エル・エス・アイ研究所内 (56)参考文献 特開 昭62−210368(JP,A)Front page continuation (72) Inventor Juro Omori 4-1-1 Mizuhara, Itami City, Hyogo Prefecture Mitsubishi Electric Corporation LSI Research Laboratory (56) Reference JP 62-210368 (JP, A)

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】被凍結液の蒸気を発生させる蒸気発生手段
と、前記蒸気発生手段から供給される被凍結液の蒸気を
冷媒との熱交換により凍結させて超微細凍結粒子を生成
する冷却手段と、前記蒸気発生手段と冷却手段との間に
介在され、該蒸気発生手段から冷却手段へ供給される被
冷凍液の蒸気の圧力を制御する蒸気圧制御手段と、前記
冷却手段に接続されて、該冷却手段で生成された超微細
凍結粒子を被処理物に向けて噴射する噴射手段とからな
る超微細凍結粒子の生成装置。
1. Steam generating means for generating a vapor of a liquid to be frozen, and cooling means for producing ultrafine frozen particles by freezing the vapor of the liquid to be frozen supplied from the vapor generating means by heat exchange with a refrigerant. Connected to the cooling means, and vapor pressure control means interposed between the vapor generating means and the cooling means and controlling the pressure of the vapor of the liquid to be frozen supplied from the vapor generating means to the cooling means. An apparatus for producing ultra-fine frozen particles, comprising: an injection means for injecting the ultra-fine frozen particles produced by the cooling means toward an object to be treated.
【請求項2】前記蒸気圧力制御手段は、前記蒸気発生手
段から冷却手段へ供給される被冷凍液の蒸気の流量を制
御する流量制御手段からなる、特許請求の範囲第1項記
載の超微細凍結粒子の生成装置。
2. The ultrafine particle according to claim 1, wherein the vapor pressure control means comprises flow rate control means for controlling the flow rate of the vapor of the liquid to be frozen supplied from the vapor generating means to the cooling means. Frozen particle generator.
【請求項3】前記蒸気圧力制御手段は、前記蒸気発生手
段から冷却手段へ供給される被冷凍液の蒸気の温度を制
御する温度制御手段からなる、特許請求の範囲第1項記
載の超微細凍結粒子の生成装置。
3. The ultrafine particle according to claim 1, wherein the vapor pressure control means comprises temperature control means for controlling the temperature of the vapor of the liquid to be frozen supplied from the vapor generating means to the cooling means. Frozen particle generator.
【請求項4】前記蒸気圧力制御手段は、前記蒸気発生手
段から冷却手段へ供給される被冷凍液の蒸気の流量を制
御する流量制御手段と、前記蒸気発生手段から冷却手段
へ供給される被冷凍液の蒸気の温度を制御する温度制御
手段とからなる、特許請求の範囲第1項記載の超微細凍
結粒子の生成装置。
4. The vapor pressure control means comprises a flow rate control means for controlling the flow rate of vapor of the liquid to be frozen supplied from the vapor generating means to the cooling means, and a vapor pressure control means supplied from the vapor generating means to the cooling means. The ultrafine frozen particle production apparatus according to claim 1, comprising a temperature control means for controlling the temperature of the vapor of the frozen liquid.
【請求項5】前記流量制御手段は流量制御弁である、特
許請求の範囲第2項または第4項記載の超微細凍結粒子
の生成装置。
5. The apparatus for producing ultrafine frozen particles according to claim 2 or 4, wherein the flow rate control means is a flow rate control valve.
【請求項6】前記流量制御弁の流入口は前記蒸気発生手
段に接続され、その流出口はリヂューサを介して前記冷
却手段に接続される、特許請求の範囲第5項記載の超微
細凍結粒子の生成装置。
6. The ultrafine frozen particles according to claim 5, wherein an inlet of the flow control valve is connected to the steam generating means, and an outlet of the flow control valve is connected to the cooling means via a reducer. Generator.
【請求項7】前記温度制御手段はヒーターである、特許
請求の範囲第3項または第4項記載の超微細凍結粒子の
生成装置。
7. The apparatus for producing ultrafine frozen particles according to claim 3 or 4, wherein the temperature control means is a heater.
【請求項8】前記ヒーターは前記流量制御手段の近傍に
配設される、特許請求の範囲第7項記載の超微細凍結粒
子の生成装置。
8. The apparatus for producing ultrafine frozen particles according to claim 7, wherein the heater is arranged near the flow rate control means.
【請求項9】前記蒸気発生手段は、前記被凍結液を収容
する密閉容器と、その密閉容器内の被凍結液を加熱して
蒸気を発生させる加熱手段とからなる、特許請求の範囲
第1項記載の超微細凍結粒子の生成装置。
9. The steam generating means comprises a closed container for containing the liquid to be frozen and a heating means for heating the liquid to be frozen in the closed container to generate steam. Item 2. A device for producing ultrafine frozen particles according to the item.
【請求項10】前記加熱手段は前記密閉容器の近傍に配
置されたヒーターである、特許請求の範囲第9項記載の
超微細凍結粒子の生成装置。
10. The apparatus for producing ultrafine frozen particles according to claim 9, wherein the heating means is a heater arranged near the closed container.
【請求項11】前記冷却手段は前記蒸気発生手段及び噴
射手段に接続された冷却容器と、その冷却容器内に冷媒
を供給する冷媒供給手段とからなる、特許請求の範囲第
1項記載の超微細凍結粒子の生成装置。
11. The supercharger according to claim 1, wherein the cooling means comprises a cooling container connected to the vapor generating means and the injection means, and a refrigerant supply means for supplying a refrigerant into the cooling container. A device for producing frozen particles.
【請求項12】前記冷媒供給手段から冷却容器へ供給さ
れる冷媒は、液体成分と気体成分の混合物である、特許
請求の範囲第11項記載の超微細凍結粒子の生成装置。
12. The apparatus for producing ultrafine frozen particles according to claim 11, wherein the refrigerant supplied from the refrigerant supply means to the cooling container is a mixture of a liquid component and a gas component.
【請求項13】前記冷媒供給手段から冷却容器へ供給さ
れる冷媒は、液体窒素と気体窒素との混合物である、特
許請求の範囲第12項記載の超微細凍結粒子の生成装置。
13. The apparatus for producing ultrafine frozen particles according to claim 12, wherein the refrigerant supplied from the refrigerant supply means to the cooling container is a mixture of liquid nitrogen and gaseous nitrogen.
【請求項14】前記超微細凍結粒子の粒径は0.1乃至10
μmである、特許請求の範囲第1項記載の超微細凍結粒
子の生成装置。
14. The particle size of the ultrafine frozen particles is 0.1 to 10.
The ultrafine frozen particle generating device according to claim 1, which has a size of μm.
【請求項15】前記超微細凍結粒子の粒径は0.1乃至10
μmの範囲で可変に制御しうる、特許請求の範囲第1項
記載の超微細凍結粒子の生成装置。
15. The particle size of the ultrafine frozen particles is 0.1 to 10.
The ultrafine frozen particle producing apparatus according to claim 1, which can be variably controlled in the range of μm.
【請求項16】前記超微細凍結粒子は、前記冷媒供給手
段により供給される冷媒の排ガスの噴流により前記噴射
手段から噴射される、特許請求の範囲第11項記載の超微
細凍結粒子の生成装置。
16. The apparatus for producing ultra-fine frozen particles according to claim 11, wherein the ultra-fine frozen particles are injected from the injection means by a jet flow of a refrigerant exhaust gas supplied by the refrigerant supply means. .
【請求項17】前記冷却手段に、該冷却手段で生成され
た超微細凍結粒子被処理物に向けて噴射する噴射手段を
接続した、特許請求の範囲第1項記載の超微細凍結粒子
の生成装置。
17. The production of ultrafine frozen particles according to claim 1, wherein the cooling means is connected to an injection means for injecting toward the object to be treated with the ultrafine frozen particles produced by the cooling means. apparatus.
【請求項18】前記噴射手段は噴射弁である、特許請求
の範囲第17項記載の超微細凍結粒子の生成装置。
18. The apparatus for producing ultrafine frozen particles according to claim 17, wherein the injection means is an injection valve.
JP62313667A 1987-06-23 1987-12-11 Ultrafine frozen particle generator Expired - Fee Related JPH081345B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP62313667A JPH081345B2 (en) 1987-12-11 1987-12-11 Ultrafine frozen particle generator
DE3844648A DE3844648C2 (en) 1987-06-23 1988-02-15
DE3804694A DE3804694A1 (en) 1987-06-23 1988-02-15 METHOD FOR SURFACE PROCESSING FOR SEMICONDUCTOR WAFERS AND DEVICE FOR IMPLEMENTING THE METHOD
DE3844649A DE3844649C2 (en) 1987-06-23 1988-02-15
US07/177,784 US4932168A (en) 1987-06-23 1988-04-05 Processing apparatus for semiconductor wafers
US07/470,226 US5025597A (en) 1987-06-23 1990-01-25 Processing apparatus for semiconductor wafers
US07/470,372 US5035750A (en) 1987-06-23 1990-01-25 Processing method for semiconductor wafers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62313667A JPH081345B2 (en) 1987-12-11 1987-12-11 Ultrafine frozen particle generator

Publications (2)

Publication Number Publication Date
JPH01155168A JPH01155168A (en) 1989-06-19
JPH081345B2 true JPH081345B2 (en) 1996-01-10

Family

ID=18044063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62313667A Expired - Fee Related JPH081345B2 (en) 1987-06-23 1987-12-11 Ultrafine frozen particle generator

Country Status (1)

Country Link
JP (1) JPH081345B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2877263B2 (en) * 1991-05-27 1999-03-31 三菱重工業株式会社 Cleaning method using fine ice particles
US7572430B2 (en) * 2000-11-09 2009-08-11 Cyprus Amax Minerals Company Method for producing nano-particles
EP2249107A1 (en) * 2009-05-05 2010-11-10 Bächler Top Track AG Artificial snow production system and method for producing artificial snow

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62210368A (en) * 1986-03-10 1987-09-16 大陽酸素株式会社 Production unit for hyperfine frozen particle

Also Published As

Publication number Publication date
JPH01155168A (en) 1989-06-19

Similar Documents

Publication Publication Date Title
US4932168A (en) Processing apparatus for semiconductor wafers
JPH0435872A (en) Polishing device using frozen particle
CN105665727A (en) Free-falling double-stage powder mixing gas atomizing water-cooling fast-setting magnetic abrasive preparing method
US7823810B2 (en) Method and device for the production and/or conditioning of powdered material
CN105665723A (en) Preparing method for free-falling double-nozzle powder mixing gas atomizing water-cooling fast-setting metal matrix silicon carbide magnetic abrasive
US5114748A (en) Method of preparing or rubbing a substrate to be used in a lcd device by spraying it with uniformly sized droplets or frozen water
JPH081345B2 (en) Ultrafine frozen particle generator
KR20090050707A (en) Aerosol cleaning apparatus and method of nano-sized particle using supersonic speed nozzle
CN110052972A (en) A kind of low temperature abradant jet processing unit (plant) that jet expansion humidity is controllable
CN101869885B (en) Ultrasonic soldering flux coating process and device
JP2003517411A5 (en)
JP2000153247A (en) Cleaning stripping method and device therefor
JPH04348871A (en) Washing device using fine ice particle
KR20010061607A (en) Cleaning machine for semiconductor device and the methode
JPH02290245A (en) Manufacture of powder material
FR2591520A1 (en) METHOD AND APPARATUS FOR MECHANICAL PROCESSING OF PARTS
JPH0192072A (en) Jetting device for preparing superfine frozen particle
JPS6393566A (en) Frozen particle ejecting device
CN109333368A (en) A kind of device based on dry ice Jet Polishing
JPH0192071A (en) Preparing and jetting device for superfine frozen particle
JPH0243730A (en) Cleaning device for semiconductor wafer
JP3223560U (en) Dry ice cleaning equipment
US20020146967A1 (en) Method and apparatus for ice blasting
JPS63283133A (en) Device for formation of fine ice particle
KR100340555B1 (en) Particle injector for spray forming

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees