JPS62210368A - Production unit for hyperfine frozen particle - Google Patents

Production unit for hyperfine frozen particle

Info

Publication number
JPS62210368A
JPS62210368A JP5225886A JP5225886A JPS62210368A JP S62210368 A JPS62210368 A JP S62210368A JP 5225886 A JP5225886 A JP 5225886A JP 5225886 A JP5225886 A JP 5225886A JP S62210368 A JPS62210368 A JP S62210368A
Authority
JP
Japan
Prior art keywords
frozen
liquid
refrigerant
ultrafine
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5225886A
Other languages
Japanese (ja)
Other versions
JPH0566514B2 (en
Inventor
山崎 紀男
多計城 秦
今池 世記二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Sanso Co Ltd
Original Assignee
Taiyo Sanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Sanso Co Ltd filed Critical Taiyo Sanso Co Ltd
Priority to JP5225886A priority Critical patent/JPS62210368A/en
Publication of JPS62210368A publication Critical patent/JPS62210368A/en
Publication of JPH0566514B2 publication Critical patent/JPH0566514B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C3/00Processes or apparatus specially adapted for producing ice or snow for winter sports or similar recreational purposes, e.g. for sporting installations; Producing artificial snow
    • F25C3/04Processes or apparatus specially adapted for producing ice or snow for winter sports or similar recreational purposes, e.g. for sporting installations; Producing artificial snow for sledging or ski trails; Producing artificial snow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2303/00Special arrangements or features for producing ice or snow for winter sports or similar recreational purposes, e.g. for sporting installations; Special arrangements or features for producing artificial snow
    • F25C2303/048Snow making by using means for spraying water
    • F25C2303/0481Snow making by using means for spraying water with the use of compressed air

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分舒) 本発明は、超微凍結粒の製造装置に関するものである。[Detailed description of the invention] (Industrial use distribution) The present invention relates to an apparatus for producing ultrafine frozen particles.

(従来の技術) 従来からも、ブラスティング、クリーニング等の表面処
理用の砥粒、研磨材等として用いられる微苅な氷粒等の
凍結粒を製造するための装置として種々の構造のものが
提案されているが、一般には、第6図に示す如く、凍結
粒製造容器1の下部に液化窒素等の冷媒2を収容すると
共に、容器1の上部に、水等の被凍結液を供給する供給
管3及びドライブガス導入管4を接続した噴霧器5を配
設して、被凍結液を、導入管4から導入したドライブガ
スとの混合状態で噴霧器5から冷媒2の液面、に向けて
噴霧することにより、微粒化された被凍結液叩ち微粒液
6a・・・を冷媒2との熱交換により凍結させ、微細な
凍結粒6b・・・を得るように構成しているのが普通で
ある。
(Prior Art) Conventionally, devices of various structures have been used to produce frozen particles such as fine ice particles used as abrasive particles and polishing materials for surface treatments such as blasting and cleaning. Although it has been proposed, generally, as shown in FIG. 6, a refrigerant 2 such as liquefied nitrogen is stored in the lower part of the frozen grain production container 1, and a liquid to be frozen such as water is supplied to the upper part of the container 1. A sprayer 5 connected to the supply pipe 3 and the drive gas introduction pipe 4 is installed, and the liquid to be frozen is directed from the sprayer 5 to the liquid surface of the refrigerant 2 in a mixed state with the drive gas introduced from the introduction pipe 4. By spraying, the atomized liquid to be frozen is usually frozen by heat exchange with the refrigerant 2 to obtain fine frozen particles 6b. It is.

(発明が解決しようとする問題点) かかる構成の従来装置では、ドライブガスによる噴霧作
用によって微粒液6a・・・を得るようにしているため
、噴霧ノズル径を小さくする工作に限界があることから
当然微粒液6a・・・の粒径の微小化には限度があって
、せいぜい粒径下限1直が30μm程度の凍結粒6bを
製造し得るにすぎない。
(Problems to be Solved by the Invention) In the conventional device having such a configuration, the fine droplet liquid 6a is obtained by the atomizing action of the drive gas, so there is a limit to the work that can be done to reduce the diameter of the atomizing nozzle. Naturally, there is a limit to the miniaturization of the particle size of the fine particle liquid 6a, and it is only possible to produce frozen particles 6b with a particle size lower limit of about 30 μm at most.

したがって、上述の如き従来装置で製造し得る凍結粒6
b・・・は粒径がカμm以上の比較的大きい範囲にとど
まるため、どうしてもその使用範囲も限定されるという
問題を残していた。特に近年、超微粒化した凍結物を被
処理物面に噴射することにより、従来困難とされていた
各種表面に付着する徹釧な異物、塵芥、破砕片、パリ等
の除去、特に華奢な或は精密加工を要する物品のクリー
ニング、ブラスティング等も良好に行いつる可能性がひ
らけてきて、そのため粒径が数μm程度の超微粒凍結粒
の製造が強く要請されるに至り、かかる要請があるにも
拘らず、従来装置ではその要請に応えることができない
でいた。
Therefore, the frozen particles 6 that can be produced using the conventional apparatus as described above
Since the particle size of b... remains within a relatively large range of micrometers or more, the problem remains that the range of use thereof is inevitably limited. In particular, in recent years, by spraying ultra-fine frozen material onto the surface of the workpiece, it has become possible to remove fine foreign matter, dust, crushed pieces, paris, etc. that adhere to various surfaces, which was previously considered difficult. It has become possible to perform cleaning, blasting, etc. of items that require precision processing, and there has been a strong demand for the production of ultrafine frozen particles with a particle size of several μm. However, conventional devices have not been able to meet this demand.

しかも、従来装置では、上述した如く微粒液6aないし
凍結粒6bの粒径が加μm程度と比較的大きいため、単
位粒径当りの凝固熱量が大きく、冷媒2との熱交換効率
が低く比較的大きな冷却時間を要することとなって、凍
結を確実に行わせるには、被凍結液ないし微粒液6a・
・・と冷媒2との温度差を相当大きくする必要を生じ、
被凍結液3を急冷するための格別の予冷装置を必要とす
るなど、製造装置全体の大形化を招き、コス)7s増大
も避けられないといった問題を抱えていた。
Moreover, in the conventional device, as mentioned above, the particle size of the fine liquid 6a or frozen particles 6b is relatively large, about 100 μm, so the amount of solidification heat per unit particle size is large, and the heat exchange efficiency with the refrigerant 2 is relatively low. Since a long cooling time is required, in order to ensure freezing, the liquid to be frozen or the fine particle liquid 6a.
It becomes necessary to considerably increase the temperature difference between ... and refrigerant 2,
This method requires a special pre-cooling device to rapidly cool the liquid 3 to be frozen, which leads to an increase in the size of the entire manufacturing device, and an unavoidable increase in cost by 7 seconds.

ところで、噴霧器5における被凍結液に対するドライブ
ガスの混合比率を極端に大きくすれば、噴霧による被凍
結液の微粒化を促進し得るものの、最小限界として粒径
が5〜10μm程度の凍結粒6bを製造するのがやっと
であり、しかもこの場合には、均一な粒径の微粒液6a
・・・したがって凍結粒6b・・・を得ることば困難で
あった。また例えば被凍結液として水を用い、ドライブ
ガスとして窒素を用い、水に対するガスの容積比率を増
加して粒径を5μm程度に小さくしようとすると、その
容積比率は1 : 1900という様に算出され、ドラ
イブガスの増加は必然的に冷媒2の使用↑をも飛躍的に
増加させることとなり、凍結粒6bの単位量当りの冷媒
使用原単位を著しく増加させ、経済的に工業化を困難な
らしめるので、と記の如き技術的課題の解決策としては
実際上採用し得ない。
Incidentally, if the mixing ratio of the drive gas to the liquid to be frozen in the sprayer 5 is extremely increased, it is possible to promote atomization of the liquid to be frozen by spraying, but as a minimum, the frozen particles 6b with a particle size of about 5 to 10 μm are In this case, it is difficult to produce fine particle liquid 6a with uniform particle size.
Therefore, it was difficult to obtain frozen grains 6b. For example, if water is used as the liquid to be frozen and nitrogen is used as the drive gas, and the volume ratio of gas to water is increased to reduce the particle size to about 5 μm, the volume ratio will be calculated as 1:1900. , an increase in drive gas will inevitably lead to a dramatic increase in the use of refrigerant 2, which will significantly increase the refrigerant usage per unit amount of frozen particles 6b, making industrialization economically difficult. , cannot be practically adopted as a solution to the technical problems as described above.

本発明は、かかる従来技術の実情に鑑み、各種表面の微
細な異物、塵芥、破砕片、パリ等の除去、華奢な或は精
密加工を要する物品のクリーニング。
In view of the actual state of the prior art, the present invention is aimed at removing minute foreign matter, dust, debris, pars, etc. from various surfaces, and cleaning articles that are delicate or require precision processing.

ブラスティング等の処理に適する超微粒化された均一粒
径の凍結粒を容易且つ確実に得ることができる超微凍結
粒の製造装置を提供することを目的とする。
It is an object of the present invention to provide an apparatus for producing ultra-fine frozen particles that can easily and reliably obtain ultra-fine frozen particles of uniform particle size that are suitable for processing such as blasting.

(問題点を解決するための手段) 本発明の超微凍結粒の製造装置は、上記の課題解決の目
的を達成すべく、被凍結液を収容した密閉容器と、この
被凍結液に超音波による振動エネルギーを付与して、前
記密閉容器内に霧状の超微粒液である超微粒霧を発生浮
遊させる超音波手段と、この浮遊超微粒霧を前記密閉容
器外へ気流に乗せて移送する移送手段と、該移送手段に
より移送された前記超微粒霧を冷媒との熱交換により凍
結させる凍結手段とを具備したものである。
(Means for Solving the Problems) In order to achieve the purpose of solving the above-mentioned problems, the apparatus for producing ultrafine frozen particles of the present invention includes a sealed container containing a liquid to be frozen, and an ultrasonic wave applied to the liquid to be frozen. an ultrasonic means that generates and suspends ultrafine mist, which is a mist-like ultrafine liquid, in the sealed container by applying vibrational energy; The apparatus includes a transfer means and a freezing means for freezing the ultrafine mist transferred by the transfer means by heat exchange with a refrigerant.

(作用) かかる溝成によれば、密閉容器内の被凍結液面上の密閉
空間に、超音波による振動エネルギーが被凍結液に付与
されることによって、従来装置におけるドライブガスに
よる噴霧作用によっては到底得ることができない均一に
超微粒化された霧状の被凍結液粒つまり超微粒霧を発生
浮遊させることができる。この超微粒霧は密閉容器外に
移送された上、冷媒との熱交換によって霧状の微粒子の
まま凍結させることができ、その結果、従来装置では不
可能視されていた均一な超微粒(粒径3μm程度)の凍
結粒つまり超微凍結粒を得ることができることとなった
。この場合、冷媒との熱交換により凍結される超微粒霧
は、超音波による振動エネルギーの作用によって始めて
得られるものであって、粒径均一にして超微粒のもので
あるから、冷媒との熱交換効率が飛躍的に高く、冷媒と
の温度差をさほど大きくとらなくても確実且つ急速に凍
結させることができる。
(Function) According to this structure, ultrasonic vibration energy is applied to the liquid to be frozen in the sealed space above the surface of the liquid to be frozen in the closed container, which makes it possible to eliminate the atomizing action of the drive gas in conventional devices. It is possible to generate and suspend uniformly ultrafine atomized frozen liquid droplets, that is, ultrafine mist, which is impossible to obtain. This ultra-fine mist is transferred outside the sealed container and can be frozen as a mist-like fine particle through heat exchange with the refrigerant, resulting in uniform ultra-fine particles (particles It became possible to obtain frozen particles (about 3 μm in diameter), that is, ultrafine frozen particles. In this case, the ultrafine mist that is frozen by heat exchange with the refrigerant is obtained only by the action of vibrational energy from ultrasonic waves, and since the particle size is uniform and ultrafine, the The exchange efficiency is dramatically high, and it is possible to reliably and rapidly freeze the refrigerant even without a large temperature difference.

(実施例) 以下、本発明の41成を第1図〜第3図に示す各実施例
に基づいて具体的に説明する。
(Example) Hereinafter, 41 components of the present invention will be specifically explained based on each example shown in FIGS. 1 to 3.

第1図に示す第1実施例の製造装置において、11は密
閉容器、12は超音波手段、13は移送手段、14は凍
結手段である。
In the manufacturing apparatus of the first embodiment shown in FIG. 1, 11 is a closed container, 12 is an ultrasonic means, 13 is a transfer means, and 14 is a freezing means.

密閉容器11内には、被凍結液供給管15から供給され
た水等の被凍結液16が所定量収容され、その液面上に
所定容量の密閉空間11 aが設けられている。なお、
被凍結液16の液面高さは、液面検出器29による検出
直に応じて電磁弁15 aを開閉制御することによって
一定範囲に維持される。
A predetermined amount of a frozen liquid 16 such as water supplied from a frozen liquid supply pipe 15 is stored in the sealed container 11, and a sealed space 11a of a predetermined capacity is provided above the liquid level. In addition,
The liquid level height of the liquid to be frozen 16 is maintained within a certain range by controlling the opening and closing of the solenoid valve 15 a in response to detection by the liquid level detector 29 .

超音波手段12は密閉容器11の被凍結液16中に超音
波を送り込む振動子17 aとその制御袋N 17 b
とからなり、振動子17 aから被凍結液6中に超音波
を送り込むことによって、その振動エネルギーの作用で
前記空間11 aに被凍結液の超微粒子化された粒径均
一な超微粒g 16 a・・・を発生せしめ−y=にる
ように構成されたものである。なお、振動子17 aか
ら発する超音波の周波数は、被凍結液16の性状や所望
の微粒子の径、温度等の条件に応じて適宜設定すること
が望ましく、例えば、被凍結液が水の場合、冷媒として
液化窒素を用い、所望の超微凍結粒の径として3μmと
する実施例では、水温30°Cに於て周波数的1700
 HZにするとよい。
The ultrasonic means 12 includes a vibrator 17 a that sends ultrasonic waves into the liquid to be frozen 16 in the sealed container 11 and its control bag N 17 b.
By sending ultrasonic waves from the vibrator 17a into the liquid to be frozen 6, ultrafine particles g16 of the liquid to be frozen, which are made into ultrafine particles with a uniform particle size, are produced in the space 11a by the action of the vibration energy. It is constructed so that a... is generated and -y=. Note that the frequency of the ultrasonic waves emitted from the transducer 17a is desirably set appropriately depending on the properties of the liquid to be frozen 16, the desired particle diameter, temperature, etc. For example, when the liquid to be frozen is water, In an example in which liquefied nitrogen is used as the refrigerant and the diameter of the desired ultrafine frozen particles is 3 μm, the frequency is 1700 μm at a water temperature of 30°C.
It is better to set it to HZ.

移送手段13は、前記密閉容器11の上部にその空間1
1 aに連通ずる移送用ガス共給管18及び移送管19
を夫々接続したものであってもよく、移送ガス供給91
8から窒素ガス等の移送用ガスを供給させることにより
、前記空間11 aに発生した超微粒716 a・・・
を、前記移送ガスと共に宵を風に乗せた状態で、移送管
19を介して密閉容器11外へ移送させればよい。
The transfer means 13 has a space 1 in the upper part of the closed container 11.
1 A gas common supply pipe 18 and a transfer pipe 19 communicating with a.
may be connected to each other, and the transfer gas supply 91
By supplying a transfer gas such as nitrogen gas from 8, the ultrafine particles 716a generated in the space 11a...
may be transferred to the outside of the closed container 11 via the transfer pipe 19 while being blown by the wind along with the transfer gas.

或は第4図に示した様に、系内にファン31を設けて移
送してもよい。なお、移送用ガス供給管18から9 r
Aされる移送用ガスの圧力は、上記実施例のものでは、
水柱圧100胡程度に設定した。
Alternatively, as shown in FIG. 4, a fan 31 may be provided within the system for transfer. In addition, from the transfer gas supply pipe 18 to 9 r
In the above example, the pressure of the transfer gas to be A is as follows:
The water column pressure was set at about 100 hu.

凍結手段14は、液化窒素等の冷媒20を所定量収容し
た凍結粒製造容器21を設け、この容器21の上部に前
記移送管19に接続した吹出口22を配設して、移送管
19内を移送用ガスと共に送られてくる超微粒g16a
・・・を、吹出口22から冷!某20に向けて吹出させ
ることにより、冷媒20との熱交換により超微凍結粒1
6 b・・・に凍結させる構成である。なお、凍結粒製
造容器21にはその冷媒20中から容器21外の上方部
位へと延びるスクリューコンベア等の凍結粒、取出手段
23を設け、冷媒20中を沈降堆積する超微凍結粒16
 b・・・を容器21外に取出し、ブラスト用の砥粒等
としての使用に供する。
The freezing means 14 includes a frozen particle production container 21 containing a predetermined amount of a refrigerant 20 such as liquefied nitrogen, and an air outlet 22 connected to the transfer pipe 19 in the upper part of the container 21. Ultrafine particles g16a sent together with the transfer gas
... is cooled from the air outlet 22! By blowing out toward a certain 20, ultrafine frozen particles 1 are generated by heat exchange with the refrigerant 20.
6 b... is configured to be frozen. The frozen grain production container 21 is provided with frozen grain removal means 23 such as a screw conveyor extending from the refrigerant 20 to an upper part outside the container 21, and the ultrafine frozen grains 16 that settle and accumulate in the refrigerant 20 are provided.
b... is taken out of the container 21 and used as abrasive grains for blasting or the like.

以上のように構成した製造装置によれば、超音波手段1
2により超微粒化された粒径均一な超微粒W 16 a
を得て、Jれを冷媒20との熱交換により凍結させるか
ら、被凍結液をドライブガスにより噴霧させて微粒化し
た上で凍結させる従来手法によっては到底不可能であっ
た、超微粒且つ均一粒径の凍結物16b(粒径が3μm
程度)を製造することができる。
According to the manufacturing apparatus configured as above, the ultrasonic means 1
Ultra-fine particles W 16 a with uniform particle size made ultra-fine by 2
Since the liquid is frozen by heat exchange with the refrigerant 20, the liquid to be frozen is atomized with a drive gas, atomized, and then frozen, which was impossible with the conventional method, which is extremely fine and uniform. Frozen material 16b with particle size (particle size is 3 μm)
degree) can be manufactured.

しかも、このように粒径が飛躍的に極小であるため、冷
媒20との熱交換効率が極めて高く、従来装置に比して
、装置全体の小形化、簡素化を顕著に進め得て、コスト
の低減も著しい。例えば第6図に示した従来装置では、
噴霧器5に供給する市に被凍結液は予冷装置で予冷させ
ておく必要がある上に、冷却領域即ち噴霧器5の噴出面
と冷媒2の液面との距i1hを500胴程度以上に大き
くとる必要があるが、前記本発明の実施例では、かかる
予冷装置は設置する必要がなく、吹田口22と冷媒20
との距離Hも100〜200frrInで済む。さらに
、従来の方法では、第6図に示した様に、被凍結液をノ
ズルから円錐状に噴霧することが多く、容器1の径を大
きくとる必要を生ずる場合が多かったが、本発明の場合
は、単に霧状の被凍結液を吹出せばよく、凍結粒製造容
器21の径も比較的小さいものであってよい。したがっ
て、凍結粒製造容器21を含む製造装置全体を思い切っ
て小形化。
Moreover, since the particle size is extremely small, the efficiency of heat exchange with the refrigerant 20 is extremely high, making it possible to significantly reduce the size and simplicity of the entire device compared to conventional devices, and reduce costs. The reduction is also significant. For example, in the conventional device shown in Fig. 6,
The liquid to be frozen that is supplied to the sprayer 5 needs to be pre-cooled with a pre-cooling device, and the distance i1h between the cooling area, that is, the ejection surface of the sprayer 5 and the liquid level of the refrigerant 2, is set to be approximately 500 mm or more. However, in the embodiment of the present invention, there is no need to install such a precooling device, and the Suita port 22 and the refrigerant 20
The distance H between the two ends is also only 100 to 200 frrIn. Furthermore, in the conventional method, as shown in FIG. 6, the liquid to be frozen is often sprayed in a conical shape from a nozzle, which often requires a large diameter of the container 1, but the present invention In this case, it is sufficient to simply blow out the atomized liquid to be frozen, and the diameter of the frozen particle production container 21 may also be relatively small. Therefore, the entire manufacturing apparatus including the frozen grain manufacturing container 21 is drastically downsized.

簡素化し得、容器21内面への凍結物の付着も避は易い
It can be simplified, and it is easy to avoid adhesion of frozen substances to the inner surface of the container 21.

また、本発明に係る製造装置にあっては、上述した如く
冷媒との熱交換の効率が極めて高く、被凍結液16は凍
結手段14による凍結工程前の段階で超微粒化し霧状に
なっているのであるから、次に述べる第2若しくは第3
実施例における如く、凍結手段14の構成等を工夫する
ことによって、移送手段13による圧送エネルギーをブ
ラスト、クリーニング処理等のための凍結粒噴射エネル
ギーとしてそのまま利用させることも可能である。さら
に冷媒となる液化窒素20が超微粒716a・・・と直
接熱交換し、超微凍結粒1.6 b・・となり、液化窒
素2oは液体から気体となり、この気体を直接噴射エネ
ルギーとして利用できる。
In addition, in the manufacturing apparatus according to the present invention, as described above, the efficiency of heat exchange with the refrigerant is extremely high, and the liquid to be frozen 16 is ultra-finely atomized and becomes atomized before the freezing process by the freezing means 14. Therefore, the second or third
As in the embodiment, by devising the structure of the freezing means 14, etc., it is also possible to use the pumping energy by the transfer means 13 as is as frozen particle injection energy for blasting, cleaning processing, etc. Furthermore, the liquefied nitrogen 20 serving as a refrigerant directly exchanges heat with the ultrafine particles 716a... to become ultrafine frozen particles 1.6b..., and the liquefied nitrogen 2o changes from liquid to gas, and this gas can be used directly as injection energy. .

すなわち、第2図に示す第2実施例の製造装置にあって
は、移送手段13の圧送力等を含む全体圧力が2〜10
 Kg/ ffl程度の高圧に設定すると共に、凍結手
段14が、前記第1実施例と異なって、移送管19に接
続した〉ズル管24とこのノズル管24内に冷媒を噴霧
させる噴霧管25とで構成しており、その他の構成は前
記第1実施例と同様とした。
That is, in the manufacturing apparatus of the second embodiment shown in FIG.
The freezing means 14 is set at a high pressure of approximately Kg/ffl, and, unlike the first embodiment, the freezing means 14 includes a nozzle pipe 24 connected to the transfer pipe 19 and a spray pipe 25 for spraying refrigerant into the nozzle pipe 24. The other configurations were the same as those of the first embodiment.

かかる製造装置によれば、移送w19からノズル管24
内に移送された超微粒M16a・・・は、ノズル管24
内における圧送領域内で噴霧管25による噴霧冷媒と熱
交換して凍結した後、超微凍結粒16 b・・・とじて
ノズル管24から被処理物に噴射させるのであるQ さらに第3図に示す第3実施例の製造装置にあっては、
凍結手段14が、冷媒20を収容した密閉容器26とノ
ズル管24とを冷媒供給管27を介して接続すると共に
、冷媒20底部に超音波を発する振動子乞 28 a及びその制御装置28hけて構成し、その池の
構成は前記第2実施例と同一にした。なお、冷媒20の
液面高さは、液面検出器32による検出1直に応じて冷
媒供給管33の電磁弁33 aを開閉制御することによ
って一定範囲に維持される。
According to this manufacturing apparatus, the nozzle pipe 24 is transferred from the transfer w19.
The ultrafine particles M16a... transferred into the nozzle pipe 24
After being frozen by heat exchange with the refrigerant sprayed by the spray pipe 25 in the pumping area within the pumping area, the ultra-fine frozen particles 16 b... are then sprayed from the nozzle pipe 24 onto the object to be treated. In the manufacturing apparatus of the third embodiment shown,
The freezing means 14 connects the airtight container 26 containing the refrigerant 20 and the nozzle pipe 24 via the refrigerant supply pipe 27, and also includes a vibrator 28a that emits ultrasonic waves to the bottom of the refrigerant 20 and its control device 28h. The structure of the pond was the same as that of the second embodiment. Note that the liquid level height of the refrigerant 20 is maintained within a certain range by controlling the opening and closing of the solenoid valve 33 a of the refrigerant supply pipe 33 in accordance with the first detection by the liquid level detector 32 .

かかる製造装置を使用すると、密閉容器26の上部空間
26 aに超音波作用によって超微粒冷媒20 a・・
、・が霧状に発生して、これが冷媒20の蒸発ガスと共
に供給管27からノズル管24内に供給され、爾後、前
記第2実施例におけると同様の作用により、超微凍結粒
16 b・・・がノズル管24から噴射されるのである
When such a manufacturing apparatus is used, ultrafine refrigerant 20a...
, and are generated in the form of a mist, which is supplied from the supply pipe 27 into the nozzle pipe 24 together with the evaporated gas of the refrigerant 20, and then, by the same action as in the second embodiment, the ultrafine frozen particles 16b, ... is injected from the nozzle pipe 24.

このように、第2若しくは第3実施例の如き構成の実施
例では、移送手段13による圧送エネルギーと冷媒の熱
交換後の気化ガスと、被処理物に超微凍結粒16 b・
・・を噴射させるための噴射力として利用することがで
き、従来の方法や第1図の実施例の様に微凍結粒取出し
用コンベアー23の様な手段を省略し得て、極めて簡便
なブラスト装置を提供することができる。
In this way, in an embodiment having a structure such as the second or third embodiment, the vaporized gas after the heat exchange between the pumping energy and the refrigerant by the transfer means 13 and the ultrafine frozen particles 16 b.
... can be used as the jetting force for jetting, and it is possible to omit means such as the conveyor 23 for taking out finely frozen grains as in the conventional method and the embodiment shown in FIG. 1, making it an extremely simple blasting method. equipment can be provided.

なお、前記各実施例に於いて、被凍結液としては、凍結
粒の用途に応じて、水の他、果汁液、薬液、液化二酸化
炭素・塩素・アンモニア、フロン系液化ガス等の各皿液
体を用いることが・できる。
In each of the above embodiments, the liquid to be frozen may include water, fruit juice liquid, chemical liquid, liquefied carbon dioxide, chlorine, ammonia, fluorocarbon-based liquefied gas, etc., depending on the purpose of the frozen particles. can/can be used.

また、冷媒としては液化窒素、液化2酸化炭素液化空気
、液化酸素、液化アルゴンガス、液化フレオンガス等を
使用することができる。液化二酸化炭素等の液化ガスを
用いる場合には、前記密閉容器11.26は真空断熱容
器に構成しておくことが望ましい。
Further, as the refrigerant, liquefied nitrogen, liquefied carbon dioxide, liquefied air, liquefied oxygen, liquefied argon gas, liquefied freon gas, etc. can be used. When using a liquefied gas such as liquefied carbon dioxide, it is desirable that the closed container 11.26 be constructed as a vacuum insulated container.

前記各実施例においては、超微粒霧16 aの移送管1
9を介しての容器11外への移送を、移送用ガス供給%
F18から容器11内に移送ガスを供給することによっ
て行うようにしたが、第4図に示す如く、容器11の上
部にファン31を内装した送風管30を接続して、送風
管30から容器11内に送風することによって、その風
に乗せた状態で超微粒M16aを移送管19を介して容
器11外へ移送させるようにしてもよい。
In each of the embodiments described above, the transfer pipe 1 for the ultrafine mist 16a
9 to the outside of the container 11, the transfer gas supply%
This was done by supplying the transfer gas into the container 11 from the F18, but as shown in FIG. By blowing air into the container, the ultrafine particles M16a may be transferred to the outside of the container 11 via the transfer pipe 19 while being carried by the air.

本発明に係る製造装置を使用する場合、振動子17 a
によって被凍結液16中に送り込む藺音波の周波数を変
えることによって、超微凍結粒16 bの粒径を適宜調
節することができる。例えば、被凍結液として水を、ま
た冷媒として液化窒素を用い、本発明の装置によって凍
結粒を製造する場合、温度20°Cに於いては、超微凍
結粒の粒径(μm)を竪軸に、超音波発生用振動子の周
波数(Hz )を横軸にとって両者の関係をプロットす
ると、第5図の如きグラフが得られた。被凍結液、冷媒
、振動子周波数、温度を変えて同様にプロットすること
によって実酸データを揃えておけば、所望の粒径の7i
1!桔粒を得る等の条件を容易に見出すことができる。
When using the manufacturing apparatus according to the present invention, the vibrator 17 a
By changing the frequency of the sonic waves sent into the liquid to be frozen 16, the particle size of the ultrafine frozen particles 16b can be adjusted as appropriate. For example, when producing frozen particles using the apparatus of the present invention using water as the liquid to be frozen and liquefied nitrogen as the refrigerant, at a temperature of 20°C, the particle size (μm) of the ultrafine frozen particles is When the relationship between the two is plotted on the axis and the frequency (Hz) of the ultrasonic generating transducer on the horizontal axis, a graph as shown in FIG. 5 is obtained. If you prepare real acid data by plotting in the same way while changing the liquid to be frozen, refrigerant, oscillator frequency, and temperature, you can obtain 7i of the desired particle size.
1! Conditions such as obtaining mortar grains can be easily found.

(発明の効果) 本発明の超微凍結粒の製造装置は、被凍結液に超音波作
用を与えることによって均一に植機粒化して霧状に浮遊
させた状態で冷媒と熱交換させるように構成したので、
従来装置では到底得ることの出来ない均−且つ超微粒の
凍結粒を容易且つ確実に製造することができ、近年特に
強く要請されている凍結粒による超精密処理を容易に実
現させ得る手段となる。
(Effects of the Invention) The apparatus for producing ultrafine frozen granules of the present invention applies ultrasonic action to the liquid to be frozen, so that the liquid is uniformly granulated and suspended in the form of a mist, which exchanges heat with the refrigerant. Since I configured it,
It is possible to easily and reliably produce homogeneous and ultra-fine frozen particles that cannot be obtained with conventional equipment, and it is a means to easily realize ultra-precision processing using frozen particles, which has been particularly strongly requested in recent years. .

しかも、超微粒液ないし超微凍結粒が均一にして超微粒
であるため、冷媒との熱交換の効率が極めて高くなるこ
とから、凍結手段の構成を著しく簡略化し得て、装置全
体をコンパクトにまとめて小型化し得、コストの大幅な
低減を図りうる発明であり、工業的に価(直が高い。
Moreover, since the ultrafine liquid or ultrafine frozen particles are uniform and ultrafine, the efficiency of heat exchange with the refrigerant is extremely high, so the configuration of the freezing means can be significantly simplified and the entire device can be made compact. It is an invention that can be miniaturized all at once, significantly reducing costs, and is industrially cost-effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る製造装置の一実施例を示す概略の
縦断側面図、第2図は他の実施例を示す第1図同様図、
第3図は更に他の実施例を示す第1図同様図であり、第
4図は移送手段の変形例を示す要部の概略縦断側面図で
あり、第5図は振動子の周波数と凍結粒の粒重との関係
を示すグラフであり、第6図は従来の製造装置を示す第
1図同様図である。 11・・・密閉容器、12・・・超音波手段、13・・
・移送手段、14・・・凍結手段、16・・・被凍結液
、16a・・・超微粒霧!、16 b・・超微凍結粒。 第1図 7b 第2図 第6図 第5図 固兼数(Hz)
FIG. 1 is a schematic longitudinal sectional side view showing one embodiment of the manufacturing apparatus according to the present invention, FIG. 2 is a view similar to FIG. 1 showing another embodiment,
FIG. 3 is a view similar to FIG. 1 showing still another embodiment, FIG. 4 is a schematic longitudinal sectional side view of the main part showing a modification of the transfer means, and FIG. 5 is a diagram showing the frequency and freezing of the vibrator. It is a graph showing the relationship between grain weight and grain weight, and FIG. 6 is a diagram similar to FIG. 1 showing a conventional manufacturing apparatus. 11... Airtight container, 12... Ultrasonic means, 13...
- Transfer means, 14...Freezing means, 16...Liquid to be frozen, 16a...Ultra fine mist! , 16 b...Ultra-fine frozen grains. Figure 1 7b Figure 2 Figure 6 Figure 5 Fixed frequency (Hz)

Claims (1)

【特許請求の範囲】[Claims] 被凍結液を収容した密閉容器と、この被凍結液に超音波
による振動エネルギーを付与して、前記密閉容器内に霧
状の超微粒液である超微粒霧を発生浮遊させる超音波手
段と、この浮遊超微粒霧を前記密閉容器外へ気流に乗せ
て移送する移送手段と、該移送手段により移送された前
記超微粒霧を冷媒との熱交換により凍結させる凍結手段
とを具備することを特徴とする超微凍結粒の製造装置。
an airtight container containing a liquid to be frozen; an ultrasonic means for generating and suspending ultrafine mist, which is an atomized ultrafine liquid, in the airtight container by applying ultrasonic vibrational energy to the liquid to be frozen; It is characterized by comprising a transfer means for transferring the suspended ultrafine mist to the outside of the closed container in an air current, and a freezing means for freezing the ultrafine mist transferred by the transfer means by heat exchange with a refrigerant. A device for producing ultra-fine frozen particles.
JP5225886A 1986-03-10 1986-03-10 Production unit for hyperfine frozen particle Granted JPS62210368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5225886A JPS62210368A (en) 1986-03-10 1986-03-10 Production unit for hyperfine frozen particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5225886A JPS62210368A (en) 1986-03-10 1986-03-10 Production unit for hyperfine frozen particle

Publications (2)

Publication Number Publication Date
JPS62210368A true JPS62210368A (en) 1987-09-16
JPH0566514B2 JPH0566514B2 (en) 1993-09-21

Family

ID=12909727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5225886A Granted JPS62210368A (en) 1986-03-10 1986-03-10 Production unit for hyperfine frozen particle

Country Status (1)

Country Link
JP (1) JPS62210368A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01155168A (en) * 1987-12-11 1989-06-19 Taiyo Sanso Co Ltd Forming device for ultrafine frozen particle
JP2018031539A (en) * 2016-08-25 2018-03-01 大陽日酸株式会社 Slurry ice making method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01155168A (en) * 1987-12-11 1989-06-19 Taiyo Sanso Co Ltd Forming device for ultrafine frozen particle
JP2018031539A (en) * 2016-08-25 2018-03-01 大陽日酸株式会社 Slurry ice making method

Also Published As

Publication number Publication date
JPH0566514B2 (en) 1993-09-21

Similar Documents

Publication Publication Date Title
EP0225081B1 (en) Method and apparatus for producing microfine frozen particles
US4748817A (en) Method and apparatus for producing microfine frozen particles
US4932168A (en) Processing apparatus for semiconductor wafers
KR100385432B1 (en) Surface cleaning aerosol production system
JP4759760B2 (en) Fine atomization particle cleaning equipment
JP2004527719A (en) Method and apparatus for pressure driven ice blowing
JPS62210368A (en) Production unit for hyperfine frozen particle
KR20020038782A (en) Method and system for cooling and effecting a change in state of a liquid mixture
US5114748A (en) Method of preparing or rubbing a substrate to be used in a lcd device by spraying it with uniformly sized droplets or frozen water
JPS62114639A (en) Method and apparatus for preparing fine frozen particles
JPH10286503A (en) Method and apparatus for manufacturing aerosol of small liquid droplet highly loaded in liquid phase and aerosol and its usage
CN115283369A (en) Carbon dioxide state control system and method
JPH0479326A (en) Surface cleaner for substrate
JPH05144794A (en) Manufacturing device for superfine frozen particle
JP2004181334A (en) Method and apparatus for manufacturing washing material, and washing system using washing material
JPH0696226B2 (en) Ultra-frozen granule production injection device
JPS63300867A (en) Abrasive grain and surface treatment using said abrasive grain
JPH04110577A (en) Ice making device
JPH0350474A (en) Frozen particle manufacturing device
JP4075719B2 (en) Aerosol generator and composite structure manufacturing device
JPH0621751B2 (en) Frozen grain production equipment
JP3046835B2 (en) Semiconductor wafer cleaning equipment
JPH06281303A (en) Fine-grain ice making method and apparatus
JPH06288674A (en) Dryer
JPH0460790B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees